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Abstract. It has been conjectured that if G is a negatively curved discrete group with space
at infinity ∂G the 2 -sphere, then G has a properly discontinuous, cocompact, isometric action on
hyperbolic 3 -space. Cannon and Swenson reduced the conjecture to determining that a certain
sequence of coverings of ∂G is conformal in the sense of Cannon’s combinatorial Riemann mapping
theorem. In this paper it is proved that, in this setting, the two axioms of conformality can be
replaced by a single axiom which is implied by each of them.

0. Introduction

This paper involves the burgeoning field of discrete approximations to complex
analysis and conformal mapping. The purpose is to improve the combinatorial
Riemann mapping theorem of [3] by simplifying its hypotheses and thereby greatly
enhancing its applicability.

We recall here the purpose of the combinatorial Riemann mapping theorem
by comparing it with the other discrete Riemann mapping theorems.

A two-dimensional planar or spherical domain can be approximated by a se-
quence of subdivisions or networks (as used by the finite element method), tilings
or shinglings, or circle packings. The discrete Riemann mapping theorems state
that, if the approximations are sufficiently regular and geometric, then the combi-
natorial approximations can be used to approximate not only the domain but also
the classical Riemann or uniformization mappings.

On the other hand, the combinatorial Riemann mapping theorem drops all
hypotheses of geometric regularity, in fact forgets the underlying analytic structure
of the domain, and asks to what extent the combinatorics alone of the approx-
imations are sufficient to determine an analytic structure on the domain with
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respect to which the approximations are nicely geometric approximations. That
is, do combinatorics determine analytic structure? The combinatorial Riemann
mapping theorem gives necessary and sufficient conditions for the existence of a
quasiconformal structure on the domain (quasiconformally unique!) compatible
with the combinatorics.

Appropriately enough the conditions supplying the quasiconformal analytic
structure on the domain are discrete analogues of classical conformal invariants,
namely combinatorial conformal modulus or extremal length.

Why should one be interested in the combinatorial Riemann mapping theo-
rem? After all, in the classical theory, the underlying analytic structure is always
supplied by hypothesis. In response we cite the following important conjecture
whose attempted proof has attracted worldwide effort.

Conjecture. Suppose G is a negatively curved (word hyperbolic) discrete
group whose space at infinity is the 2 -sphere. Then G acts properly discontinu-
ously, cocompactly, and isometrically on hyperbolic 3 -space H3 .

This conjecture has invited approaches via 3-manifold theory, complex analy-
sis, differential equations and differential geometry, and geometric and combinato-
rial group theory. Our approach, which mixes geometric group theory, hyperbolic
geometry, complex variables, and the geometry of planar tessellations, has reduced
the conjecture precisely to the verification, under appropriate conditions, of the
hypotheses of the combinatorial Riemann mapping theorem. The 2-sphere of
the conjecture arrives equipped only with combinatorial structure induced by the
structure of the group. The difficulty of the conjecture arises precisely from the
problem of finding a compatible analytic structure.

From thence also comes our urgent desire to simplify the hypotheses of the
theorem; we would prefer to verify easy conditions rather than difficult conditions
(albeit we can do neither at present).

We consider the improvements supplied by this paper substantial: (1) we
replace two axioms by one much simpler axiom obviously weaker than either of
the two original; (2) we replace the verification of the two conditions for all of an
uncountable set of domains to the verification of the simpler axioms for a finite
number of domains; (3) in another paper [5] we show that the simpler axiom can
actually be verified in a variety of nontrivial situations provided there is substan-
tial symmetry present (and symmetries, though unfortunately not of the kind we
understand, abound in groups).

Unfortunately our improvement does not come without cost. The original
theorem had proof that was long and hard, and it is not simplified by our work.
Rather, the previous work must be distilled and understood even more completely.
But greater understanding has its benefits as well. In particular, we have had to
improve the quadratic area estimate of the original paper which implies that under
our very abstract versions of discrete Riemann mapping the image domain has
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curvature close to zero, is combinatorially quite flat. Also, we have had to come
to grips with the very geometric nature of the classical estimates of conformal
modulus; we have found this insight to be enlightening. In summary, we hope
that the reader will not find himself or herself without reward.

We now review some definitions and outline the paper. A shingling of a
topological surface X is a locally finite cover of X by compact, connected sets,
called shingles. If X is a surface and S is a shingling of X , a weight func-
tion on S is a nonzero function ρ: S → R such that �(s) ≥ 0 for all s ∈
S . Suppose S is a shingling of a surface X , and that R is a ring in X .
If � is a weight function on S , then the area A(R, �) =

∑
s∈S :s∩R�=∅ �(s)

2

and the length of a curve α in R is L(α, �) =
∑

s∈S :s∩α �=∅ �(s). The height
H(R, �) = inf{L(α, �) : α is a curve joining the ends of R} and the circumfer-
ence C(R, �) = inf{L(α, �) : α is a simple closed curve separating the ends of R} .
The combinatorial moduli are

M(R,S ) = sup
�

{
H(R, �)2

A(R, �)

}
and m(R,S ) = inf

�

{
A(R, �)
C(R, �)2

}
.

Suppose we are given a surface X , a subset A ⊆ X , and a neighborhood N
of A in X . We say that a ring R in N \A surrounds A if one of the connected
components of N \ R is an open disk D such that ∂D is one of the ends of R
and D contains A . If x ∈ N and R surrounds {x} , we say that R surrounds x .

Now suppose that {Si}∞i=1 is a sequence of shinglings of a topological surface
X with mesh locally approaching zero. Let Y be an open subsurface of X . The
sequence {Si}∞i=1 is conformal (K ) in Y if there is a positive real number K
satisfying the following conditions.

Axiom I. For each ring R in Y , there exists r > 0 such that m(R,Si),
M(R,Si) ∈ [r,Kr] for sufficiently large i .

Axiom II. Given x ∈ Y , a neighborhood N of x , and an integer J , there is
a ring R in N surrounding x such that m(R,Si),M(R,Si) > J for sufficiently
large i .
When Y = X we say that {Si}∞i=1 is conformal (K ) or conformal. The combina-
torial Riemann mapping theorem states that if {Si}∞i=1 is a conformal sequence
of shinglings of a topological surface X , then there is a quasiconformal structure
on X such that the moduli of rings in X are within a global multiplicative bound
of the asymptotic combinatorial moduli.

Our replacement for these two axioms is the following weak condition, which
is implied by Axiom I or Axiom II.

Axiom 0. Given x ∈ Y and a neighborhood N of x , there is a ring R in N
surrounding x such that the moduli m(R,Si) are bounded away from 0.

This paper depends heavily on arguments and techniques from [3]. In Sec-
tion 1 we prove some preliminary results about moduli for a fixed shingling. In
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Section 2 we discuss how to adapt arguments in Sections 3, 4.1, and 4.2 of [3] so
that they do not assume Axiom I. In Sections 3–6 we assume that X is a ring
or quadrilateral in a topological surface, S1,S2,S3, . . . are finite shinglings of
a neighborhood of X with mesh locally approaching 0 which satisfy Axiom II,
and �1, �2, �3, . . . are (fat flow) optimal weight functions for S1,S2,S3, . . . with
A(X, �i) = 1 for all i . The separation theorem is proved in Section 3: if A and
B are disjoint compact subsets of X , then lim inf{di(A,B)} > 0. This is used
in Section 4 to prove that if R is a ring in the interior of X , then the moduli
m(R,Si) are bounded above and the moduli M(R,Si) are bounded from 0.
Two theorems are proved in Section 5 about a ring R in X with inner bound-
ary component R0 and outer boundary component R1 , a point p within R0 , a
sufficiently large integer i , and the numbers r0i = max{di(p, x) : x ∈ R0} and
r1i = max

{
r0i,min{di(p, x) : x ∈ R1}

}
: the logarithmic modulus estimates, which

estimate the moduli of R in terms of log(r1i/r0i); and the buffered ring theorem,
which estimates r1i/r0i in terms of the moduli of a nested triple of rings with R in
the middle. In Section 6 we give, for sufficiently large i , a lower bound for the area
A(D, �i) of a disk D in X as a quadratic polynomial in the di -radius of D from a
point p ∈ D . The sufficiently rich theorem is proved in Section 7; this states that
a sequence of shinglings with mesh locally approaching 0 is conformal if it satisfies
Axiom II and there is a sufficiently rich family of buffered rings with controlled
moduli. Finally, in Section 8 we prove the main result, Theorem 8.2, which gives
the equivalence of Axiom 0 to Axioms I and II in an appropriate setting.

The hypothesis that G is a negatively curved group whose space at infinity is
a 2-sphere is not used until Section 8, where it is used for a finiteness statement.
Since the first seven sections do not use this hypothesis, they are applicable in
other settings. In [5, Section 5], a parallel argument to that of Section 8 is given
to prove an analogue of Theorem 8.2 for a bounded valence finite subdivision rule
with mesh approaching 0.

1. Results for one shingling

In this section we prove some preliminary results about the moduli of a ring
with respect to a single shingling. Let R be a ring in a topological surface,
and let S be a finite shingling of a neighborhood of R . As in Section 2.4.1
of [4], there are four moduli to consider: the fat flow modulus Mf (R,S), the fat
cut modulus mf (R,S), the skinny flow modulus Ms(R,S), and the skinny cut
modulus ms(R,S). In this terminology, flows are paths that join the ends of
R and cuts are closed curves that separate the ends of R . The terms fat and
skinny desribe how length is measured. The fat length of a path, which is the
length defined in the introduction, is the sum of the weights of all of the shingles
that intersect the path. The fat flow modulus Mf (R,S) = M(R,S) and the fat
cut modulus mf (R,S) = m(R,S). The skinny flow modulus, Ms(R,S), is also a
supremum of (height)2/area, where (roughly speaking) the skinny height of a path
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is the sum of the weights of a minimal set of shingles whose union contains the
path. (The technical definition, which is in Section 2.4.1 of [4], is a modification
of this.) The skinny cut modulus, which we will not use in this paper, is defined
similarly. A significant difference between the present situation and that of [4] is
that in [4] every shingle is contained in R but here shingles need not be contained
in R .

Proposition 1.1. Let R′ be a ring contained in R which separates the ends
of R . Then

mf (R′, S) ≤ mf(R,S) and Mf (R′, S) ≤ Mf (R,S).

Proof. Let � be an optimal weight function on S relative to fat cuts for R .
Then

A(R′, �) ≤ A(R, �) and C(R′, �) ≥ C(R, �).

Thus

mf (R′, S) ≤ A(R′, �)
C(R′, �)2

≤ A(R, �)
C(R, �)2

= mf(R,S).

This proves the first inequality of Proposition 1.1.
Now let � be an optimal weight function on S relative to fat flows for R′ .

Then
H(R′, �) ≤ H(R, �) and A(R′, �) = A(R, �).

Thus

Mf (R′, S) =
H(R′, �)2

A(R′, �)
≤ H(R, �)2

A(R, �)
≤ Mf (R,S).

This completes the proof of Proposition 1.1.

Theorem 1.2. Let � be a fat flow optimal weight function on S for R .
Then

A(R, �) ≤ H(R, �)C(R, �).

Proof. The results of Section 2.3 of [4] hold in the present situation. Thus
there exist paths α1, . . . , αk in R joining the ends of R which in the language of
Section 2.4 of [4] are the underlying paths of a fundamental family of fat flows for
R relative to S . In other words, there exists a fat flow optimal weight function
σ on S for R such that if s is a shingle in S , then σ(s) is the number of paths
α1, . . . , αk that meet s . Line 2.3.4 of [4] shows that

(1.3) A(R, σ) = kH(R, σ).

Now let β be a simple closed curve in R which separates the ends of R . Then
β meets each of the paths α1, . . . , αk . It easily follows that the σ -length of β is
at least k . Hence C(R, σ) ≥ k . Combining this with line 1.3 gives that

A(R, σ) ≤ H(R, σ)C(R, σ).

This proves Theorem 1.2 because σ is a scalar multiple of � .
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Corollary 1.4. Let � be a fat flow optimal weight function on S for R with
A(R, �) = 1 . Then

mf (R,S) ≤
1

C(R, �)2
≤ Mf (R,S).

