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Abstract. We establish that there are bounded Jordan domains Ω ⊂ Rn (n ≥ 2) that do
not carry a (nontrivial) doubling measure with respect to the Euclidean distance. More generally,
it is shown that every nonempty metric space (X, d) without isolated points has an open and dense
subset A such that (A, d) does not carry a doubling measure.

1. Introduction

The fundamental result on the existence of doubling measures, due to Vol’berg
and Konyagin [11], states that every doubling and compact metric space (X, d)
carries a nontrivial doubling measure. This remains true also if instead of com-
pactness one only requires that X is complete, see [4]. In particular, every closed
subset of Rn carries a nontrivial doubling measure. The existence question gains
special interest from the fact that, in order to extend classical results of analysis to
a setting of a metric space X , one is often forced to postulate a doubling measure
on X (see e.g. [9, Chapter I]).

In the present note we show that one cannot replace compactness by local
compactness in the theorem of Vol’berg and Konyagin, thus answering negatively
a question posed in [4]. In fact, counterexamples contain remarkably ‘nice’ spaces
that appear in analysis: Theorem 3 yields a bounded Jordan domain Ω ⊂ Rn

(n ≥ 2) that carries no doubling measure with respect to the Euclidean dis-
tance. We also prove (Theorem 5) a more general result of nonexistence: for every
nonempty metric space X which does not have isolated points there is an open
and dense subset Ω ⊂ X such that Ω does not carry a doubling measure. Further
observations are contained in Remarks 1 and 2 below.

We refer to [11], [3], [9, Chapter I, Section 8], [10], [12], [13], and [2] for
additional results on doubling measures. In addition, the work of Staples and
Ward [8] is directly related to Theorem 5, see Remark 3 below (we are grateful to
J. Heinonen who noticed the connection between our results and [8]).
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2. Results

We first recall that if (X, d) is a metric space, then a Borel measure µ on X
is doubling if there exists a constant C ≥ 1 so that the inequality

(1) 0 < µ
(
B(x, 2r)

)
≤ Cµ

(
B(x, r)

)
< ∞

holds for all x ∈ X and r > 0 (in this case we also say that µ is C -doubling).
Here B(x, r) = {y ∈ X | d(x, y) < r} . If B is a ball in X with radius r , then
for k > 0 the abbreviation kB denotes the ball with the same center and with
radius kr . Moreover, we write Bc(x, r) = {y ∈ X | d(x, y) ≤ r} .

A subset A′ of a metric space A is ε-dense in A for ε > 0 if A =
⋃

y∈A′B(y, ε).
A metric space (X, d) is doubling (in the metric sense) if there is a constant K > 0
such that for every set A ⊂ B(x, 2r) with x ∈ X , r > 0 that satisfies d(y, z) ≥ r
for distinct y, z ∈ A , the number of points in A is bounded from above by K . If
X carries a doubling measure, then X is known to be doubling. The family of
Borel sets of a metric space X is denoted by B(X).

The following simple lemma is essentially known, but for completeness we
include a proof.

Lemma 1. Let A be a dense subset of a metric space X . Then every C -
doubling measure µ on A extends to a C -doubling measure µ̃ on X for which
µ̃(S) = µ(S ∩A) for S ∈ B(X) .

Proof. Note that A need not be a Borel subset of X , so that one needs to
verify that µ̃ is a well-defined measure. For that end it is enough to note that
{S ∈ B(X) | S ∩ A ∈ B(A)} = B(X), and this follows by observing that the
left-hand side is a σ -field that contains all open subsets of X . Let then x ∈ X
and r > 0. Choose a sequence of points xk ∈ A so that d(xk, x) < 1

2r and
dk = d(xk, x) decreases to 0 as k → ∞ . The inequality (1) follows by letting
k → ∞ in the estimate

µ̃
(
B(x, 2r − 3dk)

)
≤ µ

(
B(xk, 2r − 2dk) ∩A

)
≤ Cµ

(
B(xk, r − dk) ∩A

)
≤ Cµ̃

(
B(x, r)

)
.

Our second lemma is a geometrically refined variant of known estimates (see
e.g. [12, Lemma 1] for doubling measures. In what follows, the word rectangle (or
square) refers to the closure of a rectangular domain.

Lemma 2. Let S = [0, a]2 ⊂ R2 and R = [0, b] × [0, a] , where 0 < b < 1
2a .

