common.h

00001 /*************************************************************************
00002  *                                                                       *
00003  * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
00004  * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
00005  *                                                                       *
00006  * This library is free software; you can redistribute it and/or         *
00007  * modify it under the terms of EITHER:                                  *
00008  *   (1) The GNU Lesser General Public License as published by the Free  *
00009  *       Software Foundation; either version 2.1 of the License, or (at  *
00010  *       your option) any later version. The text of the GNU Lesser      *
00011  *       General Public License is included with this library in the     *
00012  *       file LICENSE.TXT.                                               *
00013  *   (2) The BSD-style license that is included with this library in     *
00014  *       the file LICENSE-BSD.TXT.                                       *
00015  *                                                                       *
00016  * This library is distributed in the hope that it will be useful,       *
00017  * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
00018  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
00019  * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
00020  *                                                                       *
00021  *************************************************************************/
00022 
00023 #ifndef _ODE_COMMON_H_
00024 #define _ODE_COMMON_H_
00025 #include <ode/config.h>
00026 #include <ode/error.h>
00027 #include <math.h>
00028 
00029 #ifdef __cplusplus
00030 extern "C" {
00031 #endif
00032 
00033 
00034 /* configuration stuff */
00035 
00036 /* the efficient alignment. most platforms align data structures to some
00037  * number of bytes, but this is not always the most efficient alignment.
00038  * for example, many x86 compilers align to 4 bytes, but on a pentium it
00039  * is important to align doubles to 8 byte boundaries (for speed), and
00040  * the 4 floats in a SIMD register to 16 byte boundaries. many other
00041  * platforms have similar behavior. setting a larger alignment can waste
00042  * a (very) small amount of memory. NOTE: this number must be a power of
00043  * two. this is set to 16 by default.
00044  */
00045 #define EFFICIENT_ALIGNMENT 16
00046 
00047 
00048 /* constants */
00049 
00050 /* pi and 1/sqrt(2) are defined here if necessary because they don't get
00051  * defined in <math.h> on some platforms (like MS-Windows)
00052  */
00053 
00054 #ifndef M_PI
00055 #define M_PI REAL(3.1415926535897932384626433832795029)
00056 #endif
00057 #ifndef M_SQRT1_2
00058 #define M_SQRT1_2 REAL(0.7071067811865475244008443621048490)
00059 #endif
00060 
00061 
00062 /* debugging:
00063  *   IASSERT  is an internal assertion, i.e. a consistency check. if it fails
00064  *            we want to know where.
00065  *   UASSERT  is a user assertion, i.e. if it fails a nice error message
00066  *            should be printed for the user.
00067  *   AASSERT  is an arguments assertion, i.e. if it fails "bad argument(s)"
00068  *            is printed.
00069  *   DEBUGMSG just prints out a message
00070  */
00071 
00072 #ifndef dNODEBUG
00073 #ifdef __GNUC__
00074 #define dIASSERT(a) if (!(a)) dDebug (d_ERR_IASSERT, \
00075   "assertion \"" #a "\" failed in %s() [%s]",__FUNCTION__,__FILE__);
00076 #define dUASSERT(a,msg) if (!(a)) dDebug (d_ERR_UASSERT, \
00077   msg " in %s()", __FUNCTION__);
00078 #define dDEBUGMSG(msg) dMessage (d_ERR_UASSERT,          \
00079 msg " in %s() File %s Line %d", __FUNCTION__, __FILE__,__LINE__);
00080 #else
00081 #define dIASSERT(a) if (!(a)) dDebug (d_ERR_IASSERT, \
00082   "assertion \"" #a "\" failed in %s:%d",__FILE__,__LINE__);
00083 #define dUASSERT(a,msg) if (!(a)) dDebug (d_ERR_UASSERT, \
00084   msg " (%s:%d)", __FILE__,__LINE__);
00085 #define dDEBUGMSG(msg) dMessage (d_ERR_UASSERT, \
00086   msg " (%s:%d)", __FILE__,__LINE__);
00087 #endif
00088 #else
00089 #define dIASSERT(a) ;
00090 #define dUASSERT(a,msg) ;
00091 #define dDEBUGMSG(msg) ;
00092 #endif
00093 #define dAASSERT(a) dUASSERT(a,"Bad argument(s)")
00094 
00095 /* floating point data type, vector, matrix and quaternion types */
00096 
00097 #if defined(dSINGLE)
00098 typedef float dReal;
00099 #elif defined(dDOUBLE)
00100 typedef double dReal;
00101 #else
00102 #error You must #define dSINGLE or dDOUBLE
00103 #endif
00104 
00105 
00106 /* round an integer up to a multiple of 4, except that 0 and 1 are unmodified
00107  * (used to compute matrix leading dimensions)
00108  */
00109 #define dPAD(a) (((a) > 1) ? ((((a)-1)|3)+1) : (a))
00110 
00111 /* these types are mainly just used in headers */