Proof. The first inequality is clear, and the second inequality follows easily
from Theorem 1.2.

Theorem 1.5. We have

mf(R,S) = Ms(R,S).

Proof. The theorem can be proved by verifying that the results of Section 2.4.3
of [4] hold in the present situation.

Let K be a positive integer. We say that a collection C of subsets of some
set has bounded valence (K ) if every element of C meets at most K elements
of C .

Theorem 1.6 (Bounded valence theorem). Suppose that K is a positive
integer such that S has bounded valence (K ). Then

Mf (R,S) ≤ K2mf(R,S).

Proof. For the proof of Theorem 1.6 we use the notation of Section 2.4.1 of [4].
Given a shingle s in S , let σ(s) be the set of all shingles in S which meet s .

Let w be an optimal weight function on S for fat flows of R . Let w′ be the
weight function on S such that if s ∈ S , then w′(s) =

∑
t∈σ(s) w(t).

In this paragraph we prove that Hw,f ≤ Hw′,s . For this let f be a minimal
skinny flow for w′ . Let F =

⋃
s∈f s , and let C = ∪{s ∈ S : s ∩ F = ∅} . Then F

is a compact connected set which joins the ends of R , and F is disjoint from the
compact set C . It easily follows that there exists a connected open set U joining
the ends of R which is disjoint from C . From this it follows that there exists a
path α in R \ C joining the ends of R . Since every shingle which meets α lies
in ∪{s ∈ S : s ∩ F �= ∅} , the w -length of α is at most the w′ -length of f . This
proves that Hw,f ≤ Hw′,s .

In this paragraph we estimate Aw′ . Given s ∈ S , w′(s) =
∑

t∈σ(s) w(t).
Since |σ(s)| ≤ K , the Cauchy–Schwarz inequality implies that

w′(s)2 ≤ K
∑

t∈σ(s)

w(t)2.

Hence
Aw′ =

∑
s∈S

w′(s)2 ≤ K
∑
s∈S

∑
t∈σ(s)

w(t)2

= K
∑
t∈S

∑
s∈σ(t)

w(t)2 ≤ K2
∑
t∈S

w(t)2 = K2Aw .
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Thus

Mf =
H2

w,f

Aw
≤

K2H2
w′,s

Aw′
≤ K2Ms.

Since Theorem 1.5 states that mf = Ms , it follows that Mf ≤ K2mf .
This proves Theorem 1.6.

Theorem 1.7 (Layer theorem). Let R1, . . . , Rn be rings contained in R
which separate the ends of R , and suppose that every shingle in S meets at most
one Ri . Then M(R,S) ≥

∑n
i=1 M(Ri, S) .

Proof. For each i ∈ {1, . . . , n} , let �i be an an optimal weight function on
S relative to fat flows for Ri . Define a weight function � on S by �(s) = 0 if
s∩Ri = ∅ for all i ∈ {1, . . . , n} and �(s) = H(Ri, �i)�i(s)/A(Ri, �i) if s∩Ri �= ∅ .
Then

H(R, �) ≥
n∑

i=1

H(Ri, �i)
A(Ri, �i)

H(Ri, �i) =
n∑

i=1

M(Ri, �i).

Similarly

A(R, �) =
n∑

i=1

(
H(Ri, �i)
A(Ri, �i)

)2

A(Ri, �i) =
n∑

i=1

M(Ri, �i).

Thus

M(R,S) ≥ M(R, �) =
H2(R, �)
A(R, �)

≥
n∑

i=1

M(Ri, �i) =
n∑

i=1

M(Ri, S).

This proves Theorem 1.7.

2. Groundwork for sequences of shinglings

In this section we examine the results we wish to apply from [3]. Since we will
not be using them with the hypotheses from [3], we need to examine the proofs to
see how to adapt them to fit our situation.

2.1. Assumptions. Let X be a quadrilateral or ring in a topological surface.
Let S1, S2, S3, . . . be a sequence of finite shinglings of some neighborhood of X
with fat flow optimal weight functions �1, �2, �3, . . . for X normalized so that the
area of X is 1. As for all optimal weight functions, if s ∈ Si and s∩X = ∅ , then
�i(s) = 0 for every positive integer i . We do not assume that shingles either miss
X or are contained in X . We assume that the meshes of S1, S2, S3, . . . approach 0.
Our main assumption is that Axiom II is satisfied for all points in X .



272 J.W. Cannon, W.J. Floyd, and W.R. Parry

2.2. Discussion of assumptions and certain results in [3]. We wish to
apply most of the results proved in [3] from Proposition 3.3 through Section 4.2.
There are three difficulties involved in doing this. First of all there is a ring R
which appears throughout this passage of [3]. We wish to replace R by X , which
is either a ring or a quadrilateral. The second difficulty is that we must ensure that
the results which we apply from [3] do not require any applications of Axiom I.
The third difficulty concerns what we call the conditioning assumption, which we
discuss in the next paragraph.

Proposition 3.3 of [3] holds in the present situation. As after Proposition 3.3
in [3] we might therefore assume after passing to a subsequence that the following
conditions are satisfied. For each x ∈ X and for each positive integer i , there exists
a ring R(x, i) of metric diameter less than 1/i surrounding x having the follow-
ing property. If j ≥ i , then R(x, i) misses star2(x, Sj) and there is a proper disk
neighborhood D = D(x, i, j) of X∩star2(x, Sj) whose frontier FrD lies in R(x, i)
and has length Lj(FrD) < 1/i . We call this assumption on S1, S2, S3, . . . the con-
ditioning assumption. The conditioning assumption is convenient for [3], but it is
inconvenient here for the following reason. We wish to eventually prove after mak-
ing more assumptions that S1, S2, S3, . . . is conformal. For this it does not suffice
to prove that a subsequence of S1, S2, S3, . . . is conformal. We therefore avoid
the conditioning assumption. Instead of making the conditioning assumption, we
use an index function, which is defined as follows. There exists a strictly increas-
ing function ι: Z+ → Z+ , where Z+ is the set of positive integers, called an index
function, satisfying the following conditions. For each x ∈ X and for each positive
integer I , there exists a ring R(x, I) of metric diameter less than 1/I surround-
ing x having the following property. If i ≥ ι(I), then R(x, I) misses star2(x, Si)
and there is a proper disk neighborhood D = D(x, I, i) of X ∩ star2(x, Si) whose
frontier FrD lies in R(x, I) and has length Li(FrD) < 1/I . We fix such an in-
dex function ι . Given a positive integer i ≥ ι(1), we define i-approximations in
the present situation as follows. Let I be the largest positive integer such that
i ≥ ι(I). Then an i-approximation to a point x ∈ X is a proper disk D(x) of
X of metric diameter less than 1/I such that X ∩ star2(x, Si) ⊆ R IntD(x) and
Li(FrD(x)) < 1/I . For positive integers i < ι(1) we define i-approximations in
the same way, taking I = 0, so that the conditions which involve 1/I are vacuous.
Using these i-approximations, we define the distance function di as before for
every positive integer i . We use ι to reformulate results of [3] so that they apply
to the original sequence S1, S2, S3, . . . and not just to subsequences which satisfy
the conditioning assumption. For example, we reformulate Proposition 3.4 of [3]
as follows. Suppose given positive integers I and i with i ≥ ι(I). Then for each
x ∈ X , di(x, x) < 1/I . For each x, y, z ∈ X ,

di(x, z) ≤ di(x, y) + di(y, z) + 2/I.

Thus the reader must examine [3] from immediately after Proposition 3.3
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to the end of Section 4.2 focusing on the following three things: (i) occurrences
of R , (ii) applications of Axiom I, and (iii) the index i . We next discuss this
examination in greater detail. We begin by stating that although Proposition 4.0.3
is stated in this passage of [3], it is not proved in this passage, and is not under
consideration here. The reader must verify that the ring R which appears in this
passage of [3] can be replaced by X , which is either a ring or a quadrilateral.
Almost the only change required by this generalization is that in Proposition 4.2.7
both E(r) and the curve C should separate the ends of X . We denote the ends
of X by X0 and X1 . The reader must verify that the following describes all
of the applications of Axiom I in this passage. With exactly one exception, the
applications of Axiom I in this passage deal with the uniform boundedness of
the distance functions d1, d2, d3, . . . . Proposition 4.1.1 is the most basic of these
results; it is used by Proposition 4.1.4, which is used by Proposition 4.0.2, hence by
the corollary to Proposition 4.0.2, and this corollary is used by Theorem 4.0.1. We
will not apply any of these results of [3]. We will also not apply Proposition 4.1.7,
which is used in the proof of Theorem 4.0.2. The exceptional application of Axiom I
is used to prove the quadratic area estimate. This application occurs indirectly
in the paragraph before Proposition 4.2.12, where it is assumed that 6/i < Hi .
This assumption follows from lim inf{Hi} > 0, which is a consequence of Axiom I.
In the next paragraph we show how to prove the quadratic area estimate without
Axiom I, so that we will be able to apply the quadratic area estimate in the present
situation. Finally, we turn to the index i . We are considering the results in [3]
after Proposition 3.3 to the end of Section 4.2 other than those already ruled out:
Proposition 4.1.1, Proposition 4.1.4, Proposition 4.1.7, Proposition 4.0.2 and its
corollary, Theorem 4.0.1 and Proposition 4.0.3. The reader must verify that with
but one exception all relevant results in this passage of [3] can be reformulated
using the index function ι as at the end of the previous paragraph. The exceptional
case here is the same as the exceptional case for applications of Axiom I; namely, it
involves the restriction 6/i < Hi made in the paragraph before Proposition 4.2.12
in [3]. In the next paragraph we show how to prove the quadratic area estimate
without Axiom I so that it holds for the original sequence of shinglings and not
just for a subsequence.

In this paragraph we modify the proof of the quadratic area estimate in [3]
to obtain a proof which does not use Axiom I and which holds for the original
sequence of shinglings, not just for a subsequence. Our modification centers on
the definition of the set B made immediately before Proposition 4.2.8. Keep
in mind that estimates in [3] involving the index i generally become estimates
involving I , where i ≥ ι(I). If 6/I < Hi , then we use the definition of B
in [3]. If 6/I ≥ Hi , then we define B to be simply X \ (X0 ∪ X1). In doing
this we in effect separate the proof of the quadratic area estimate into two cases.
In the first case 6/I < Hi , and this case is proved in [3]. We now consider the
second case, in which 6/I ≥ Hi . We must examine the proof of the quadratic
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area estimate beginning with Proposition 4.2.8. The assumptions made on I (i
in [3]) after Proposition 4.2.11 other than 6/I < Hi imply that 7/I ≤ r . Since
6/I ≥ Hi and 7/I ≤ r , we have r ≥ Hi + 1/I . Combining Propositions 4.1.2
and 4.1.3 of [3], which have already been verified to hold in the present situation,
it easily follows that there exists a �i -minimal arc α joining the ends of X and a
path β in X joining α to some i-approximation to x with Li(β) < 1/I . Since
Li(α ∪ β) ≤ Li(α) + Li(β) ≤ Hi + 1/I ≤ r , it easily follows that α ⊆ D(r),
and so D(r) contains an arc joining the ends of X . This result corresponds to
the corollary to Proposition 4.2.9 of [3]. The proof of Proposition 4.2.10 of [3] is
now valid when 6/I ≥ Hi . Proposition 4.2.11 of [3] holds with 4/i replaced by
4/I when 6/I ≥ Hi . We next consider Proposition 4.2.12 of [3]. To prove this
when 6/I ≥ Hi , first note that α meets star

(
X \ D(5r)

)
and we may assume

that α meets star
(
D(r)

)
. Hence α contains an open arc β irreducibly joining

star
(
X \D(5r)

)
and star

(
D(r)

)
. It follows that

Li(β) + r + 1/I ≥ 5r,

and so
Li

(
α \ star

(
D(r)

))
≥ Li(β) ≥ 4r − 1/I ≥ r ≥ Hi.

This proves Proposition 4.2.12 when 6/I ≥ Hi . The rest of the proof of the
quadratic area estimate in [3] holds when 6/I ≥ Hi with i replaced by I in a few
places. This proves that the quadratic area estimate holds without Axiom I and
that it holds for the original sequence of shinglings, not just for a subsequence.

