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Abstract. We prove a Caccioppoli estimate for p-superminimizers on metric spaces. As an
application, we provide a new proof for the fine continuity of p-superminimizers.

1. Introduction

We study superminimizers of the p-Dirichlet integral
∫

Ω

|Du|p dµ

on metric measure spaces. In the Euclidean case, minimizing this p-energy func-
tional is equivalent to solving the p-harmonic equation. In general metric spaces, it
is not clear how to define the p-harmonic equation, but the variational approach is
available.

Our main result is a Caccioppoli type estimate for p-superminimizers, Theo-
rem 3.4. It answers to a question that was motivated in [5] by Kinnunen and
Latvala. They were able to prove a weaker estimate that is sufficient to show that
the infinity set of any p-superharmonic function is of zero capacity. It is well known
that the sharp estimate holds in the Euclidean case, see for example [9], and it is
also one of the main ingredients in proving that the Wiener condition is sufficient
for regularity at the boundary, see for example [4].

The difficulties in the proof of Theorem 3.4 arise from the fact that the equation
is not available and we can use only the minimizing property. We have developed
a method to overcome this difficulty, and it enables us to extend the classical proof
also to this situation.

Our method can be used in the metric space setting to obtain simpler proofs
also for other estimates that are classically proved exploiting the equation. These
include for example some Caccioppoli type estimates, see Lemma 3.1 in [7] and
Lemma 4.1 in [8], as well as an integrability estimate, see Theorem 7.45 in [4].

As an application of Theorem 3.4, we present a new proof for the fact that
p-superharmonic functions are p-finely continuous. The proof follows ideas in [5],
where q-fine continuity of p-superharmonic functions was proved for all q < p with
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weaker estimates. Recently, Björn proved the p-fine continuity using a different
approach by obstacle problem technique, see [2].

2. Preliminaries

Let X be a metric space with a Borel measure µ. The measure is said to be
doubling if the measure of every open ball is positive and finite, and there exists a
constant cµ > 0 such that

µ(B(x, 2r)) ≤ cµµ(B(x, r))

for every x ∈ X and r > 0.
Let 1 ≤ p < ∞. The space X is said to support a weak (1, p)-Poincaré inequality

if there exist positive constants cP and τ such that
∫

B(z,r)

|u− uB(z,r)| dµ ≤ cP r

(∫

B(z,τr)

gp
u dµ

)1/p

for all balls B(z, r) ⊂ X and for all measurable functions u with upper gradients
gu. Function gu : X → [0,∞] is an upper gradient of u if

|u(x)− u(y)| ≤
∫

γ

gu ds,

for every x, y ∈ X and every rectifiable path γ joining x and y. If u is a function
that is integrable to power p in X, let

‖u‖N1,p(X) =

(∫

X

|u|p dµ + inf
gu

∫

X

gu
p dµ

)1/p

,

where the infimum is taken over all upper gradients of u. Following [10], we define
the Newtonian space on X to be the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.
Let E ⊂ X. We define N1,p

0 (E) to be the set of functions that can be extended
to a function in N1,p(X) that is zero p-quasieverywhere in X \ E.

The relative p-capacity of a set E ⊂ B(z, r) is defined by

capp(E,B(z, 2r)) = inf
u

∫

B(z,2r)

gp
u dµ,

where the infimum is taken over all upper gradients gu of functions u ∈ N1,p
0 (B(z, 2r)),

whose restriction to E is bounded below by 1. Note that the variational p-capacity
above is equivalent to the Sobolev p-capacity

Cp(E, B(z, 2r)) = inf
u
‖u‖N1,p(B(z,2r)),

where infimum is taken over all u ∈ N1,p
0 (B(z, 2r)) such that u ≥ 1 on E, and

especially the capacities have the same null sets, see [3].
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A property is said to hold p-quasieverywhere if it holds outside a set of p-capacity
zero. Moreover, a function u is said to be p-quasicontinuous if for every ε > 0, there
exists an open set U with p-capacity less than ε such that uX\U is continuous.

Let 1 < p < ∞. A set E ⊂ X is called p-thin at z ∈ X if
∫ ∞

0

(
capp(E ∩B(z, r), B(z, 2r))

capp(B(z, r), B(z, 2r))

)1/(p−1) dr

r
< ∞.