Let µ be a C -doubling measure on a set U ⊂ R2 so that U ∩ S is (b/16)-dense
in S . Then

µ(R ∩ U)
µ(S ∩ U)

≤
(
1− C−4

)log2(a/b)−2
.
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Proof. The claim clearly holds for b ∈
[

1
4
a, 1

2
a
)
. By induction it is then

enough to prove it for b ∈
(
0, 1

4a
)
assuming that it is true for 2b . Assume hence

that b ∈
(
0, 1

4a
)
and denote R′ = [0, 2b] × [0, a] . By the density assumption it is

easily verified that there are disjoint balls B1, . . . , Bm with centers in U so that⋃m
i=1 Bi ⊂ R′ \R and R′ ⊂

⋃m
i=1 2

4Bi . The doubling property of µ implies

µ(U ∩R′) ≤ C4µ

(
U ∩

(
m⋃

i=1

Bi

))

and hence

µ(U ∩ R) ≤ µ(U ∩R′)− µ

(
U ∩

(
m⋃

i=1

Bi

))
≤ (1 − C−4)µ(U ∩R′).

The lemma now follows by applying the induction hypothesis on the rectangle R′

since the needed density assumption is satisfied.

Theorem 3. For each n ≥ 2 there is a bounded Jordan domain Ω ⊂ Rn

(even the image of Bn under a homeomorphism of Rn ) which does not carry a
doubling measure.

Proof. For reasons of clarity we first give a detailed proof in the case n = 2.
Let us start by constructing a standard Cantor set F ⊂ R corresponding to a
sequence (λj)∞j=1 of scalars, such that λj ∈

(
0, 1

8

)
and limj→∞ λj = 0. Thus

F =
⋂∞

j=0 Fj , where F0 = [0, 1] and for each j ≥ 1 the set Fj is obtained from
Fj−1 by dissecting a middle interval of length λj |I| from each of the 2j−1 closed
intervals I that comprise Fj−1 . Finally we choose λj = 2−5j for j ≥ 1 (however,
we keep writing λj instead of 2−5j until to the very end of the argument, since
we will later make another choice for (λj) in Remark 2).

Set K = F ×F ⊂ R2 . Since K is a Cantor set, it is well known that there is
a planar Jordan curve J such that K ⊂ J , see e.g. [7, Theorems 12.8 and 13.7].
Let Ω be the bounded component of R2 \J . We claim that Ω carries no doubling
measure. Towards the proof of the claim denote by U the closure of Ω and assume
that µ is a C -doubling measure on U . Lemma 1 implies that it is enough to show
that µ cannot be supported on Ω, and this follows if we establish that

(2) µ(K) > 0.

We may write K =
⋂∞

j=0 Kj with Kj = Fj × Fj and, moreover,

Kj =
4j⋃

i=1

Si
j ,

where each Si
j (i = 1, . . . , 4j ) is a square.



158 Eero Saksman

Choose j0 = j0(C) ≥ 1 so that bj > 1
2
for j ≥ j0 , where

(3) bj = 1−C4(1− C−4)−3+log2((1−λj)/λj).

Let then j ≥ j0 and i0 ∈ {1, . . . , 4j} be arbitrary and let Sir
j+1 , r = 1, 2, 3, 4, be

the four squares that comprise Si0
j ∩Kj+1 . We show that

(4)
4∑

r=1

µ(Sir
j+1 ∩ U) ≥ bj+1µ(Si0

j ∩ U).

Before proving (4) we show how (2) follows from it. Note that (4) yields by
induction the inequality µ(Kj ∩ U) ≥ µ(Kj0 ∩ U)

∏j
i=j0+1 bi , and letting j → ∞

we obtain

µ(K) = µ(K ∩ U) ≥
( ∞∏

j=j0+1

bj

)
µ(Kj0 ∩ U).

We observe that evidently µ(Kj0 ∩ U) > 0. Moreover, the elementary inequality
b ≥ e−2(1−b) for b ∈

(
1
2 , 1

)
implies that

∞∏
j=j0+1

bj ≥ exp
(
−2C4

∞∑
j=j0+1

(1−C−4)−3+log2((1−λj)/λj)

)
≥ exp

(
−C ′

∞∑
j=j0+1

λd
j

)
,

where the positive constants d and C ′ depend only on C . Hence
∏∞

j=j0+1 bj > 0
(independently of the value of C ) provided that the sequence (λj) satisfies

(5)
∞∑

j=1

λδ
j < ∞ for all δ > 0.