3. The separation theorem

The purpose of Section 4.3 of [3] is to prove that the limit pseudometric is a
metric; that is, that the distance between distinct points is positive. In this section
we prove essentially the same result without using Axiom I. The assumptions of
Section 2.1 remain in effect.

Theorem 3.1 (Separation theorem). If A and B are disjoint compact subsets
of X , then lim inf{di(A,B)} > 0 .

Proof. The proof proceeds by contradiction: let A and B be disjoint com-
pact subsets of X with lim inf{di(A,B)} = 0. By passing to a subsequence of
S1, S2, S3, . . . we may assume that there exists a convergent sequence {ai} in A
and a convergent sequence {bi} in B such that limdi(ai, bi) = 0.

We prove next that by again passing to a subsequence of S1, S2 , S3, . . . we
may assume the following. There exist convergent sequences {pi} , {p′i} and {qi}
in X with limi→∞ pi �= limi→∞ qi , limi→∞ p′i �= limi→∞ qi , lim inf{di(pi, qi)} =
0, and lim inf{di(p′i, qi)} > 0. To begin the proof of this, let K(2) be the constant
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in the quadratic area estimate. Let r be a real number such that 0 < r <
K(2)−1/2 . For every positive integer i let

D(ai, r, i) = {t ∈ X : di(ai, t) ≤ r}.

Then the quadratic area estimate states that

A
(
D(ai, r, i), �i

)
≤ K(2)r2 < 1

for every sufficiently large positive integer i . Hence for every sufficiently large
positive integer i , D(ai, r, i) �= X , and so there exists a point p′i ∈ X with
di(ai, p

′
i) > r . By passing to a subsequence of S1, S2, S3, . . . we may assume that

there exists such a point p′i for every positive integer i and that the sequence {p′i}
converges. If limi→∞ p′i = limi→∞ ai , then let pi = ai and let qi = bi for every
positive integer i . If limi→∞ p′i �= limi→∞ ai , then let pi = bi and qi = ai for every
positive integer i . In either case {pi} , {p′i} and {qi} are convergent sequences
in X with limi→∞ pi �= limi→∞ qi , limi→∞ p′i �= limi→∞ qi , lim inf{di(pi, qi)} = 0
and lim inf{di(p′i, qi)} > 0.

In this paragraph we prove that by again passing to a subsequence of S1, S2 ,
S3, . . . we may assume the following. See Figure 1. There exist (i) distinct points
x, y ∈ X , (ii) proper disk neighborhoods D ⊆ D′ of x in X \ {y} , (iii) a ring
R as in Axiom II (with lim inf{m(R,Si)} > 0) separating D from y such that
R ∩ X ⊆ D′ , (iv) a sequence {xi} in the relative interior of D converging to
x and a sequence {yi} in X \ D′ converging to y such that lim di(xi, yi) = 0,
and (v) a sequence {x′i} in the relative interior of D converging to a point x′ in
the relative interior of D such that lim inf{di(xi, x

′
i)} > 0. To begin the proof

of this, let yi = qi for every positive integer i , and let y = limi→∞ yi . Now
cover X \ {y} by relative interiors of proper disks D which are separated from
y by rings R as in Axiom II such that R ∩ X is contained in a proper disk
neighborhood D′ of D in X \ {y} . Because X \ {y} is connected, the results of
the previous paragraph imply that there exists such a triple (D,R,D′) such that
the relative interior of D contains points x and x′ (possibly equal) and sequences
{xi} converging to x and {x′i} converging to x′ such that lim inf{di(xi, yi)} = 0
and lim inf{di(x′i, yi)} > 0. By passing to a subsequence of S1, S2, S3, . . . , we
may assume that limdi(xi, yi) = 0, lim inf{di(xi, x

′
i)} > 0, and yi /∈ D′ for every

positive integer i . This achieves the assumptions stated at the beginning of this
paragraph.

We again pass to a subsequence of S1, S2, S3, . . . to not only maintain the as-
sumptions of the previous paragraph but to also achieve the conditioning assump-
tion. We shall obtain a contradiction to the assumption that lim inf{m(R,Si)} >
0. We need the following lemma, which is essentially the lemma in the proof of
Proposition 4.0.3 in [3].
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Figure 1. The proper disks D , D′ , and the ring R .

Lemma 3.2. Let ε be a positive real number such that lim inf{di(xi, x
′
i)} >

4ε , and let δ be any positive real number. Then the following holds for every
sufficiently large positive integer i . If J is any simple closed curve in R separating
the ends of R , then J contains a point at di -distance greater than ε from xi and
a point at di -distance less than δ from xi .

Proof. We choose i so large that every i-approximation to xi lies in D ,
every i-approximation to x′i lies in D , every i-approximation to yi lies in X \D′ ,
di(xi, x

′
i) > 4ε , di(xi, yi) < δ , 1/i < δ , and 9/i < ε . We furthermore choose i so

large that no i-approximation contains the frontier of a proper disk containing D
and no i-approximation meets both sides of X when X is a quadrilateral.

By Propositions 4.1.2 and 4.1.3 of [3], there exist an i-approximation D(x′i) to
x′i , an Li -minimal path α joining the ends of X , and a path β with Li(β) < 1/i
joining FrD(x′i) and α .

Let J be any simple closed curve in R separating the ends of R . Let J ′ be an
arc or simple closed curve in J which is the frontier of a proper disk E containing
xi and missing yi . See Figure 2. Since J ′ separates every i-approximation to xi

from every i-approximation to yi and 1/i < δ , J ′ has a point at di -distance less
than δ from xi .

We complete the proof of Lemma 3.2 by assuming that every point of J ′ is
at di -distance at most ε from xi and obtaining a contradiction. We may assume
that E misses X1 . If E meets X0 , then let w be a point in J ′∩X0 . Because no
i-approximation contains the frontier of a proper disk containing D , J ′ meets the
frontier of every i-approximation to w . Let D(w) be an i-approximation to w ,
let z0 ∈ J ′ ∩FrD(w), and let α0 be an arc in FrD(w) irreducible from z0 to X0 .
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Figure 2. The proper disk E .

If E misses X0 , then let α0 be an arc in α ∪ β irreducible from X0 to E and
let z0 = α0 ∩ E . Let α1 be an arc in α ∪ β irreducible from X1 to E and let
z1 = α1 ∩ E . If FrD(x′i) ∪ β meets star(J ′), then let α2 = ∅ . Otherwise, let α2

be irreducible in α from FrD(x′i) ∪ β to star(J ′), α2 half open with its missing
endpoint in star(J ′). Then

Li(α0 ∪ α1) + Li(α2) < Li(α ∪ β) + 1/i < H(X, �i) + 2/i

and
H(X, �i) < Li(α0 ∪ α1) + di(xi, z0) + di(xi, z1) + 4/i.

Hence
Li(α2) < di(xi, z0) + di(xi, z1) + 6/i ≤ 2ε + 6/i.

But there exists a point z ∈ J ′ such that di(z, x′i) < Li(α2) + 1/i . Hence

4ε < di(xi, x
′
i) ≤ di(xi, z) + di(z, x′i) + 2/i

< ε + (2ε+ 6/i+ 1/i) + 2/i = 3ε + 9/i < 4ε,

a contradiction.
This proves Lemma 3.2.

We next obtain a contradiction to the assumption that lim inf{m(R,Si)} > 0,
arguing as in the proof of Proposition 4.0.3 in [3]. This will complete the proof of
Theorem 3.1. We maintain the notation of Lemma 3.2.
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For every nonnegative real number r set

D(r) = {t ∈ X : di(xi, t) ≤ r}.

Let N be a positive integer. For every n ∈ {0, . . . , N} set

Dn = D(ε/en).

For every n ∈ {1, . . . , N} set

Cn = {s ∈ Si : s ∩Dn−1 �= ∅ but s ∩Dn = ∅}.

Put the remaining elements of Si into collection C0 . Define a new weight function
�′i on Si as follows. If s ∈ C0 , then �′i(s) = 0, and if s ∈ Cn with n ∈ {1, . . . , N} ,
then

�′i(s) = �i(s)
en

ε(e − 1)
.

The geometric motivation behind this argument is that the logarithm function
transforms an annulus A bounded by two concentric circles into a right circular
cylinder. The weight function �′i gives a combinatorial analogue of this; A corre-
sponds to the ring in Figure 3.a bounded by ∂D0 and ∂DN .

D0∂

D1∂

Dn-1∂

Dn∂

DN∂

element of Cn

element of C0

p

D0∂

element of Cn

element of C0

D1∂
Dn-1∂

Dn∂
DN∂

b)a)

Figure 3. The disks Dn .

In this paragraph we obtain a lower bound on the �′i -circumference C(R, �′i)
of R . We choose the number δ of Lemma 3.2 so that δ = ε/N . Now let i be so
large that the conclusion of Lemma 3.2 holds. Let J be any simple closed curve in
R separating the ends of R . We obtain a lower bound on the �′i -length L′

i(J) of J .
By Lemma 3.2, J contains a point at di -distance greater than ε from xi and a
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point at di -distance less than δ = ε/N from xi . Hence J meets X \D0 and DN .
So J contains an open arc αn irreducibly joining star(X \Dn−1) and star(Dn)
for n ∈ {1, . . . , N} . No shingle of Si meets two of these paths α1, . . . , αN . Hence
we get a lower bound on L′

i(J) as follows.

L′
i(J) ≥ L′

i(α1 ∪ · · · ∪ αN) = L′
i(α1) + · · · + L′

i(αN ).

We next estimate L′
i(αn) for n ∈ {1, . . . , N} . First,

Li(αn) ≥
ε

en−1
− ε

en
− 2

i
=

ε(e − 1)
en

− 2
i
,

and since every shingle in Si that meets αn lies in Cn ,

L′
i(αn) = Li(αn)

en

ε(e − 1)
≥ 1− 2en

iε(e − 1)
.

Hence L′
i(αn) ≥ 1

2 for every n ∈ {1, . . . , N} and for every sufficiently large positive
integer i . Thus L′

i(J) ≥ 1
2
N for every sufficiently large positive integer i , and so

C(R, �′i) ≥ 1
2N for every sufficiently large positive integer i .

We estimate the �′i -area A(R, �′i) of R in this paragraph. Since every shingle
in Si of positive �′i -weight meets D0 but not DN ,

A(R, �′i) ≤ A(D0 , �
′
i) ≤

N−1∑
n=0

A(Dn, �i)
(

en+1

ε(e − 1)

)2

.

The quadratic area estimate gives that

A(R, �′i) ≤
N−1∑
n=0

K(2)
(

ε

en

)2(
en+1

ε(e − 1)

)2

=
Ne2K(2)
(e − 1)2

for every sufficiently large positive integer i .
Thus

m(R,Si) ≤
A(R, �′i)
C(R, �′i)2

≤ 4
N2

Ne2K(2)
(e− 1)2

=
4e2K(2)
N(e − 1)2

for every sufficiently large positive integer i . Since N can be taken arbitrarily
large, this contradicts the assumption that lim inf{m(R,Si)} > 0.

This proves Theorem 3.1.
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4. Separation theorem gives bounds on moduli

In this section we use the separation theorem to obtain certain bounds on
moduli. We begin with a technical lemma that will be used repeatedly. The
assumptions of Section 2.1 remain in effect.

Lemma 4.1. Let R be a ring contained in the interior of X which does
not separate the ends of X . Let R0 denote the inner boundary component of R ,
and let R1 denote the outer boundary component of R . Suppose that i ≥ ι(I)
and I is so large that no i-approximation contains R0 . Let p be a point of X
within R0 . See Figure 5. For every nonnegative real number r let

Di(r) = {x ∈ X : di(p, x) ≤ r}.
Set

r0i = max{di(p, x) : x ∈ R0}
and

r1i = max{r0i,min{di(p, x) : x ∈ R1}}.
Let α be a simple closed curve in R that separates the ends of R . Let L denote
the �i -length Li(α) of α . Then the following hold.
(i) α ∩Di(r1i + 1/I) �= ∅ ,
(ii) α ⊆ Di(2L+ 3/I) ,
(iii) r0i ≤ 3L+ 6/I .