00112 typedef dReal dVector3[4];
00113 typedef dReal dVector4[4];
00114 typedef dReal dMatrix3[4*3];
00115 typedef dReal dMatrix4[4*4];
00116 typedef dReal dMatrix6[8*6];
00117 typedef dReal dQuaternion[4];
00118 
00119 
00120 /* precision dependent scalar math functions */
00121 
00122 #if defined(dSINGLE)
00123 
00124 #define REAL(x) (x ## f)               /* form a constant */
00125 #define dRecip(x) ((1.0f/(x)))            /* reciprocal */
00126 #define dSqrt(x) (sqrtf(x))         /* square root */
00127 #define dRecipSqrt(x) ((1.0f/sqrtf(x)))      /* reciprocal square root */
00128 #define dSin(x) (sinf(x))           /* sine */
00129 #define dCos(x) (cosf(x))           /* cosine */
00130 #define dFabs(x) (fabsf(x))         /* absolute value */
00131 #define dAtan2(y,x) (atan2f(y,x))      /* arc tangent with 2 args */
00132 #define dFMod(a,b) (fmodf(a,b))     /* modulo */
00133 
00134 #ifdef HAVE___ISNANF
00135 #define dIsNan(x) (__isnanf(x))
00136 #elif defined(HAVE__ISNANF)
00137 #define dIsNan(x) (_isnanf(x))
00138 #elif defined(HAVE_ISNANF)
00139 #define dIsNan(x) (isnanf(x))
00140 #else
00141   /*
00142      fall back to _isnan which is the VC way,
00143      this may seem redundant since we already checked
00144      for _isnan before, but if isnan is detected by
00145      configure but is not found during compilation
00146      we should always make sure we check for __isnanf,
00147      _isnanf and isnanf in that order before falling
00148      back to a default
00149   */
00150 #define dIsNan(x) (_isnan(x))
00151 #endif
00152 
00153 #define dCopySign(a,b) ((dReal)copysignf(a,b))
00154 
00155 #elif defined(dDOUBLE)
00156 
00157 #define REAL(x) (x)
00158 #define dRecip(x) (1.0/(x))
00159 #define dSqrt(x) sqrt(x)
00160 #define dRecipSqrt(x) (1.0/sqrt(x))
00161 #define dSin(x) sin(x)
00162 #define dCos(x) cos(x)
00163 #define dFabs(x) fabs(x)
00164 #define dAtan2(y,x) atan2((y),(x))
00165 #define dFMod(a,b) (fmod((a),(b)))
00166 #ifdef HAVE___ISNAN
00167 #define dIsNan(x) (__isnan(x))
00168 #elif defined(HAVE__ISNAN)
00169 #define dIsNan(x) (_isnan(x))
00170 #elif defined(HAVE_ISNAN)
00171 #define dIsNan(x) (isnan(x))
00172 #else
00173 #define dIsNan(x) (_isnan(x))
00174 #endif
00175 
00176 #define dCopySign(a,b) (copysign((a),(b)))
00177 
00178 #else
00179 #error You must #define dSINGLE or dDOUBLE
00180 #endif
00181 
00182 
00183 /* utility */
00184 
00185 
00186 /* round something up to be a multiple of the EFFICIENT_ALIGNMENT */
00187 
00188 #define dEFFICIENT_SIZE(x) ((((x)-1)|(EFFICIENT_ALIGNMENT-1))+1)
00189 
00190 
00191 /* alloca aligned to the EFFICIENT_ALIGNMENT. note that this can waste
00192  * up to 15 bytes per allocation, depending on what alloca() returns.
00193  */
00194 
00195 #define dALLOCA16(n) \
00196   ((char*)dEFFICIENT_SIZE(((size_t)(alloca((n)+(EFFICIENT_ALIGNMENT-1))))))
00197 
00198 
00199 // Use the error-checking memory allocation system.  Because this system uses heap
00200 //  (malloc) instead of stack (alloca), it is slower.  However, it allows you to
00201 //  simulate larger scenes, as well as handle out-of-memory errors in a somewhat
00202 //  graceful manner
00203 
00204 // #define dUSE_MALLOC_FOR_ALLOCA
00205 
00206 #ifdef dUSE_MALLOC_FOR_ALLOCA
00207 enum {
00208   d_MEMORY_OK = 0,      /* no memory errors */
00209   d_MEMORY_OUT_OF_MEMORY   /* malloc failed due to out of memory error */
00210 };
00211 
00212 #endif
00213 
00214 
00215 
00216 /* internal object types (all prefixed with `dx') */
00217 
00218 struct dxWorld;      /* dynamics world */
00219 struct dxSpace;      /* collision space */
00220 struct dxBody;    /* rigid body (dynamics object) */
00221 struct dxGeom;    /* geometry (collision object) */
00222 struct dxJoint;
00223 struct dxJointNode;
00224 struct dxJointGroup;
00225 
00226 typedef struct dxWorld *dWorldID;
00227 typedef struct dxSpace *dSpaceID;
00228 typedef struct dxBody *dBodyID;
00229 typedef struct dxGeom *dGeomID;
00230 typedef struct dxJoint *dJointID;
00231 typedef struct dxJointGroup *dJointGroupID;
00232 
00233 
00234 /* error numbers */
00235 
00236 enum {
00237   d_ERR_UNKNOWN = 0,    /* unknown error */
00238   d_ERR_IASSERT,     /* internal assertion failed */
00239   d_ERR_UASSERT,     /* user assertion failed */
00240   d_ERR_LCP       /* user assertion failed */
00241 };
00242 
00243 
00244 /* joint type numbers */
00245 
00246 enum {
00247   dJointTypeNone = 0,      /* or "unknown" */
00248   dJointTypeBall,
00249   dJointTypeHinge,
00250   dJointTypeSlider,
00251   dJointTypeContact,
00252   dJointTypeUniversal,
00253   dJointTypeHinge2,
00254   dJointTypeFixed,
00255   dJointTypeNull,
00256   dJointTypeAMotor,
00257   dJointTypeLMotor,
00258   dJointTypePlane2D
00259 };
00260 
00261 
00262 /* an alternative way of setting joint parameters, using joint parameter
00263  * structures and member constants. we don't actually do this yet.