We obtain (2) since (5) obviously holds for the choice λj = 2−5j .
It remains to prove (4). Let aj = 2−j

∏j
i=1(1 − λi) be the sidelength of the

square Si0
j , and write Si0

j in an obvious manner as a union of nine sets:

(6) Si0
j = S ′ ∪

(
4⋃

r=1
Rr

)
∪

(
4⋃

r=1
Sir

j+1

)
,

where each Rr (r = 1, 2, 3, 4) is a rectangle with sides λj+1aj and 1
2
(1−λj+1)aj ,

and S ′ is a square with side λj+1aj . Fix r ∈ {1, 2, 3, 4} . With a possible (and
harmless) relabeling of the rectangles we may denote by R′

r the closed rectangle
of the same size as Rr , having a common side with it, and contained in Sir

j+1 . We
now apply Lemma 2 and deduce that

µ(R′
r ∩ U) ≤ (1 − C−4)−3+log2((1−λj+1)/λj+1)µ(Sir

j+1 ∩ U),
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since the density hypothesis of Lemma 2 is satisfied owing to the construction of
the Cantor set F and the fact that λj+2 = λj+1/32. Because of the density we
may also choose disjoint balls B1, . . . , Bm with centers in U so that

⋃m
i=1 Bi ⊂ R′

r

and S ′ ∪ Rr ⊂
⋃m

i=1 2
4Bi , which implies that

µ
(
(S ′ ∪Rr) ∩ U

)
≤ C4µ(R′

r ∩ U).

Combining these observations we deduce that

µ

((
Si0

j \
(

4⋃
r=1

Sir
j+1

))
∩U

)
≤ C4(1−C−4)−3+log2((1−λj+1)/λj+1)µ

((
4⋃

r=1

Sir
j+1

)
∩U

)
,

which yields (4).
Finally, in the case n ≥ 3 we choose Ω = Ω2×(0, 1)n−2 , where Ω2 is the two-

dimensional domain constructed above. The proof of the theorem and a higher
dimensional version of Lemma 2 remains the same almost verbatim if one replaces
the two-dimensional sets A figuring in the proof by sets of the form A× [0, 1]n−2 .
There are only minor differences: the power C4 has to be replaced by a power
Ck , where k depends on the dimension n , and the density condition of Lemma 2
together with the choice of λj must be adjusted accordingly.

Remark 1. Under some additional conditions on the domain one can ensure
the existence of a doubling measure on Ω with respect to the Euclidean distance.
We give a simple example: every doubling measure on Ω is supported on Ω if the
domain Ω satisfies the following condition:

(A) There is a constant k > 1 with the following property: For every x ∈ ∂Ω
and for every ε > 0 there is y ∈ Ω so that d(y, ∂Ω) < ε and x ∈ kB

(
y, d(y, ∂Ω)

)
.

The existence of a doubling measure on Ω satisfying (A) follows from the
Vol’berg–Konyagin theorem applied to Ω (or from [4] if Ω is unbounded). Notice
that (A) is satisfied e.g. by John domains, but also by some bounded domains
that are not John (for the definition of a John domain, see [5, 2.1]). In order
to prove our claim, we assume for simplicity that Ω is bounded. Denote Aε =
{x ∈ Ω | d(x, ∂Ω) ≤ ε} . Given ε > 0, assumption (A) and an application of
a standard covering theorem (see e.g. [6, Theorem 2.1]) to the ball family B ={
B

(
y, d(y, ∂Ω)

)
| y ∈ Aε

}
yield a constant k0 (that does not depend on ε) and

disjoint balls B1, B2, . . . from the family B so that
⋃∞

i=1 Bi ⊂ A2ε and ∂Ω ⊂⋃∞
i=1 2

k0Bi . Let µ be C -doubling on Ω. It follows that µ(∂Ω) ≤ Ck0µ(A2ε),
where the right-hand side can be made arbitrarily small since

⋂∞
j=1 A2−j = ∅ .

Remark 2. There are domains that are ‘nearly John’ but which do not
carry a doubling measure. More precisely, there is a bounded domain Ω ⊂ R2

which does not carry a doubling measure but whose boundary is accessible in the
following sense:
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(B) Let ε > 0 . For every boundary point x ∈ ∂Ω there is a path γ: [0, 1] → Ω
with finite length, and such that γ(0) = x and γ(1) = x0 , where x0 ∈ Ω is fixed.
Moreover, for all t ∈ (0, 1] it holds that

B
(
γ(t), Cεs

1+ε
)
⊂ Ω,

where s is the length of the subarc γ([0, t]) .