Proof. To begin the proof of (i), choose x ∈ R1 ∩ Di(r1i). Let D(x) be
an i-approximation to x , let D(p) be an i-approximation to p and let β be a
path in X joining D(x) and D(p) with Li(β) ≤ r1i . If FrD(x) ∪ β ∪ FrD(p)
joins the ends of R , then α meets this set, from which it easily follows that
α ∩Di(r1i + 1/I) �= ∅ , as desired. If FrD(x) ∪ β ∪ FrD(p) does not join the ends
of R , then either R1 ∩FrD(x) = ∅ or R0 ∩FrD(p) = ∅ . If R1 ∩FrD(x) = ∅ , then
R1 ⊆ D(x), and so R ⊆ D(x). But this is impossible because no i-approximation
contains R0 . It is likewise impossible that FrD(x) ∪ β ∪ FrD(p) does not join the
ends of R and R0 ∩ FrD(p) = ∅ . This proves (i).

To prove (ii), apply Propositions 4.1.2 and 4.1.3 of [3]: there exists a �i -
minimal path γ joining the ends of X and a path β in X joining γ to some
i-approximation D(p) to p with Li(β) < 1/I . If α meets β ∪ FrD(p), then it
easily follows that α ⊆ Di(L + 1/I), which gives (ii). Thus we may assume that
α does not meet β ∪FrD(p). It follows that β ∪FrD(p) lies within α and that α
meets γ . Finally apply Proposition 4.1.5 of [3] with FrD = α : D(p) and α are
joined by a path with �i -length at most L+ 3/I . This easily proves (ii).

To prove (iii), maintain β , γ and D(p) as in the proof of (ii). Let x ∈ R0 .
Just as β , γ and D(p) exist, there also exist a �i -minimal path γ′ joining the
ends of X and a path β′ in X joining γ′ to some i-approximation D(x) to x
with Li(β′) < 1/I . Arguing as in the previous paragraph proves (iii).

This completes the proof of Lemma 4.1.
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The assumptions of Section 2.1 are temporarily not in effect.

Theorem 4.2 (Separation theorem gives bounds on moduli). Let Y be a
topological surface. Let S1, S2, S3, . . . be a sequence of shinglings of Y with mesh
locally approaching 0 which satisfies Axiom II. Let R be a ring in Y . Then there
exists a positive real number M such that

m(R,Si) ≤ M and 1/M ≤ M(R,Si)

for every positive integer i .

Proof. We first reduce to the case in which R is contractible in Y . Suppose
that Theorem 4.2 is true if R is contractible in Y . To prove the second inequality
for a general ring R , we choose rings R1 and R2 in the interior of R as in
Figure 4.a such that one connected component of R \ Rj is an open disk Cj for
j ∈ {1, 2} and C1 ∪ C2 separates the ends of R . For every positive integer i and
j ∈ {1, 2} let �ij be the optimal weight function on Si relative to M(Rj , Si),
and let �i = �i1 + �i2 . If γ is a curve in R which joins the ends of R , then
because C1 ∪C2 separates the ends of R , it follows that γ meets C1 ∪C2 . Hence
γ joins the ends of either R1 or R2 . Thus for every positive integer i either
H(R, �i) ≥ H(R1, �i1) or H(R, �i) ≥ H(R2, �i2). The triangle inequality implies
that A(R, �i) ≤ 4 for every positive integer i . It easily follows that the second
inequality of Theorem 4.2 holds for R with an appropriate choice of M . The first
inequality of Theorem 4.2 can be proved for R by using the normalized fat flow
optimal weight function for a ring R1 as in Figure 4.b. Thus to prove Theorem 4.2
we may assume that R is contractible in Y .

a) b)

R

R1
C1

C2

R2

R

1R

Figure 4. Choosing contractible rings.

Let X be a quadrilateral in Y which contains R in its interior. Statement
(iii) of Lemma 4.1 applies in this situation. In the notation of Lemma 4.1, we have
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that
r0i ≤ 3C(R, �i) + 6/I

for every sufficiently large positive integer I and i ≥ ι(I). Theorem 3.1, the
separation theorem, easily implies that lim inf{r0i} > 0. Thus there exists a
positive real number C such that C(R, �i) ≥ C for every sufficiently large positive
integer i . But it is clear that A(R, �i) ≤ A(X, �i) = 1. Thus

m(R,Si) ≤
A(R, �i)
C(R, �i)2

≤ 1
C2

for every sufficiently large positive integer i . This proves the first inequality in
Theorem 4.2.

For the second inequality, note that the separation theorem implies that there
exists a positive real number H such that the di -distance between the boundary
components of R is at least H for every sufficiently large positive integer i . It
easily follows that H(R, �i) ≥ H for every sufficiently large positive integer i .
Thus

M(R,Si) ≥
H(R, �i)2

A(R, �i)
≥ H2

for every sufficiently large positive integer i .
This proves Theorem 4.2.

5. Logarithmic modulus estimates and the buffered ring theorem

The assumptions of Section 2.1 are again in effect. Let R be a ring contained
in the interior of X which does not separate the ends of X . See Figure 5. Let
R0 denote the inner boundary component of R , and let R1 denote the outer
boundary component of R . Let p be a point of X within R0 . For every positive
integer i set

r0i = max{di(p, x) : x ∈ R0}

and
r1i = max{r0i,min{di(p, x) : x ∈ R1}}.

Theorem 5.1 (Logarithmic modulus estimates). Let K(2) be the constant
occurring in the quadratic area estimate, and let K be a real number such that
K > 9e2K(2) . Then for all sufficiently large positive integers i ,

1
K

(
log(r1i/r0i)− 1

)
≤ M(R,Si)

and
m(R,Si) ≤ K

(
log(r1i/r0i) + 2

)
.
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Figure 5. The ring R .

Proof. We work with large positive integers I and i ≥ ι(I). We write r0
and r1 instead of r0i and r1i , and for every subset Y of X we write star(Y )
instead of star(Y, Si). By Theorem 3.1, the separation theorem, we may assume
that r0 > 0. For every nonnegative real number r set

D(r) = {x ∈ X : di(p, x) ≤ r}.

For every integer n set
Dn = D(r1/en)

and
Cn = {s ∈ Si : s ∩Dn−1 �= ∅ but s ∩Dn = ∅}.

Set
C−∞ = {s ∈ Si : s ∩X = ∅}

and
C∞ = {s ∈ Si : s ∩Dn �= ∅ for every n ∈ Z}.

Then the sets Cn for n ∈ {−∞}∪Z∪{∞} partition Si . Let N be the nonnegative
integer such that

N ≤ log(r1/r0) and N + 1 > log(r1/r0),

equivalently,
r1/e

N ≥ r0 and r1/e
N+1 < r0.

This argument is like one in Section 3; see Figure 3.
We now aim for the first inequality. This inequality is vacuous for N = 0,

so we assume that N ≥ 1. Define a new weight function �′i on Si as follows. If
s ∈ Cn with n ≤ 0 or n ≥ N +1, then �′i(s) = 0, and if s ∈ Cn with 1 ≤ n ≤ N ,
then

�′i(s) = �i(s)
en

r1(e − 1)
.
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We estimate the �′i -height H(R, �′i) of R in this paragraph. Let α be a
path in R that joins R1 and R0 . It follows that α contains an open path α1

irreducibly joining R1 and star(D1). Moreover, α contains an open path αn

irreducibly joining star(X \Dn−1) and star(Dn) for n ∈ {2, . . . , N} . No shingle
of Si meets two of these paths α1, . . . , αN . Hence we get a lower bound on the
�′i -length L′

i(α) of α as follows.

L′
i(α) ≥ L′

i(α1 ∪ · · · ∪ αN ) = L′
i(α1) + · · ·+ L′

i(αN ).

We next estimate L′
i(αn) for n ∈ {1, . . . , N} . First,

Li(αn) ≥
r1

en−1
− r1

en
− 2

I
=

r1(e − 1)
en

− 2
I
,

and since every shingle in Si that meets αn lies in Cn ,

L′
i(αn) = Li(αn)

en

r1(e− 1)
≥ 1− 2en

Ir1(e − 1)
.

Since r1/e
n ≥ r1/e

N ≥ r0 ,

L′
i(αn) ≥ 1− 2

Ir0(e− 1)
.

The separation theorem implies that r0 is bounded from 0, and so

2
Ir0(e− 1)

≤ 1
2

for every sufficiently large positive integer I . Hence L′
i(αn) ≥ 1

2 for such values
of I . Hence H(R, �′i) ≥ 1

2N for every sufficiently large positive integer i .
We estimate the �′i -area A(R, �′i) of R in this paragraph. Since every shingle

in Si of positive �′i -weight meets D0 but not DN ,

A(R, �′i) ≤ A(D0 , �
′
i) ≤

N−1∑
n=0

A(Dn, �i)
(

en+1

r1(e − 1)

)2

.

The quadratic area estimate gives that

A(R, �′i) ≤
N−1∑
n=0

K(2)
(
r1
en

)2(
en+1

r1(e − 1)

)2

=
Ne2K(2)
(e− 1)2

for every sufficiently large positive integer i .
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Thus

M(R,Si) ≥
H(R, �′i)

2

A(R, �′i)
≥ N2

4
(e − 1)2

Ne2K(2)
≥ (e− 1)2

4e2K(2)
(
log(r1/r0)− 1

)
for every sufficiently large positive integer i . Since

4e2K(2)
(e − 1)2

≤ 9e2K(2) ≤ K,

it follows that
M(R,Si) ≥

1
K

(
log(r1/r0)− 1

)
for every sufficiently large positive integer i . This proves the first inequality of
Theorem 5.1.

We now turn to the second inequality. Define another weight function �′′i on
Si as follows. If s ∈ Cn with n ≤ −1, then

�′′i (s) = 0.

If s ∈ Cn with 0 ≤ n ≤ N , then

�′′i (s) = �i(s)
en

r1(e− 1)
.

If s ∈ Cn with n ≥ N + 1, then

�′′i (s) = �i(s)
eN+1

r1(e− 1)
.

The geometric motivation behind this argument is as follows. The weight
function �′′i gives a combinatorial analogue of a conformal map which takes a disk
to a can with a hole in the bottom: DN maps to the top of the can; the ring
bounded by ∂D0 and ∂DN maps to the side of the can; and D−1 \D0 maps to a
ring in the bottom of the can with concentric boundary components. See Figure 6.

D0∂

D1∂

Dn-1∂

Dn∂

DN∂p

element of Cn

element of C0

p

D0∂

element of Cn

element of C0

D1∂
Dn-1∂

Dn∂
DN∂

b)a)

D-1∂

D-1∂

Figure 6. The disks Dn .
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We next estimate the �′′i -circumference C(R, �′′i ) of R . Let α be a simple
closed curve in R that separates the ends of R . Let L denote the �i -length Li(α)
of α . We choose I so large that no i-approximation contains R0 . Let M be the
positive real number such that M2 = e2K(2)/K . Since K > 9e2K(2), it follows
that M < 1

3
. We will prove that the �′′i -length L′′

i (α) of α is at least M/(e − 1)
for every sufficiently large positive integer i .

First suppose that α �⊆ D−1 . Then by (i) of Lemma 4.1, α contains an open
path α0 irreducibly joining star(X \D−1) and star

(
D(r1 +1/I)

)
. It follows that

Li(α0) ≥ r1(e− 1)− 3/I . Since every shingle in Si that meets α0 lies in C0 ,

L′′
i (α) ≥ L′′

i (α0) = Li(α0)
1

r1(e − 1)
≥ 1− 3

Ir1(e − 1)
≥ M

e − 1

for sufficiently large values of I because the separation theorem shows that r1 is
bounded from 0. Thus L′′

i (α) ≥ M/(e− 1) if α �⊆ D−1 for every sufficiently large
positive integer i .

Now assume that α ⊆ D−1 but α �⊆ DN . Statement (ii) of Lemma 4.1 shows
that α ⊆ D(2L + 3/I). Since α �⊆ DN , it follows that r1/e

N < 2L + 3/I . Set
J = min{2L + 3/I, er1} . Then r1/e

N < J ≤ er1 and α ⊆ D(J). Let n be the
integer with −1 ≤ n ≤ N − 1 for which

r1
en+1

< J ≤ r1
en

,

that is,
en+1

r1
>

1
J

≥ en

r1
.