A set U ⊂ X is said to be p-finely open if X \ U is p-thin at each point x ∈ U .
The p-finely open sets define a topology, which we call the p-fine topology. We say
that a function is p-finely continuous if it is continuous with respect to the p-fine
topology.

Let 1 < p < ∞. Suppose that Ω ⊂ X is an open set and let ϑ ∈ N1,p(Ω). A
function u ∈ N1,p(Ω) such that u − ϑ ∈ N1,p

0 (Ω) is a p-minimizer with boundary
values ϑ in Ω, if

(2.1)
∫

Ω

gp
u dµ ≤

∫

Ω

gp
v dµ

for every v ∈ N1,p(Ω) such that v − ϑ ∈ N1,p
0 (Ω). A function u ∈ N1,p

loc (X) is called
a p-minimizer in Ω, if (2.1) holds in every open set Ω′ b Ω for all v such that
v− u ∈ N1,p

0 (Ω′). A function u ∈ N1,p
loc (Ω) is a p-superminimizer in Ω, if (2.1) holds

in every open set Ω′ b Ω for all v such that v − u ∈ N1,p
0 (Ω′) and v ≥ u µ-almost

everywhere in Ω′. Observe that u is a p-minimizer if and only if u and −u are
p-superminimizers. If a p-minimizer is continuous, we call it p-harmonic.

3. A Caccioppoli estimate for p-superminimizers

We will need the following Caccioppoli and Harnack type estimates. For the
proofs, see for example Lemma 3.1 and Theorem 4.3 in [7].

Lemma 3.1. Suppose that u ≥ 0 is a p-superminimizer in Ω and let β < 0. Let
η be a compactly supported Lipschitz continuous function in Ω such that 0 ≤ η ≤ 1.
Then ∫

Ω

gp
uu

β−1ηp dµ ≤ c

∫

Ω

up+β−1gp
η dµ,

where c = (p/|β|)p.

Lemma 3.2. Let u ≥ 0 be a p-superminimizer in Ω. If 0 < s < κ(p− 1), then
for every ball B(z, R) with B(z, 10τR) ⊂ Ω, we have

(∫

B(z,R)

us dµ

)1/s

≤ c inf
B(z,R)

u,

where c < ∞ depends only on p, cµ and the constants in the Poincaré inequality,
and κ depends on p and the data associated to the space.

Lemma 3.3 is a straightforward generalization of Lemma 2.117 in [9].
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Lemma 3.3. Let u ≥ 0 be a p-superminimizer in Ω and let η be a compactly
supported Lipschitz continuous function such that 0 ≤ η ≤ 1, supp(η) ⊂ B(z, R)
with B(z, 10τR) ⊂ Ω and gη ≤ c/R. Then∫

B(z,R)

gp−1
u ηp−1gη dµ ≤ cµ(B(z, R))R−p( inf

B(z,R)
u)p−1.

Proof. Fix β so that max{1− p, 1− κ} < β < 0. By Lemma 3.1,∫

B(z,R)

gp
uu

β−1ηp dµ ≤ c

∫

B(z,R)

up+β−1gp
η dµ

≤ cR−p

∫

B(z,R)

up+β−1 dµ.

(3.1)

Then by Hölder’s inequality, (3.1) and Lemma 3.2, we have∫

B(z,R)

gp−1
u ηp−1gη dµ

≤
(∫

B(z,R)

gp
uu

β−1ηp dµ

)(p−1)/p (∫

B(z,R)

u(1−β)(p−1)gp
η dµ

)1/p

≤
(

R−p

∫

B(z,R)

up+β−1 dµ

)(p−1)/p (∫

B(z,R)

u(1−β)(p−1)gp
η dµ

)1/p

≤
(

R−p

∫

B(z,R)

( inf
B(z,R)

u)p+β−1 dµ

)(p−1)/p (∫

B(z,R)

( inf
B(z,R)

u)(1−β)(p−1)R−p dµ

)1/p

= cµ(B(z, R))R−p( inf
B(z,R)

u)p−1. ¤

Now we are ready to prove our main estimate.