(Compare with the previous remark.) In fact, we may choose Ω = B(0, 3)\K ,
where K is the planar Cantor set constructed in the proof of Theorem 3 with the
choice λj = 2−j/ log(j+2) . The proof for our claim is practically equal to the
proof of Theorem 3, now only the density conditions are automatically satisfied
(independently of the choice of (λj)) so that it remains to verify (5), which is
immediate. Finally, it is not difficult to verify that Ω fulfils (B) with the choice
x0 =

(
1
2 ,

1
2

)
.

Question. Suppose that Ω is a bounded domain in Rn and ∂Ω is piecewise
given by the graph of a continuous function. Does Ω support a doubling measure?

We next turn to a general observation about nonexistence.

Lemma 4. Let X be a metric space without isolated points and assume that
the set I = {C ≥ 1 | there is a C -doubling measure on X} is nonempty (notice
that I is a half-line). Let y ∈ X . Then there are functions f1, f2: (0, 1) × I →
(0,∞) with the following properties:

(i) f1 is decreasing with respect to the second variable and f2 is increasing with
respect to both variables. Moreover, limr→0+ f2(r, C) = 0 for every C ∈ I .

(ii) Every C -doubling measure µ on X satisfies

f1(r, C)µ
(
B(y, 1)

)
≤ µ

(
B(x, r)

)
≤ f2(r, C)µ

(
B(y, 1)

)

for x ∈ B(y, 1) and r ∈ (0, 1) .

Proof. We first conclude that X is doubling, since I �= ∅ . Assume that µ is
a C -doubling measure on X . The existence of the lower bound is obtained by a
standard argument: given r ∈ (0, 1) and x ∈ B(y, 1), choose k0 =

[
log2(1/r)

]
+2

and notice that µ
(
B(y, 1)

)
≤ µ

(
B(x, 2k0r)

)
≤ Ck0µ

(
B(x, r)

)
. Hence an appro-

priate choice for f1 is f1(r, C) = C−2rlog2 C , which is clearly decreasing which
respect to C since r < 1.

Towards the upper bound, we first consider the case where X is complete.
Then, since metric doubling clearly implies total boundedness for bounded sets,
we see that every closed ball of X is compact. For r ∈ (0, 1) and C ∈ I define

f2(r, C) = sup
x∈B(y,1)

{
µ
(
B(x, r)

)
| µ is C-doubling on X with µ

(
B(y, 1)

)
= 1

}
.
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Clearly f2 is well-defined since the supremum is bounded from above by C , and it
is increasing with respect to both variables. We show that limr→0+ f2(r, C) = 0,
where C ∈ I is fixed. Assuming the contrary we deduce the existence of a sequence
(xj) with xj ∈ B(y, 1), a sequence (rj) of positive radii with rj < 1/j , and a
sequence of C -doubling measures µj on X with µj

(
B(y, 1)

)
= 1, and such that

µj

(
B(xj , rj)

)
≥ c0 > 0 for all j ≥ 1. Note that 1 ≤ µj

(
Bc(y, 3)

)
≤ C2 . We

may extract a subsequence (jk) such that µjk → µ in the weak∗ -topology of
Borel measures on the compact ball Bc(y, 3) and xjk → a as k → ∞ . A simple
reasoning (compare the proof of [4, Theorem 1]) shows that µ is nonzero and
satisfies the doubling property (1) (with possibly a larger doubling constant) for
x ∈ Bc(y, 1) and r ∈ (0, 1). Next, let ε ∈ (0, 1). There are arbitrarily large
k such that B(xjk , rjk ) ⊂ B

(
a, 1

2ε
)
. It follows that µ

(
B(a, ε)

)
≥ c0 and hence

µ({a}) > 0. However, this is clearly impossible since µ is doubling (for small
radii) on a neighborhood of the nonisolated point a .

Consider finally the general case where X may possibly be noncomplete. Let
Y be the completion of X . Then Y is doubling and perfect so that the above
reasoning yields an appropriate f2 for Y and y ∈ X ⊂ Y . If µ is a C -doubling
measure on X , then Lemma 1 yields a C -doubling extension µ̃ on Y . Then
µ
(
BX(x, r)

)
≤ f2(r, C)µ

(
BX(y, 1)

)
for x ∈ BX (y, 1) and r ∈ (0, 1), by the

definition of the extension µ̃ . Hence f2 (or a suitable restriction of it) will do the
job for X .

Theorem 5. Let X be a nonempty metric space without isolated points.
Then there is a dense open set A ⊂ X such that A does not carry a doubling
measure.