Then

L′′
i (α) ≥ Li(α)

en+1

r1(e − 1)
.

Thus

L′′
i (α) ≥ L

en+1

r1

1
e− 1

≥ L

J(e− 1)
≥ L

(2L+ 3/I)(e − 1)
≥ M

e− 1

for sufficiently large values of I because (iii) of Lemma 4.1 and the separation
theorem show that L is bounded from 0. Thus L′′

i (α) ≥ M/(e − 1) if α ⊆ D−1

but α �⊆ DN for every sufficiently large positive integer i .
It remains to consider the case in which α ⊆ DN . In this case

L′′
i (α) = Li(α)

eN+1

r1(e− 1)
=

eN+1

r1

L

e− 1
≥ L

r0(e − 1)
.
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Hence (iii) of Lemma 4.1 gives that

L′′
i (α) ≥

L

(3L+ 6/I)(e− 1)
≥ M

e− 1

for I sufficiently large. This completes the proof that L′′
i (α) ≥ M/(e − 1) for

every sufficiently large positive integer i .
Thus C(R, �′′i ) ≥ M/(e− 1) for every sufficiently large positive integer i .
We next estimate the �′′i -area A(R, �′′i ) of R as in the proof of the first

inequality of Theorem 5.1.

A(R, �′′i ) ≤
N∑

n=−1

A(Dn, �i)
(

en+1

r1(e − 1)

)2

≤
N∑

n=−1

K(2)
(
r1
en

)2(
en+1

r1(e− 1)

)2

=
e2K(2)(N + 2)

(e − 1)2
.

Therefore

m(R,Si) ≤
A(R, �′′i )
C(R, �′′i )2

≤ (e − 1)2

M2

e2K(2)(N + 2)
(e − 1)2

≤ K
(
log(r1/r0) + 2

)

for every sufficiently large positive integer i .
This completes the proof of Theorem 5.1.

Theorem 5.2 (Buffered ring theorem). Let α1, α2, α3, α4 be four disjoint
simple closed curves in the interior of X such that α4 bounds a disk in X ,
α3 lies within α4 (relative to the bounded disk), α2 lies within α3 , and α1

lies within α2 . Let Rij be the ring whose ends are αi and αj for (i, j) ∈
{(1, 2), (2, 3), (3, 4), (1, 4)} . Let p be a point within α1 . Let rji = max{di(p, x) :
x ∈ αj} and rji = min{di(p, x) : x ∈ αj} for j ∈ {1, 2, 3, 4} and every positive
integer i . Let K be a real number as in Theorem 5.1, and let L be a positive
real number. If m(R12, Si) > 2K , m(R34, Si) > 2K and M(R14, Si) ≤ L , then
r3i/r2i ≤ eKL+1 for every sufficiently large positive integer i .

Remark 5.3. In analogy with the terminology of the beginning of Section 7
of [3] we say that a ring R in C is almost round (M) if there is a pair of concentric
disks, one surrounded by R and the other containing R , such that the ratio of
the larger radius to the smaller radius is bounded by M . In the terminology of
the beginning of Section 7, R23 is a buffered ring (L) and Theorem 5.2 states
that the buffered ring R23 is almost round (eKL+1) with respect to di for every
sufficiently large positive integer i .
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Proof of Theorem 5.2. The following hold for every sufficiently large positive
integer i . Theorem 5.1 easily yields that r1i ≤ r2i and r3i ≤ r4i because

2K < m(R12, Si) ≤ K
(
log(r2i/r1i) + 2

)
and

2K < m(R34, Si) ≤ K
(
log(r4i/r3i) + 2

)
.

Theorem 5.1 likewise yields that

1
K

(
log(r4i/r1i)− 1

)
≤ M(R14, Si) ≤ L.

Hence r4i/r1i ≤ eKL+1 . Since r1i ≤ r2i and r3i ≤ r4i , it follows that r3i/r2i ≤
eKL+1 .

This proves Theorem 5.2.

6. The quadratic area estimate from below

The main result in the passage of [3] considered in Section 2.2 is the quadratic
area estimate, which gives upper bounds for certain areas. This estimate states
that the area of a disk of the form D(r) = {x ∈ X : di(p, x) ≤ r} is at most a
constant multiple of r2 . Our next result gives lower bounds on similar areas, and
the bounds are also constant multiples of radii squared.

Theorem 6.1 (Quadratic area estimate from below). Let D be a closed disk
in the interior of X , and let p be a point in the interior of D . For every positive
integer i let

ri = min{di(p, x) : x ∈ ∂D}.

Suppose that there exists a positive integer K such that Si has bounded valence
(K) for every positive integer i . Then

A(D, �i) ≥
1

50K
r2i

for all sufficiently large positive integers i .

Proof. As in the proof of Theorem 5.1, we work with large positive integers
I and i ≥ ι(I), and for every nonnegative real number r we set

D(r) = {x ∈ X : di(p, x) ≤ r}.

As after Proposition 4.2.5 of [3], we enlarge D(r) slightly by constructing a
connected compact set E(r). The idea behind this construction is to note that
the closure of D(r) is a compact subset of D(r+1/I) and to cover this closure of
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D(r) with finitely many i-approximations. The set E(r) is the union of finitely
many i-approximations

D1,D2,D3, . . . ,Dk, E1, E2, E3, . . . , Ek

and paths
α1, α2, α3, . . . , αk

such that
(i) for every x ∈ D(r) there exists j ∈ {1, . . . , k} such that Dj is an i-

approximation to x and for every j ∈ {1, . . . , k} there exists x ∈ D(r) such
that Dj is an i-approximation to x ,

(ii) Ej is an i-approximation to p for every j ∈ {1, . . . , k} ,
(iii) if Dj ∩Ej �= ∅ , then FrDj ∩ FrEj �= ∅ for every j ∈ {1, . . . , k} , and
(iv) αj irreducibly joins FrDj and FrEj and Li(αj) ≤ r + 1/I for every j ∈

{1, . . . , k} .
We assume that ri > 0 since Theorem 6.1 is trivially true if ri = 0. It is then

easy to see that we may assume that i is so large that

E(ri/4) ⊆ D(3ri/4) ⊆ IntD.

Since D(3ri/4) is open, D \D(3ri/4) is a compact set containing ∂D . Let C be
the connected component of D \D(3ri/4) which contains ∂D . Then E(ri/4) and
C are disjoint connected compact subsets of D . Thus there exists a simple closed
curve α in D \

(
E(ri/4) ∪ C

)
that separates E(ri/4) and C . Let R be the ring

contained in D whose ends are α and ∂D . We prove Theorem 6.1 by estimating
the moduli of R .

We estimate m(R,Si) in this paragraph. According to (iii) of Lemma 4.1, if
I is sufficiently large, then

max{di(p, x) : x ∈ α} ≤ 3C(R, �i) + 6/I.

Since
ri/4 ≤ max{di(p, x) : x ∈ α},

we have that
ri/4 ≤ 3C(R, �i) + 6/I,

and so
C(R, �i) ≥ ri/12− 2/I

for every sufficiently large positive integer I . Thus

(6.2) m(R,Si) ≤
A(R, �i)
C(R, �i)2

≤ A(D, �i)
(ri/12− 2/I)2
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for every sufficiently large positive integer I .
We estimate M(R,Si) in this paragraph. We begin by estimating H(R, �i).

Let β be a path in R that joins the ends of R such that Li(β) = H(R, �i). If
di(p, x) > 3ri/4 for every x ∈ β , then β ⊆ C because β is a connected set which
meets ∂D . This is impossible because α is disjoint from C . Hence there exists
x ∈ β such that di(p, x) ≤ 3ri/4. This easily implies that there exists a path
joining an i-approximation to a point in ∂D and an i-approximation to p with
length at most Li(β) + 3ri/4 + 1/I . Hence

Li(β) + 3ri/4 + 1/I ≥ ri,

and so
H(R, �i) = Li(β) ≥ ri/4− 1/I.

Thus

(6.3)
(ri/4− 1/I)2

A(D, �i)
≤ H(R, �i)2

A(R, �i)
≤ M(R,Si).

Combining lines 6.2, 6.3, and Theorem 1.6, the bounded valence theorem,
gives that

(ri/4− 1/I)2

A(D, �i)
≤ K2 A(D, �i)

(ri/12− 2/I)2

for every sufficiently large positive integer I . Thus

A(D, �i) ≥
(ri/4− 1/I)(ri/12− 2/I)

K
≥ 1

50K
r2i

for I sufficiently large.
This proves Theorem 6.1.

7. The sufficiently rich theorem

The assumptions of Section 2.1 are no longer in effect.
Let X be a topological surface. Let S1, S2, S3, . . . be a sequence of shinglings

of X . Let α1, α2, α3, α4 be four disjoint simple closed curves in the interior of
X such that α4 bounds a disk in X , α3 lies within α4 (relative to the bounded
disk), α2 lies within α3 , and α1 lies within α2 . Let Rij be the ring whose ends
are αi and αj for (i, j) ∈ {(1, 2), (2, 3), (3, 4), (1, 4)} . Let K(2) be the constant
in the quadratic area estimate, let K be a positive integer, and let L be a positive
real number. Suppose that m(R12, Si) > 18e2K(2) and m(R34, Si) > 18e2K(2)
for all sufficiently large positive integers i , and suppose that M(R14, Si) ≤ L for
all sufficiently large positive integers i . In this situation we call R23 a buffered
ring (L). We call R12 and R34 boundary rings; R12 is the inner boundary ring
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and R34 is the outer boundary ring. We call R14 the ring spanning R12 and R34

or simply the spanning ring. Let Y be a subsurface of X . A bounded valence
(K) buffered ring cover (L) of Y is a bounded valence (K) locally finite cover of
Y by closed disks {Dα : α ∈ A } contained in X such that each Dα contains a
closed disk Eα for which Dα \ IntEα is a buffered ring (L) and Eα ∩ Eβ = ∅ if
α, β ∈ A and α �= β . We say that the spanning ring mesh of a buffered ring cover
is at most ε if every disk in the cover has a spanning ring with metric diameter
at most ε .

Theorem 7.1 (Sufficiently rich theorem). Let X be a topological surface, and
let Y be an open subsurface of X . Let S1, S2, S3, . . . be a sequence of shinglings
of X with mesh locally approaching 0 which satisfies Axiom II in Y . Suppose
that there exists a positive integer K and a positive real number L such that Si

has bounded valence (K ) for every positive integer i and for every positive real
number ε there exists a bounded valence (K ) buffered ring cover (L) of Y with
spanning ring mesh at most ε . Then the sequence S1, S2, S3, . . . is conformal (M )
in Y , where M is a positive real number that depends only on K and L .

Proof. What must be proved is that the sequence S1, S2, S3, . . . satisfies
Axiom I in Y . For this let R be a ring in Y . We prove Theorem 7.1 by estimating
the moduli m(R,Si) and M(R,Si) of R .

We begin by enlarging R slightly to obtain a ring R′ as follows. Let δ be a
positive real number. We will put successively stronger restrictions on δ , making δ
closer to 0. Let R0 and R1 denote the ends of R . Using Axiom II we cover R0∪R1

with finitely many open disks D′′
1 , . . . ,D

′′
k in Y such that for every j ∈ {1, . . . , k}

we have that (i) D′′
j is a connected component of the complement of a ring R′′

j

in Y with m(R′′
j , Si) > 1/δ2 for all sufficiently large positive integers i , (ii) D′′

j

contains neither R0 nor R1 , and (iii) either R′′
j ∩R0 = ∅ or R′′

j ∩R1 = ∅ . Now let
R′ be a ring in Y containing R in its interior such that R separates the ends of
R′ and if one of the ends R0 or R1 of R meets a disk D′′

j , then the corresponding
end R′

0 or R′
1 of R′ also meets D′′

j . Let �1, �2, �3, . . . be fat flow optimal weight
functions for R′ on S1, S2, S3, . . . normalized so that the area of R′ is 1.

Having constructed the ring R′ , we prove two lemmas which compare R
and R′ .