Theorem 3.4. Suppose that 0 ≤ u ≤ k is p-superminimizer in an open set
Ω ⊂ X. Let η be a Lipschitz continuous function with the properties 0 ≤ η ≤ 1,
η = 0 in Ω \ B(z, R), and gη ≤ c/R, B(z, 10τR) ⊂ Ω. Then there exists a constant
c such that ∫

B(z,R)

gp
uη

p dµ ≤ ckµ(B(z, R))R−p( inf
B(z,R)

u)p−1.

Proof. Let
vε = u + ε(k − u)ηp.

Then for every 0 < ε < 1, we have vε ≥ u and vε − u ∈ N1,p
0 (B(z,R)). Moreover,

since vε is absolutely continuous outside a path family of p-modulus zero, we have

gvε ≤ gu(1− εηp) + εp(k − u)ηp−1gη

= gu + ε(−guη
p + p(k − u)ηp−1gη).

Fix x ∈ B(z, R). We apply mean value theorem to function

f(ε) =
(
gu(x) + ε

(−gu(x)η(x)p + p(k − u(x))η(x)p−1gη(x)
))p
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to conclude that
gvε(x)p ≤ f(ε) = f(0) + εf ′(ξ)

for some ξ ∈ (0, ε) that may depend on x. It follows that

gvε(x)p ≤ gu(x)p + εp
(−gu(x)η(x)p + p(k − u(x))η(x)p−1gη(x)

)

· (gu(x) + ξ
(−gu(x)η(x)p + p(k − u(x))η(x)p−1gη(x)

))p−1

≤ gu(x)p + εp
(−gu(x)η(x)p + p(k − u(x))η(x)p−1gη(x)

)

· (gu(x) + ε
(−gu(x)η(x)p + p(k − u(x))η(x)p−1gη(x)

))p−1
.

Because u is p-superminimizer, we have∫

B(z,R)

gu(x)p dµ(x) ≤
∫

B(z,R)

gvε(x)p dµ(x),

and consequently

0 ≤
∫

B(z,R)

(−gu(x)η(x)p + p(k − u(x))η(x)p−1gη(x)
)

· (gu(x) + ε
(−gu(x)η(x)p + p(k − u(x))η(x)p−1gη(x)

))p−1 dµ(x).

Now by using Lebesgue’s Dominated Convergence Theorem and by letting ε → 0,
it follows that

0 ≤
∫

B(z,R)

(−guη
p + p(k − u)ηp−1gη

)
gp−1

u dµ.

Hence by Lemma 3.3,∫

B(z,R)

gp
uη

p dµ ≤
∫

B(z,R)

p(k − u)ηp−1gηg
p−1
u dµ

≤ pk

∫

B(z,R)

ηp−1gηg
p−1
u dµ

≤ ckµ(B(z, R))R−p( inf
B(z,R)

u)p−1. ¤

Remark 3.5. The proof of Theorem 3.6 in [5] combined with Theorem 3.4
shows the capacity of level sets of p-supersolutions decreases at the following rate

capp ({x ∈ B(z,R) : u(x) ≥ λ}, B(z, 2R)) ≤ c λ−(p−1)µ(B(z, R))R−p( inf
B(z,R)

u)p−1.

This estimate is optimal, as can be seen by considering the fundamental p-superharmonic
function u(x) = |x|(p−n)/(p−1), 1 < p < n, in Rn.

4. Fine continuity

Definition 4.1. We say that a function u : Ω → (−∞,∞] is p-superharmonic
if

(1) u is lower semicontinuous in Ω,
(2) u is not identically ∞ in any component of Ω, and



602 Riikka Korte

(3) for every open Ω′ b Ω the comparison principle holds: if h ∈ C(Ω
′
) is

p-harmonic in Ω′ and h ≤ u on ∂Ω′, then h ≤ u in Ω′.

Every bounded p-superharmonic function is a p-superminimizer, see [6]. In
this section, we use Theorem 3.4 to prove that p-superharmonic functions are p-
finely continuous. The proof follows closely ideas in [5], where it is shown that
p-superharmonic functions are q-finely continuous for every q < p. With the sharp
estimate, we are able to obtain the optimal result. See also Theorem 2.121 in [9]
for the Euclidean case.

First, we recall Lemma 3.3 in [3].

Lemma 4.2. There exists c > 0 such that if E ⊂ B(z, r) with 0 < r <
diam(X)/6, then

1

c

µ(E)

rp
≤ capp(E, B(z, 2r)) ≤ c

µ(B(z, r))

rp
.

