
Notes on using RED

for Queue Management

and Congestion Avoidance

Van Jacobson
van@ee.lbl.gov

Network Research Group
Berkeley National Laboratory

Berkeley, CA 94720

NANOG 13
Dearborn, MI

June 8, 1998

c©1998 by Van Jacobson
All rights reserved



Acknowledgment

Most of what’s described here is based on recent work done with
Kathleen Nichols (knichols@baynetworks.com ) and Kedarnath
Poduri (kpoduri@baynetworks.com ) of the Bay Architecture Lab.

There’s a lot of analysis, simulation and measurement that we soon
hope to turn into a paper giving an engineering and operations
perspective on RED. (Kathie’s in charge of this so it will probably
happen.)

vj–nanog 13–red Slide 2



At NANOG 11 (Phoenix) I offered a “heads up” that a large crowd
of researchers were about to say that some sort of active router
queue management was necessary for the health of the Internet. That
document is now out:

RFC2309: Recommendations on Queue Management
and Congestion Avoidance in the Internet. B. Braden,
D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,
S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson,
K. Ramakrishnan, S. Shenker, J. Wroclawski, L. Zhang.
April 1998.

That was about why. This is about how.

vj–nanog 13–red Slide 3



A brief digression

In history you may have learned that in 1794
James Watt invented the steam engine and
started the Industrial Revolution. This is false.

Actually, steam engines had been around for
2000 years—Hero of Alexandria wrote about
them in 200 BC—but they were only useless
toys.

James Watt made them useful by inventing
the Flyball Regulator.

vj–nanog 13–red Slide 4



Digression (cont.)

The Flyball Regulator allowed an engine to be used with real-
world (changing) loads because it adjusted the steam pressure
automatically based on the main drive-shaft velocity.

vj–nanog 13–red Slide 5



Digression (cont.)

How the regulator’s controlling variables affect its controlled variables
is usually called the Control Law. To design (or understand) a
regulator, understand its control law:

Min Max

Open

Closed

Shaft Speed
(or Ball Height)

Valve Position

But because this is a closed-loop servo system, any control law that
meets simple monotonicity and completeness constraints will work.
Some just work better than others.

vj–nanog 13–red Slide 6



Getting back to networks. . .

A typical congested gateway looks
like a firehose connected to a soda
straw through a small funnel (the
output queue).

If, on average, packets arrive faster
than they can leave, the funnel will fill
up and eventually overflow.

RED is simple regulator that monitors
the level in the funnel and uses it to
match the input rate to the output (by
dropping excess traffic).

vj–nanog 13–red Slide 7



As long as its control law is monotone non-decreasing and covers
the full range of 0 to 100% drop rate, RED works for any link, any
bandwidth, any type of traffic.

Min Max

0%

100%

Averge Queue Size

Drop Rate

RED works even when the control law is bizarre. But it works really
well when the control law incorporates the additional leverage caused
by TCP’s congestion avoidance and timeout algorithms.

vj–nanog 13–red Slide 8



Other design considerations

100ms in the life of a T1 as envisioned by a typical academic
(horizontal axis is time, colored boxes are packets, white are gaps,
different colors are different “flows”):

The same 100ms as observed by a network monitor:

Note that real traffic is both very bursty and highly structured:

⇒ Have to average over relatively long time scales to find the real
queue length.

⇒ Have to randomize drops so they’re not biased by the traffic
structure.

vj–nanog 13–red Slide 9



Nice theory — but does RED make any practical difference?

Data from a busy EBone E1 (2Mb/s) link courtesy of Sean Doran.

RED was turned on at 10am Friday (the 2nd “10” in the figure). Note
that the utilization goes up to 100% and stays there but the FIFO
queuing on Thursday hardly ever makes it up to 100%.

vj–nanog 13–red Slide 10



Maybe Thursday was just a bad day so take a look at the rest of the
week:

Utilization is low because FIFO dropping interacts badly with all the
structure in internet traffic:

• tends to drop multiple packets from the same conversation

• tends to drop from small users rather than big ones

• tends to drop (multiple) TCP SYNs

vj–nanog 13–red Slide 11



But RED is too complicated for a high speed router. . .

No. The entire RED algorithm is only 20 lines of C. And even that
doesn’t have to be done per-packet. RED is driven off long-term
average behavior and will work just fine if run as a low duty-cycle
background task.

RED requires exactly one addition to the forwarding path (in the place
where an arriving packet is added to the queue):

if (--packetsTillDrop == 0)

DropPacket();

vj–nanog 13–red Slide 12



Complication (cont.)

But the 1993 RED paper wasn’t very clear on this (because of an
editing error, its “efficient” implementation isn’t). And implementing a
distributed algorithm on the specialized multi-tasking multi-processor
that forms a modern router is inherently architecture specific.

To help get RED deployed, I’d be glad work with any router vendor
seriously interested in implementing it. (This offer has stood for
several years. So far only Bay has taken me up on it.)

vj–nanog 13–red Slide 13



What about WRED, FRED, RIO, ARED, . . . ?

Maybe. But be suspicious. All of these are basically drop-preference
schemes which means they’re driven off the detailed sub-structure of
a queue. Queues have a complex, time-varying structure and it is very
hard to extract reliable information from them.

If general, the same per-packet information used to decide the drop
preference in a queue:

can be used to instead select one of a set of queues:

It is almost always better to run one instance of RED over each of
these queues rather than multiple instances of RED over one big
queue.

vj–nanog 13–red Slide 14



Conclusion

• RED is a simple network traffic regulator based on 200 years
control engineering experience.

• It works much better than tail-drop (or head-drop) FIFO queues.

• It works in practice, not just theory.

• A RED implementation adds about 5 instructions (or < 200

gates) to the forwarding path.

But the original RED paper was missing a lot of important operational
information and suggested a control law that isn’t a good match to
how the Internet has evolved. The pioneering vendor implementations
have suffered from our mistakes. We’re currently trying to fix that.

Soon. . .

vj–nanog 13–red Slide 15