Lemma 7.2. The following holds for all positive integers I and i ≥ ι(I) .
Given x ∈ R0 there exists y ∈ R′

0 such that di(x, y) ≤ 2δ+3/I , and given x ∈ R1

there exists y ∈ R′
1 such that di(x, y) ≤ 2δ + 3/I .

Proof. We fix positive integers I and i ≥ ι(I). Let x ∈ R0 . Let D′′
j be

an open disk in the above cover of R0 ∪ R1 which contains x . It is not difficult
to see using the proof of Proposition 3.3 of [3] that from R′′

j it is possible to
construct an R′ -proper disk neighborhood D of x such that FrD ∩ R′

0 �= ∅ and
Li(FrD) < δ . Now apply Propositions 4.1.2 and 4.1.3 of [3]: there exist a �i -
minimal path α joining the ends of R′ and a path β in R′ joining α and some
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i-approximation D(x) to x with Li(β) < 1/I . Proposition 4.1.5 of [3] shows that
Li(α ∩D) < δ +2/I . Hence β ∪ (α ∩D) ∪FrD contains a path which joins D(x)
and R′

0 with �i -length at most 1/I + δ + 2/I + δ . This proves Lemma 7.2 if
x ∈ R0 .

The same argument proves Lemma 7.2 if x ∈ R1 , and so the proof of
Lemma 7.2 is complete.

Lemma 7.3. If δ is sufficiently small, then

M(R′ , Si) ≤ 4M(R,Si)

for every sufficiently large positive integer i .

Proof. Let i and I be positive integers with i ≥ ι(I). Let α be a �i -minimal
path for R joining the ends of R . From Lemma 7.2 it easily follows that α can
be modified slightly to obtain a path β in R′ joining the ends of R′ such that

Li(β) ≤ Li(α) + 4δ + 10/I.

Hence

(7.4) H(R′, �i) ≤ H(R, �i) + 4δ + 10/I.

On the other hand there exists a positive real number M independent of i such
that

(7.5) M ≤ M(R,Si) ≤ M(R′ , Si) = H(R′, �i)2,

where the first inequality comes from the separation theorem bounds on moduli
given in Theorem 4.2 and the second inequality comes from Proposition 1.1. Lines
7.4 and 7.5 show that if δ is sufficiently small, then

(7.6) H(R, �i) + 4δ + 10/I ≤ 2H(R, �i)

for every sufficiently large positive integer I . Lines 7.4 and 7.6 yield that

H(R′, �i) ≤ 2H(R, �i)

for every sufficiently small positive real number δ and every sufficiently large
positive integer i . Thus

M(R′, Si) = H(R′, �i)2 ≤ 4H(R, �i)2 ≤ 4
H(R, �i)2

A(R, �i)
≤ 4M(R,Si)

for every sufficiently small positive real number δ and every sufficiently large
positive integer i .

This proves Lemma 7.3.
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We henceforth assume that δ is so small that the inequality of Lemma 7.3
holds.

We next choose disks in the manner of the second paragraph of the proof of
Theorem 7.1, except that the current disks cover R instead of R0 ∪R1 and their
rings lie in R′ . This time we use the positive real number λ for the parameter in
the construction of the disks, where before we used δ . In other words we cover
R with finitely many open disks D′′′

1 , . . . ,D′′′
m contained in R′ such that for every

j ∈ {1, . . . ,m} we have that D′′′
j is a connected component of the complement of a

ring R′′′
j in R′ with m(R′′′

j , Si) > 1/λ2 for all sufficiently large positive integers i .
By the hypotheses on buffered ring covers of Y and the Lebesgue covering

lemma, it easily follows that there exists a finite bounded valence (K ) buffered
ring cover (L) of R by closed disks D1, . . . ,Dn such that for every j ∈ {1, . . . , n}
the spanning ring of Dj lies in one of the disks D′′′

1 , . . . ,D′′′
m , hence the spanning

ring of Dj lies in the interior of R′ and Dj lies in one of the disks D′′′
1 , . . . ,D′′′

m .
For every j ∈ {1, . . . , n} let Ej denote the closed disk contained in Dj for which
Dj \ IntEj is the buffered ring of Dj .

We next apply Theorem 5.2, the buffered ring theorem, once for every disk
D1, . . . ,Dn . For every j ∈ {1, . . . , n} we choose a point pj in Dj (corresponding
to the point p in Theorem 5.2) surrounded by the inner boundary ring of Dj . This
leads to positive real numbers r2ij and r3ij as in Theorem 5.2 so that r3ij ≤ Cr2ij

for every sufficiently large positive integer i and every index j , where C is a
positive real number that depends only on the number L .

We view the collection {D1, . . . ,Dn} as a shingling S of R . We define a
weight function τi on S for every positive integer i ≥ ι(1) as follows. Let I be
the largest positive integer such that i ≥ ι(I). Then for j ∈ {1, . . . , n} we set

τi(Dj) = 2r3ij + 4/I.

We now have all the preliminary definitions and constructions necessary for
the proof of Theorem 7.1. For the rest of the proof of Theorem 7.1, let I and i
be positive integers with i ≥ ι(I).

In this paragraph we determine an upper bound for the area A(R, τi) of R
relative to the weight function τi on S . We have that

A(R, τi) =
n∑

j=1

τi(Dj)2 =
n∑

j=1

(2r3ij + 4/I)2.

Since Theorem 3.1, the separation theorem, implies that lim inf{r3ij} > 0, we may
take I so large that 4/I ≤ r3ij for every j ∈ {1, . . . , n} . Hence if i is sufficiently
large, then

A(R, τi) ≤ 9
n∑

j=1

r2
3ij ≤ 9C2

n∑
j=1

r2
2ij ≤ 450KC2

n∑
j=1

A(Ej , �i),
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the last inequality coming from Theorem 6.1, the quadratic area estimate from
below. Since the E′

js are disjoint, their Si -stars are disjoint for i sufficiently
large. Thus

(7.7) A(R, τi) ≤ 450KC2A(R′, �i) = 450KC2

for every sufficiently large positive integer i .
In this paragraph we determine a lower bound for the τi -height H(R, τi) of R .

Let α be a τi -minimal path for R joining the ends of R . According to line 2.4.1.1
in [4], the fat flow with underlying topological path α has a skinny subflow. Hence
there exist shingles Dj1 , . . . ,Djh in S all of which meet α such that Dj1 ∩R0 �= ∅ ,
Djl ∩ Djl+1 �= ∅ for l ∈ {1, . . . , h − 1} and Djh ∩ R1 �= ∅ . Since Dj1 ⊆ R′ and
Djh ⊆ R′ , it follows that ∂Dj1 ∩ R0 �= ∅ and ∂Djh ∩ R1 �= ∅ . By deleting
some Dj ’s if necessary, we may furthermore assume that ∂Djl ∩ ∂Djl+1 �= ∅ for
l ∈ {1, . . . , h − 1} . Now choose x0 ∈ ∂Dj1 ∩ R0 , choose xl ∈ ∂Djl ∩ ∂Djl+1 for
l ∈ {1, . . . , h− 1} , and choose xh ∈ ∂Djh ∩R1 . It follows that

(7.8)

H(R, τi) =
∑

α∩Dj �=∅
τi(Dj) ≥

h∑
l=1

τi(Djl ) =
h∑

l=1

(2r3ijl + 4/I)

≥
h∑

l=1

(
di(pjl , xl−1) + di(pjl , xl) + 4/I

)

≥
h∑

l=1

(
di(xl−1 , xl) + 2/I

)
≥ di(x0, xh).

By Lemma 7.2 there exist points y0 ∈ R′
0 and yh ∈ R′

1 such that di(x0 , y0) ≤
2δ + 3/I and di(xh, yh) ≤ 2δ + 3/I . Hence

(7.9)
H(R′, �i)− 2/I ≤ di(y0 , yh)

≤ di(y0 , x0) + di(x0 , xh) + di(xh, yh) + 4/I
≤ di(x0 , xh) + 4δ + 10/I.

Combining lines 7.8 and 7.9 yields that

(7.10) H(R, τi) ≥ H(R′, �i)− 4δ − 12/I.

Since R is contained in R′ and R separates the ends of R′ , Proposition 1.1 shows
that

M(R,Si) ≤ M(R′ , Si) = H(R′, �i)2.
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Hence the separation theorem bounds on moduli given in Theorem 4.2 imply that
H(R′, �i) is greater than a positive real number which is independent of i and δ .
Thus δ may be chosen so small that

(7.11) H(R′, �i)− 4δ − 12/I ≥ 1
2
H(R′, �i)

for every sufficiently large positive integer I . We henceforth assume that δ is this
small. Combining lines 7.10 and 7.11 yields that

(7.12) H(R, τi) ≥ 1
2H(R′, �i)

for every sufficiently large positive integer i .
In this paragraph we obtain an upper bound on the moduli M(R,Si). We

have that

M(R,S) ≥ H(R, τi)2

A(R, τi)
≥ H(R′, �i)2

1800KC2
=

M(R′, Si)
1800KC2

≥ M(R,Si)
1800KC2

for all sufficiently large positive integers i , where the second inequality comes from
lines 7.7 and 7.12 and the third inequality comes from Proposition 1.1. Thus

(7.13) M(R,Si) ≤ 1800KC2M(R,S)

for every sufficiently large positive integer i .
We next determine a lower bound for the τi -circumference C(R, τi) of R .

This argument extends from here to line 7.20.
To obtain this estimate, we construct in this paragraph a special closed curve

in R′ that separates the ends of R′ . This construction might be viewed as a
strengthening of the assertion in line 2.4.1.1 of [4] which states that every cut
contains a subcut which is a skinny cut. Let R̃′ denote the universal cover of R′

with covering projection π: R̃′ → R′ . Let α: [0, 1] → R be a τi -minimal simple
closed curve in R separating the ends of R . Let α̃: R → R̃′ denote a path for
which π(α̃(t + z)) = α(t) for every t ∈ [0, 1] and z ∈ Z . The shingles of S all
lift to R̃′ . Given a shingle Dj in S with α ∩Dj �= ∅ and a lift D̃j of Dj there
exists a real number t such that α̃(t) ∈ D̃j but α̃(s) /∈ D̃j for real numbers s > t .
Given a real number t , because the shingles in S which contain π

(
α̃(t)

)
cover a

neighborhood of π
(
α̃(t)

)
, there exists a shingle Dj ∈ S and a lift D̃j of Dj such

that α̃(t) ∈ D̃j and α̃(s) ∈ D̃j for some real number s > t . Using the results of
the previous two sentences, we construct an infinite sequence of lifts of shingles
in S as follows. First choose a lift D̃j1 of any shingle Dj1 in S which meets α
such that Dj1 is not contained in another shingle of S . Let t1 be the real number
such that α̃(t1) ∈ D̃j1 but α̃(s) /∈ D̃j1 for s > t1 . Next choose a lift D̃j2 of a



296 J.W. Cannon, W.J. Floyd, and W.R. Parry

shingle Dj2 in S such that (i) α̃(t1) ∈ D̃j2 , (ii) α̃(s) ∈ D̃j2 for some real number
s > t1 , and (iii) Dj2 is not contained in another shingle of S . Iterate. We obtain
in this way an infinite sequence of shingles Dj1 ,Dj2 ,Dj3 , . . . in S with distinct
lifts D̃j1 , D̃j2 , D̃j3 , . . . such that D̃jl ∩ D̃jl+1 �= ∅ and even ∂D̃jl ∩ ∂D̃jl+1 �= ∅
for every positive integer l . Since S is finite, we may assume that Dj1 = Djh+1

for some integer h ≥ 2 and that h is the smallest such integer. Choose a point
x̃l ∈ ∂D̃jl ∩∂D̃jl+1 for l ∈ {1, . . . , h} . Let β̃l be a path in D̃jl from x̃l−1 to x̃l for
l ∈ {2, . . . , h} . Let β̃1 be a path in D̃j1 with initial point the lift to D̃j1 of π(x̃h)
and end point x̃1 . Let β̃ be the concatenation of β̃1, . . . , β̃h . Let xl = π(x̃l) for
l ∈ {1, . . . , h} , let βl = π(β̃l) for l ∈ {1, . . . , h} , and let β = π(β̃). Then β is a
closed path in R′ which is the concatenation of β1, . . . , βh . Since β̃ is not closed,
β is not null homotopic in R′ , and so β separates the ends of R′ .