00264  */
00265 
00266 /*
00267 typedef struct dLimot {
00268   int mode;
00269   dReal lostop, histop;
00270   dReal vel, fmax;
00271   dReal fudge_factor;
00272   dReal bounce, soft;
00273   dReal suspension_erp, suspension_cfm;
00274 } dLimot;
00275 
00276 enum {
00277   dLimotLoStop    = 0x0001,
00278   dLimotHiStop    = 0x0002,
00279   dLimotVel    = 0x0004,
00280   dLimotFMax      = 0x0008,
00281   dLimotFudgeFactor  = 0x0010,
00282   dLimotBounce    = 0x0020,
00283   dLimotSoft      = 0x0040
00284 };
00285 */
00286 
00287 
00288 /* standard joint parameter names. why are these here? - because we don't want
00289  * to include all the joint function definitions in joint.cpp. hmmmm.
00290  * MSVC complains if we call D_ALL_PARAM_NAMES_X with a blank second argument,
00291  * which is why we have the D_ALL_PARAM_NAMES macro as well. please copy and
00292  * paste between these two.
00293  */
00294 
00295 #define D_ALL_PARAM_NAMES(start) \
00296   /* parameters for limits and motors */ \
00297   dParamLoStop = start, \
00298   dParamHiStop, \
00299   dParamVel, \
00300   dParamFMax, \
00301   dParamFudgeFactor, \
00302   dParamBounce, \
00303   dParamCFM, \
00304   dParamStopERP, \
00305   dParamStopCFM, \
00306   /* parameters for suspension */ \
00307   dParamSuspensionERP, \
00308   dParamSuspensionCFM,
00309 
00310 #define D_ALL_PARAM_NAMES_X(start,x) \
00311   /* parameters for limits and motors */ \
00312   dParamLoStop ## x = start, \
00313   dParamHiStop ## x, \
00314   dParamVel ## x, \
00315   dParamFMax ## x, \
00316   dParamFudgeFactor ## x, \
00317   dParamBounce ## x, \
00318   dParamCFM ## x, \
00319   dParamStopERP ## x, \
00320   dParamStopCFM ## x, \
00321   /* parameters for suspension */ \
00322   dParamSuspensionERP ## x, \
00323   dParamSuspensionCFM ## x,
00324 
00325 enum {
00326   D_ALL_PARAM_NAMES(0)
00327   D_ALL_PARAM_NAMES_X(0x100,2)
00328   D_ALL_PARAM_NAMES_X(0x200,3)
00329 
00330   /* add a multiple of this constant to the basic parameter numbers to get
00331    * the parameters for the second, third etc axes.
00332    */
00333   dParamGroup=0x100
00334 };
00335 
00336 
00337 /* angular motor mode numbers */
00338 
00339 enum{
00340   dAMotorUser = 0,
00341   dAMotorEuler = 1
00342 };
00343 
00344 
00345 /* joint force feedback information */
00346 
00347 typedef struct dJointFeedback {
00348   dVector3 f1;    /* force applied to body 1 */
00349   dVector3 t1;    /* torque applied to body 1 */
00350   dVector3 f2;    /* force applied to body 2 */
00351   dVector3 t2;    /* torque applied to body 2 */
00352 } dJointFeedback;
00353 
00354 
00355 /* private functions that must be implemented by the collision library:
00356  * (1) indicate that a geom has moved, (2) get the next geom in a body list.
00357  * these functions are called whenever the position of geoms connected to a
00358  * body have changed, e.g. with dBodySetPosition(), dBodySetRotation(), or
00359  * when the ODE step function updates the body state.
00360  */
00361 
00362 void dGeomMoved (dGeomID);
00363 dGeomID dGeomGetBodyNext (dGeomID);
00364 
00365 
00366 #ifdef __cplusplus
00367 }
00368 #endif
00369 
00370 #endif

Generated on Fri Sep 8 21:34:08 2006 for Open Dynamics Engine by  doxygen 1.4.6