Proof. We may assume that X carries a C0 -doubling measure for some
C0 ≥ 1 since otherwise we may choose A = X . Fix y ∈ X and select functions f1

and f2 that satisfy the conditions stated in Lemma 4. Choose a dense sequence
(yk)∞k=1 of points in X (because X is doubling it is separable) so that yk �= y for
k ≥ 1. The set A will be constructed in the form A =

⋃∞
k=1 B(xk , rk), where the

positive radii rk ∈
(
0, 1

8

)
and the points xk ∈ X are chosen inductively in such a

way that the following conditions are satisfied for each n ≥ 1:

(i) xn = ykn , where kn = inf
{
k | yk /∈

⋃n−1
j=1 B(xj , rj)

}
,

(ii) d
(
xn,

⋃n−1
j=1 B(xj , rj)

)
≥ 3rn if n > 1,

(iii) y /∈
⋃n

j=1 B(xj , rj),

(iv) f2(rn, n) ≤
1
2n

min{f1(rn−1, n− 1), f2(rn−1, n− 1)} if n ≥ C0 + 1,

(v) {z ∈ X | d(z, xn) = 2rn} �= ∅ .
In order to start the induction set x1 = y1 , and since x1 is not an isolated

point we may choose r1 > 0 satisfying (v) and with r1 < min
{

1
2
d(y1, y), 1

8

}
.

Assume then that n ≥ 2 and that x1, . . . , xn−1 together with r1, . . . , rn−1 have
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been chosen so that conditions (i)–(v) hold for the respective indexes. We next
choose xn according to (i). This is possible according to the induction hypothesis
since (iii) implies that {yk|k ≥ 1} \

⋃n−1
j=1 B(xj , rj) �= ∅ . Then (ii)–(iv) hold once

rn is chosen small enough, and also (v) may be satisfied since xn is not isolated
in X . The induction argument is complete. Note that (iv) implies for n ≥ C0 the
estimate

(iv) f1(rn, n) ≥ 2nf2(rn+1, n+ 1) ≥ n
∞∑

k=n+1

f2(rk , k),

since the infinite series is bounded from above by a geometric majorant which is
obtained from the observation

f2(rk, k) ≤ f2(rk−1 , k − 1)/2k ≤ f2(rk−1, k − 1)/2.

Assume then that µ is a C -doubling measure on A . Note that (i) implies
the density of A in X , and hence Lemma 1 extends µ to a C -doubling measure
µ̃ on X . We may assume that µ̃

(
B(y, 1)

)
= 1 and C ≥ C0 . By the fact A = X

and (iii) we may choose n ≥ 2C2 so that xn ∈ B
(
y, 1

2

)
. According to (v) there

is z ∈ X satisfying d(xn, z) = 2rn . Write B1 = B(xn, rn) and B2 = B(z, rn).
Then B1 ∩ B2 = ∅ and (ii) implies that also B2 ∩ B(xk , rk) = ∅ for all k < n .
Hence we may apply Lemma 4 and (vi) in order to deduce that

µ̃(B2) ≤ µ

( ⋃
{k≥n+1|xk∈B(y,1)}

B(xk , rk)
)

≤
∑

{k≥n+1|xk∈B(y,1)}
f2(rk , C)

≤
∞∑

k=n+1

f2(rk , k) ≤
1
n
f1(rn, n) ≤

1
2C2

f1(rn, C) ≤ 1
2C2

µ̃(B1).

This contradicts the facts that µ̃ is C -doubling and B1 ⊂ 4B2 . Hence A carries
no nontrivial doubling measure.

Remark 3. In the case where X = [0, 1] , the existence of a dense open subset
of X without a doubling measure may in fact be deduced as a simple consequence
of a result due to Staples and Ward [8, Theorem 1.2]. Namely, in [8] a subset
K ⊂ [0, 1] is called quasisymmetrically thick if there is no quasisymmetric map
φ from [0, 1] onto [0, 1] such that |φ(K)| = 0 (for the definitions and properties
of quasisymmetric maps on the real line we refer to [1]). Here | · | refers to the
Lebesgue measure. Choose a closed and quasisymmetrically thick subset K ⊂ [0, 1]
with dense complement Kc (such sets are provided by [8, Theorem 1.2] and, not
surprisingly, our reasoning for Theorem 5 partly resembles their proof). Assume
that Kc carries a normalized doubling measure µ . Let µ̃ be the extension of µ
onto [0, 1] provided by Lemma 1. For x ∈ [0, 1] define φ(x) = µ̃([0, x]) . Then
φ is a quasisymmetric map of [0, 1] onto itself such that |φ(K)| = 0, which is
impossible. Hence Kc carries no doubling measures.
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