Having gotten distinct shingles Dj1 , . . . ,Djh , points x1, . . . , xh , and paths α ,
β1, . . . , βh , and β , we proceed as follows. Since we seek a lower bound for C(R, τi)
and

C(R, τi) =
∑

α∩Dj �=∅
τi(Dj) ≥

h∑
l=1

τi(Djl ),

it suffices to find a lower bound for this last sum.
We begin estimating this last sum in a special case by considering each sum-

mand. Fix l ∈ {1, . . . , h} . We have

(7.14) τi(Djl ) = 2r3ijl +4/I ≥ di(pjl , xl−1)+di(pjl , xl)+4/I ≥ di(xl−1, xl)+2/I.

Let D(xl−1) and E(xl ) be i-approximations to xl−1 and xl and let γl be a path
in R′ joining D(xl−1) and E(xl) such that Li(γl) = di(xl−1, xl). Suppose that
βl∪γl∪D(xl−1)∪E(xl) separates the ends of R′ . By construction Djl is contained
in one of the open disks D′′′

1 , . . . ,D′′′
m . By choosing I large enough we may assume

that βl ∪ D(xl−1) ∪ E(xl) is contained in one of the disks D′′′
1 , . . . ,D′′′

m . Under
this assumption it therefore follows from the proof of Proposition 3.3 of [3] that
βl ∪D(xl−1)∪E(xl) is surrounded by a simple closed curve ωl in R′ which is null
homotopic in R′ such that Li(ωl) < λ . It follows that γl ∪ ωl separates the ends
of R′ . Thus

(7.15) C(R′, �i) ≤ Li(γl ∪ ωl) ≤ di(xl−1, xl) + λ

for every sufficiently large positive integer i . Combining lines 7.14 and 7.15 gives
that

τi(Djl ) ≥ C(R′, �i)− λ

for all sufficiently large positive integers i . Thus if βl ∪ γl ∪ D(xl−1) ∪ E(xl)
separates the ends of R′ for some l ∈ {1, . . . , h} , then

(7.16) C(R, τi) ≥ C(R′, �i)− λ
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for every sufficiently large positive integer i . This gives a lower bound for C(R, τi)
if βl ∪ γl ∪D(xl−1) ∪E(xl) separates the ends of R′ for some l ∈ {1, . . . , h} .

Now suppose that βl ∪ γl ∪D(xl−1)∪E(xl) does not separate the ends of R′

for l ∈ {1, . . . , h} . By lifting these sets to the universal cover R̃′ of R′ , it is easy
to see that

h⋃
l=1

(
γl ∪ ∂D(xl−1) ∪ ∂E(xl)

)
contains a closed path γ which separates the ends of R′ . Thus

(7.17)

C(R′, �i) ≤ Li(γ) ≤
h∑

l=1

(
Li(γl) + 2/I

)

≤
h∑

l=1

(
di(xl−1, xl) + 2/I

)
≤

h∑
l=1

τi(Djl ) ≤ C(R, τi),

the next-to-last inequality coming from line 7.14. This gives a lower bound for
C(R, τi) if βl ∪ γl ∪ D(xl−1) ∪ E(xl) does not separate the ends of R′ for l ∈
{1, . . . , h} .

Combining lines 7.16 and 7.17 shows that

(7.18) C(R, τi) ≥ C(R′, �i)− λ

for all sufficiently large positive integers i . Corollary 1.4 shows that

1
C(R′, �i)2

≤ M(R′, Si).

Hence Theorem 1.6, the bounded valence theorem, and the separation theorem
bounds on moduli given in Theorem 4.2 imply that the circumferences C(R′, �i)
are bounded from 0 for all positive integers i . Thus once δ is chosen, λ may be
chosen so small that

(7.19) C(R′, �i)− λ ≥ 1
2C(R′, �i).

We henceforth assume that λ is this small. Combining lines 7.18 and 7.19 yields
that

(7.20) C(R, τi) ≥ 1
2C(R′, �i)

for every sufficiently large positive integer i .
In this paragraph we obtain a lower bound on the moduli M(R,Si). We have

that

m(R,S) ≤ A(R, τi)
C(R, τi)2

≤ 1800KC2

C(R′, �i)2
≤ 1800KC2M(R′ , Si) ≤ 7200KC2M(R,Si)
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for every sufficiently large positive integer i , where the second inequality comes
from lines 7.7 and 7.20, the third inequality comes from Corollary 1.4, and the last
inequality comes from Lemma 7.3. Hence

(7.21) M(R,Si) ≥
m(R,S)
7200KC2

for every sufficiently large positive integer i .
Thus lines 7.13 and 7.21 show that the moduli M(R,Si) lie in the interval

with left endpoint (7200KC2)−1m(R,S) and right endpoint 1800KC2M(R,S)
for all sufficiently large positive integers i . Because S and Si have bounded
valence (K ), Theorem 1.6, the bounded valence theorem, and Corollary 1.4 show
that

m(R,S) ≤ M(R,S) ≤ K2m(R,S) and m(R,Si) ≤ M(R,Si) ≤ K2m(R,Si)

for every positive integer i . Therefore the moduli m(R,Si) and M(R,Si) lie in a
single M -interval for all sufficiently large positive integers i , where M is a positive
real number that depends only on K and L . Thus the sequence S1, S2, S3, . . . is
conformal (M ) in Y .

This proves Theorem 7.1.

8. A conformality criterion for negatively curved groups

In this section we apply the sufficiently rich theorem to a sequence of disks
at infinity constructed in [6] coming from a negatively curved group whose space
at infinity is the 2-sphere. We show in this situation that Axiom I and Axiom II
can be replaced by Axiom 0. In fact the argument shows that it suffices to check
Axiom 0 for finitely many rings. We begin with a lemma about fixed point sets
of elements of a negatively curved group under the group’s action on its space at
infinity.

Lemma 8.1. Let G be a negatively curved group with locally finite Cayley
graph Γ , and let g be an element of G . Then under the action of G on its space at
infinity ∂Γ , either g fixes every point of ∂Γ or the fixed point set of g is nowhere
dense.

Proof. Let g be an element of the negatively curved group G , and let U be
an open subset of ∂Γ such that g fixes every point in U . We must prove that
g fixes every point in ∂Γ. By Corollary 8.2.G of [7] there exists a hyperbolic
element h ∈ G whose fixed points in ∂Γ lie in U . According to the discussion at
the beginning of Section 5 of [7], the subgroup of G generated by g and h is a
finite extension of the subgroup generated by h . Since the fixed points of h lie
in U , it follows that g commutes with a nontrivial power of h . Without loss of
generality we assume that g commutes with h . Then h stabilizes the fixed point
set of g . But given a point in ∂Γ, some power of h takes that point into U . Thus
g fixes every point in ∂Γ. This proves Lemma 8.1.
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We next recall some definitions, notation, and results from [6]. Let G be a
negatively curved group. Let Γ be a locally finite Cayley graph for G with path
metric d such that the length of every edge is 1. Let O denote a fixed vertex
in Γ.

The space at infinity ∂Γ of Γ consists of equivalence classes of geodesic rays in
Γ, where rays R,S: [0,∞) → Γ are equivalent if lim supt→∞ d

(
R(t), S(t)

)
< ∞ .

We always parametrize geodesic rays by arclength. We denote the equivalence
class of a geodesic ray R by R(∞). We assume that ∂Γ = S2 . Given a geodesic
ray R: [0,∞) → Γ and t ∈ [0,∞), the half-space H(R, t) is defined so that

H(R, t) =
{
x ∈ Γ : d

(
x,R

(
[t,∞)

))
≤ d

(
x,R([0, t])

)}
,

and the disk at infinity D(R, t) is defined so that

D(R, t) =
{
S(∞) ∈ ∂Γ : lim

r→∞
d
(
S(r),Γ \H(R, t)

)
= ∞

}
,

where S: [0,∞) → ∂Γ is a geodesic ray with S(0) = O . Let m be a positive
integer as in line 3.27 of [6]. Given a geodesic ray R: [0,∞) → Γ and an integer
n ≥ m , the shingle S(R,n, n −m) is defined to be the closure of the connected
component of D(R,n−m) which contains D(R,n). For every nonnegative integer
n we have a collection

D(n) = {D(R,n) : R is a geodesic ray in Γ with R(0) = O}

of disks at infinity, and line 3.21 of [6] easily implies that D(n) is finite. For every
integer n ≥ m we have a finite collection of shingles

S (n,m) = {S(R,n, n−m) : R is a geodesic ray in Γ with R(0) = O}.

For every nonnegative integer n the sets in D (n) cover ∂Γ and although these sets
are not shingles, we can use them to define combinatorial moduli in the straight-
forward way as in Section 2.2.5 of [6]. The notion of conformality of the sequence
{D(n)} is likewise meaningful.

The cone C(x,O) at a vertex x ∈ Γ relative to O is the set of all points y ∈ Γ
which can be joined to O by a geodesic segment which contains x . Two vertices
x, y ∈ Γ are said to have the same cone type if left multiplication yx−1: Γ → Γ
takes C(x,O) isomorphically to C(y,O). By [1] or [2], every negatively curved
group has only finitely many cone types.

Theorem 8.2. Let G be a negatively curved group. Let Γ be a locally finite
Cayley graph for G with space at infinity ∂Γ = S2 . Given a base vertex O in
Γ , we have a sequence {D(n)} of finite collections of disks at infinity as above.
Assume that {D(n)} satisfies Axiom 0 for every point in ∂Γ . Then the sequence
{D(n)} is conformal.
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Proof. We maintain the notation between Lemma 8.1 and Theorem 8.2. In
addition let δ be a positive integer such that every geodesic triangle in Γ is δ -thin.

In this paragraph we introduce the notion of a recursion system. Suppose
given a geodesic ray R: [0,∞) → Γ with R(0) = O and a nonnegative integer n .
To R and n we associate a set T (R,n) of triples (x, γ, C), where x is a vertex in
Γ, γ is a geodesic edge path in Γ containing x of length at most 8δ and C is the
cone at one of the endpoints of γ relative to O . The elements of T (R,n) are all
such triples which arise from geodesic rays S in Γ as follows. Let S: [0,∞) → Γ
be a geodesic ray with S(0) = O . Suppose that there exists an element D in D(n)
such that D(S, n) meets D and D meets the closure of D(R,n) in ∂Γ. Such a
geodesic ray S gives rise to the triple (x, γ, C) in T (R,n), where x = S(n), γ is
the intersection of S with the closed ball of radius 4δ centered about x in Γ, and
C = C

(
S(n + 4δ),O

)
. The set T (R,n) contains a distinguished triple, namely,

the triple (x, γ, C), where x = R(n), γ is the intersection of R with the closed
ball of radius 4δ centered about x in Γ, and C = C

(
R(n + 4δ),O

)
. We call

the ordered pair
(
T (R,n), t

)
, where t is the distinguished triple of T (R,n), a

recursion system. We call n the level of
(
T (R,n), t

)
.

We associate an open subset of ∂Γ to every recursion system (T, t) as follows.
Suppose that (T, t) has level n and that t = (x, γ, C). Let R: [0,∞) → Γ be a
geodesic ray with R(0) = O such that R(n) = x and γ is the intersection of R
with the closed ball of radius 4δ centered about x in Γ. Let N ⊆ ∂Γ be the
union of all elements D ∈ D(n) such that D meets the closure of D(R,n) in ∂Γ.
Line 3.21 of [6] implies that N is independent of the choice of R . We call N a
star neighborhood, the star neighborhood associated to (T, t). We call D(R,n)
the central disk of N relative to (T, t).