Theorem 4.3. Let u be p-superharmonic in Ω. Then u is p-finely continuous
in Ω.

Proof. By lower semicontinuity, u is continuous at z ∈ Ω if u(z) = ∞. Suppose
that u(z) < ∞ for z ∈ Ω. Fix R with B(z, 20R) ⊂ Ω. Denote Ek = {u ≥ k} and
uk = min{u, k} for k ∈ R. It is enough to show that Ek is p-thin at z whenever
u(z) < k. By the lower semicontinuity of u in Ω and Theorem 5.1 in [6], we have

u(z) = lim
r→0

m(r),

where
m(r) = inf

B(z,r)
uk.

Let 0 < r < R and denote
v = uk −m(20r).

Let η be a Lipschitz cutoff function such that 0 ≤ η ≤ 1, η = 1 in B(z, r), η = 0 in
Ω \ B(z, 2r) and gη ≤ c/r. Since the function (k − u(z))−1vη is a test function for
the capacity capp(Ek ∩B(z, r), B(z, 2r)), we have

capp(Ek ∩B(z, r), B(z, 2r)) ≤ (k − u(z))−p

∫

B(z,2r)

gp
vη dµ.

Theorem 3.4 implies that∫

B(z,2r)

gp
vη

p dµ ≤ cµ(B(z, 2r))r−p( inf
B(z,2r)

v)p−1 sup
B(z,2r)

v

≤ ckµ(B(z, 2r))r−p (m(2r)−m(20r))p−1 .

By Lemma 3.2,∫

B(z,2r)

vpgp
η dµ ≤ cr−p(k −m(20R))

∫

B(z,2r)

vp−1 dµ

≤ cµ(B(z, 2r))r−p(k −m(20R))(m(2r)−m(20r))p−1.
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Combining the estimates, we obtain
∫

B(z,2r)

gp
vη dµ ≤ ckµ(B(z, 2r))r−p (m(2r)−m(20r))p−1 .

By Lemma 4.2, it follows that

ϕ(r) =
capp(Ek ∩B(z, r), B(z, 2r))

capp(B(z, r), B(z, 2r))

≤ c(k − u(z))−p

∫
B(z,2r)

gp
vη dµ

µ(B(z, 2r))r−p

≤ c(m(2r)−m(20r))p−1.

Since m(20R) ≤ m(r) ≤ u(z) for r ∈ (0, 20R), we have
∫ R

ρ

ϕ(r)
1

p−1
dr

r
≤ c

∫ R

ρ

(m(2r)−m(20r))
dr

r

= c

∫ 2R

2ρ

m(r)
dr

r
−

∫ 20R

20ρ

m(r)
dr

r

= c

∫ 20ρ

2ρ

m(r)
dr

r
−

∫ 20R

2R

m(r)
dr

r

≤ c (u(z)−m(20R)) ln(10).

Letting ρ → 0 proves that Ek is p-thin at z. ¤
We obtain the following corollary. Note that by [1], all Newtonian functions are

p-quasicontinuous.

Corollary 4.4. Let u : Ω → [−∞,∞] be p-quasicontinuous. Then u is p-finely
continuous outside a set of p-capacity zero.

Proof. It is enough to prove the claim for any given ball B(z, R) b Ω with small
radius. Let (Ei)i be a sequence of subsets of B(z, R) such that

lim
i→∞

capp(Ei, B(z, 2R)) = 0

and the restriction of u to B(z, R) \ Ei is continuous. Let E
p

i be the p-fine closure
of Ei. It is enough to show that

capp(∩iE
p

i , B(z, 2R)) = 0.

By Theorem 3.2 in [6], there is a function ui ∈ N1,p
0 (B(z, 2R)) such that

capp(Ei, B(z, 2R)) =

∫

B(z,2R)

gp
ui
dµ

and ui ≥ 1 p-quasieverywhere in Ei. It is easy to see that ui is a p-superminimizer
as a solution of a obstacle problem. Hence Theorem 4.3 implies that ui is p-finely
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continuous in B(z, 2R). By the p-fine continuity, ui ≥ 1 quasieverywhere in E
p

i .
Thus

capp(E
p

i , B(z, 2R)) ≤ capp(Ei, B(z, 2R))

and the claim follows. ¤
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