In this paragraph we begin to consider translating recursion systems by ele-
ments of G . Let (T, t) be a recursion system. Let g ∈ G . We have in a natural
way g(T, t), which might not be a recursion system (although it is a recursion
system relative to the base vertex gO ). Suppose however that g(T, t) is a recur-
sion system (relative to O ). Let n be the level of (T, t), and let n′ be the level
of g(T, t). Let N be the star neighborhood associated to (T, t). Line 3.21 of [6]
easily implies that gN is the star neighborhood associated to g(T, t). Further-
more, for every nonnegative integer k the cover D(n+ k) of ∂Γ induces a cover
of N , and it is not difficult to see that line 3.21 of [6] implies that g takes this
cover of N to the cover of gN induced by D(n′ + k). Thus in this sense a recur-
sion system recursively determines the covers of its associated star neighborhood
induced by the sequence of covers {D(n)} . The above proves Property 8.3:

Property 8.3. Let (T, t) be a recursion system with level n and star neigh-
borhood N . Suppose given g ∈ G such that g(T, t) is a recursion system with
level n′ . Let R be a ring in N . Then m

(
R,D(n+k)

)
= m

(
gR,D(n′+k)

)
for every

nonnegative integer k . Furthermore m
(
R,S (n+ k,m)

)
= m

(
gR,S (n′ + k,m)

)
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and M
(
R,S (n+ k,m)

)
= M

(
gR,S (n′ + k,m)

)
for every integer k ≥ m .

In this paragraph we choose a special finite set of recursion systems. Let
(T, t) be a recursion system. Using lines 3.25 and 3.26 of [6], it is easy to see
that if t = (x, γ, C) and if (x′, γ′, C ′) ∈ T , then d(x, x′) is bounded by a real
number which depends only on δ . This and the fact that Γ has only finitely many
cone types easily implies that there are only finitely many recursion systems up
to the action of G : there exists a finite set T of recursion systems such that
if (T, t) is a recursion system, then there exists an element g in G for which
g(T, t) ∈ T . We call the elements of T recursion system models, and we call the
star neighborhoods associated to elements of T star neighborhood models. Note
that we have not ruled out the possibility that some star neighborhood model
might be associated to distinct recursion system models.

In this paragraph we apply the hypothesis that {D(n)} satisfies Axiom 0 to
the star neighborhood models and improve it slightly. Let (T, t) be a recursion
system model, let N be the star neighborhood model associated to (T, t), and let
D be the central disk of N relative to (T, t). By hypothesis, for every point x
in the closure D of D there exists a ring R in N surrounding x such that the
moduli

{
m

(
R,D(n)

)}
are bounded from 0. Because D is compact, the ring R in

the previous sentence can be restricted to a finite set of such rings. Since there are
only finitely many recursion system models, it follows that there exists a positive
real number M such that if (T, t) is a recursion system model and N is the star
neighborhood model associated to (T, t) with central disk D relative to (T, t),
then for every point x in D there exists a ring R in N surrounding x such that
m

(
R,D(n)

)
≥ M for every nonnegative integer n .

In this paragraph we establish Axiom II in ∂Γ for the sequences {D(n)}
and {S (n,m)} . Let x ∈ ∂Γ, and let N be a neighborhood of x . Because the
diameters of the elements of D(n) go to 0 uniformly as n → ∞ , there exists
a recursion system (T1, t1) with star neighborhood N1 ⊆ N whose central disk
relative to (T1, t1) contains x . There exists an element g in G such that g(T1, t1)
is a recursion system model. Hence gN1 is a star neighborhood model, and by
the previous paragraph there exists a ring R1 ⊆ N1 surrounding x such that
m

(
gR1,D(n)

)
≥ M for every nonnegative integer n . Property 8.3 implies that

m
(
R1,D(n)

)
≥ M for every integer n ≥ n1 , where n1 is the level of (T1, t1). Just

as at the beginning of the proof of Theorem 5.3.1 in [6], there exists a positive
integer K such that D(n) has bounded valence (K ) for every nonnegative integer
n , S (n,m) has bounded valence (K ) for every integer n ≥ m , and D(n) has
bounded overlap (K ) with S (n,m) for every integer n ≥ m . Using just the
bounded overlap property for now, Theorem 4.3.1 of [6] implies that there exists
a positive real number M ′ such that m

(
R1,S (n,m)

)
≥ M ′ for every sufficiently

large positive integer n . We repeat this construction of R1 with N replaced by
the connected component C1 of ∂Γ \ R1 which contains x : there exists a recur-
sion system (T2, t2) with star neighborhood N2 ⊆ C1 whose central disk relative
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to (T2, t2) contains x and there exists a ring R2 ⊆ N2 surrounding x such that
m

(
R2,S (n,m)

)
≥ M ′ for every sufficiently large positive integer n . Given a pos-

itive integer k , we iterate and obtain rings R1, . . . , Rk in N with each surround-
ing the next and Rk surrounding x such that m

(
Ri,S (n,m)

)
≥ M ′ for every

i ∈ {1, . . . , k} and for every sufficiently large positive integer n . Corollary 1.4 and
Theorem 1.7, the layer theorem, show that if R is a ring that contains R1, . . . , Rk

and whose ends are separated by each of them, then M
(
R,S (n,m)

)
≥ kM ′ for

every sufficiently large positive integer n . This and Theorem 1.6, the bounded
valence theorem, imply that Axiom II holds in ∂Γ for the sequence {S (n,m)} ,
which with the bounded overlap property implies that Axiom II holds in ∂Γ for
the sequence {D(n)} .

In this paragraph we use Axiom II to construct finitely many special rings in
the star neighborhood models. Let C be a positive real number. Let (T, t) be a
recursion system model, and let N be the star neighborhood model associated to
(T, t) with central disk D relative to (T, t). The compactness of D and the fact
that Axiom II holds for the sequence {D(n)} imply that there exists a finite set
of rings in N such that every point in D is surrounded by at least one of these
rings and m

(
R,D(n)

)
> C for each of these rings R and for every sufficiently

large positive integer n . We fix these rings and call them the outer boundary
ring models associated to (T, t). We construct outer boundary ring models for
every recursion system model in this way. Just as for star neighborhood models,
some outer boundary ring model might be associated to distinct recursion system
models.

In this paragraph we choose for every recursion system model (T, t) and every
outer boundary ring model R associated to (T, t) a point p ∈ ∂Γ surrounded by
R so that Property 8.4 is satisfied.

Property 8.4. Suppose that (T, t) and (T ′, t′) are recursion system models,
that R and R′ are outer boundary ring models associated to (T, t) and (T ′, t′),
respectively, and that p and p′ are the points in ∂Γ chosen corresponding to
the pairs

(
(T, t), R

)
and

(
(T ′, t′), R′) , respectively. Suppose that g and g′ are

elements of G such that g(T, t) and g′(T ′, t′) are recursion systems with the same
level. Then either (T, t) = (T ′, t′), R = R′ , and g and g′ act identically on ∂Γ
or gp �= g′p′ .

For this we consider all ordered pairs
(
(T1, t1), (T2 , t2)

)
, where (T1, t1) and

(T2, t2) are recursion systems with the same level whose star neighborhoods meet.
Just as there are only finitely many recursion systems up to the action of G ,
there exists a finite set P of such ordered pairs of recursion systems such that
if

(
(T1, t1), (T2, t2)

)
is an ordered pair of recursion systems with the same level

whose star neighborhoods meet, then there exists an element g in G such that
g
(
(T1, t1), (T2, t2)

)
∈ P . Suppose that

(
(T1, t1), R1

)
, . . . ,

(
(Tk, tk), Rk

)
are all the

ordered pairs of the form
(
(T, t), R

)
, where (T, t) is a recursion system model and
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R is an outer boundary ring model associated to (T, t). We inductively choose
points p1, . . . , pk ∈ ∂Γ such that pi is surrounded by Ri for i ∈ {1, . . . , k} .
Suppose that i ∈ {1, . . . , k} and that p1, . . . , pi−1 ∈ ∂Γ are chosen such that
pj is surrounded by Rj for j ∈ {1, . . . , i − 1} and that Property 8.4 is satisfied
for p1, . . . , pi−1 . Let j ∈ {1, . . . , i} . Suppose that g and g′ are elements of G
such that

(
g(Ti, ti), g′(Tj , tj)

)
∈ P . We want to choose pi so that gpi �= g′pj

unless i = j and g−1g′ acts trivially on ∂Γ. Hence we consider the inequality
pi �= g−1g′pj . Since P is finite, there are only finitely many choices for g and g′ ,
and so there are only finitely many such inequalities to satisfy. To satisfy these
inequalities for j < i amounts to choosing pi in the complement of some finite
set, which is obviously possible. To satisfy these inequalities for j = i amounts to
choosing pi so that it is not a fixed point of the finitely many elements g−1g′ . But
according to Lemma 8.1, either g−1g′ acts trivially on ∂Γ or the fixed point set
of g−1g′ is nowhere dense. So in choosing pi we must only avoid a finite union of
nowhere dense subsets of ∂Γ. It easily follows that we are able to choose p1, . . . , pk

in this way to satisfy Property 8.4.
Having chosen points p1, . . . , pk in the previous paragraph, it is easy to see

that for every i ∈ {1, . . . , k} we may furthermore associate to the pair
(
(Ti, ti), Ri

)
an open disk Di ⊆ ∂Γ surrounded by Ri such that pi ∈ Di and such that the
following property, which strengthens Property 8.4, holds. Suppose that (T, t)
and (T ′, t′) are recursion system models, that R and R′ are outer boundary
ring models associated to (T, t) and (T ′, t′), respectively, and that D and D′

are the open disks in ∂Γ chosen corresponding to
(
(T, t), R

)
and

(
(T ′, t′), R′) ,

respectively. Suppose that g and g′ are elements of G such that g(T, t) and
g′(T ′, t′) are recursion systems with the same level. Then either (T, t) = (T ′, t′),
R = R′ , and g and g′ act identically on ∂Γ or gD ∩ g′D′ = ∅ .

In this paragraph we construct buffered rings relative to {S (n,m)} in the
star neighborhood models. Choose a recursion system model (T, t), let N be the
star neighborhood model associated to (T, t), and let R be an outer boundary
ring model associated to (T, t). Let D be the open disk associated to the pair(
(T, t), R

)
in the previous paragraph. Recall that a positive real number C was

chosen arbitrarily and that R was chosen so that m
(
R,D(n)

)
> C for every

sufficiently large positive integer n . Using Axiom II we now choose a ring R′

contained in D such that m
(
R′,D(n)

)
> C for every sufficiently large positive

integer n . Let K(2) be the constant in the quadratic area estimate, Theorem 4.2.1
of [3]. Because D(n) has uniformly bounded overlap with S (n,m) for every in-
teger n ≥ m , Theorem 4.3.1 of [6] shows that C may be chosen so large that
m

(
R,S (n,m)

)
> 18e2K(2) and m

(
R′,S (n,m)

)
> 18e2K(2) for every suffi-

ciently large positive integer n . Let R′′ be the ring which contains R and R′ ,
whose boundary is contained in ∂R ∪ ∂R′ , and whose ends are separated by each
of R and R′ . Theorem 1.6, the bounded valence theorem, and the bounds on
moduli given by the separation theorem in Theorem 4.2 imply that there exists
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a positive real number L such that M
(
R′′,S (n,m)

)
≤ L for every sufficiently

large positive integer n . It follows that the ring between R and R′ is a buffered
ring (L) relative to the sequence {S (n,m)} . Because there are only finitely many
pairs

(
(T, t), R

)
, we may assume that L is independent of

(
(T, t), R

)
.

In this paragraph we complete the proof of Theorem 8.2. Let ε be a positive
real number. Because the diameters of the elements of D(n) go to 0 uniformly
as n → ∞ , there exists a positive integer n such that the star neighborhood
of every recursion system with level n has diameter less than ε . Let (T, t) be a
recursion system with level n and star neighborhood N . Let g be an element in G
such that g(T, t) is a recursion system model, so that gN is a star neighborhood
model. In the previous paragraph we constructed a buffered ring (L) relative
to {S (n,m)} in gN for every outer boundary ring model R ⊆ gN associated
to (T, t). Property 8.3 implies that the inverse image of this buffered ring under
g is a buffered ring (L) in N relative to {S (n,m)} . We take the set of all
such inverse image buffered rings as R varies over all such outer boundary ring
models and (T, t) varies over all recursion systems with level n . The result is a
buffered ring cover (L) of ∂Γ with spanning ring mesh at most ε having bounded
valence with respect to a parameter which is independent of n . Theorem 7.1, the
sufficiently rich theorem, finally implies that the sequence {S (n,m)} is conformal,
and so the sequence {D(n)} is conformal.

This proves Theorem 8.2.
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