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ABSTRACT. We study spectral properties of the Manhattan products of the
path graphs and show the concentration of zero-eigenvelues.

1. INTRODUCTION AND PRELIMINARIES

A digraph (directed graph) is a pair G = (V| E), where V' is a non-empty set and
E is a subset of V' x V. An element x € V is called a vertex and e = (z,y) € £
an arc (arrow) from the initial vertez x to the final vertez y. In that case we also
write + — y. By definition a digraph may have a loop, i.e., an arc from a vertex
to itself. Throughout this paper a digraph means a finite digraph, i.e., with finite
number of vertices.

The adjacency matriz of a digraph G = (V, E) is a matrix A with index set

V' x V defined by
1, ife—y
A - — ) )
(A)zy {0, otherwise.

Then A becomes a {0, 1}-matrix. Conversely, every {0, 1}-matrix with index set
V x V defines a digraph with vertex set V. A digraph is called symmetric if its
adjacency matrix is symmetric. A symmetric digraph with no loops is nothing
else but a graph in the usual sense.

The eigenvalues of a digraph G is defined to be

evG = {)\1,)\2, .. -7)\5}7
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where A1, Ao, ..., s are distinct eigenvalues of the adjacency matrix A of G. The
characteristic polynomial of A, also referred to as the characteristic polynomial
of GG, is factorized as follows:

S

va(z) =det(z — A) = H(x — )™, m; > 1.

=1

Then m; is called the algebraic multiplicity of A\;. While, the dimension [; of the
eigenspace associated with \; is called the geometric multiplicity. It is obvious
that 1 < [; < m;. Note that I; < m; may happen for a general digraph and
that [; = m,; for a symmetric digraph. Thus we need to distinguish the algebraic
spectrum and geometric spectrum defined by

ASpeC(G):('” Ai ), GSpeC(G):(”' Ai >,
respectively.
There is a long history of spectral analysis of graphs and digraphs with many
relevant topics, e.g., [2], [0], [7], see also [I] for a concise review for digraphs. In

the recent years the profound relation has been investigated between the product
structures of (undirected) graphs and various concepts of independence in quan-
tum probability, see e.g., [¢]. It is therefore an interesting direction to extend
this relation to digraphs. In this line the Manhattan product of digraphs G1#G5,
introduced by Comellas, Dalfé and Fiol [5], is considered as the first non-trivial
case to be studied in detail. The purpose of this note is to add a few results on
spectral analysis of Manhattan products. So far an explicit and concrete result
on spectrum is known only for the (2-dimensional) Manhattan street network,
i.e., the Manhattan product of cycles C,,# C,, with even m,n, by Comellas et
al. [3, 4]. In this paper we compute characteristic polynomials of the Manhattan
products, in particular, of the path graphs P,# P, and P,#P;, and show the
concentration of zero-eigenvelues.

2. BIPARTITE DIGRAPHS AND MANHATTAN PRODUCTS

A digraph G = (V, E) is called bipartite if the vertex set admits a partition
V=vOuv® vOxg v£p vOAyL =g

such that every arc has its initial vertex in V(©) and final vertex in V(! or initial
vertex in VM and final vertex in V. By definition a bipartite digraph has no
loops.

Example 2.1. For n > 1 let P, denote the directed path with n vertices, i.e.,
V={1,2,...,n}and F ={(1,2),(2,3),...,(n—1,n)}. P, is bipartite for all n.

Example 2.2. For n > 2 let C,, denote the directed cycle with n vertices, i.e.,
V={L2,...,n}and E ={(1,2),(2,3),...,(n—1,n),(n,1)}. C, is bipartite if

and only if n is even.
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The adjacency matrix of a bipartite digraph may be expressed in the form:

A= B g] : (2.1)

where C' is a {0, 1}-matrix with index set V(@ x V) and D is a {0, 1}-matrix
with index set V1 x V().

Proposition 2.3. Let G be a bipartite digraph with adjacency matriz (2.1). Then
the characteristic polynomial is given by

va(z) = det(x — A) = 2™ " det(2* — DC),
where m = [VO| and n = |V | with m > n.
Proof. Straightforward by elementary knowledge of linear algebra. 0

Let G = (V, E) be a bipartite digraph. Given a partition V = V© Uy V1),
which is not uniquely determined though, we define the parity function = = 7¢ :

V — {0,1} by
0, €V,
m(@) = 7ale) = {1, re Vo,
For an arc (x,y) € F we have 7(x)+m(y) = 1. Moreover, the parity of the length
of a path from x to y (whenever exists) is independent of the choice of such a
path.
For i =1,2let G; = (V;, E;) be a bipartite digraph with parity function 7 = ;.
Consider the direct product

V=VixVa={(x,y);z€Vi,y €2}
and let F consist of pairs of vertices ((x,y), (¢, 1)) satisfying one of the following
two conditions:
(i) y =9, and (z,2') € Ey or (2/,z) € E; according as ma(y) = 0 or ma(y) = 1;
(ii)) x = 2',and (y,y') € Eyor (v, y) € Ey according as my(x) = 0 or my(z) = 1.
Following Comellas, Dalfé and Fiol [5], the digraph G = (V,E) is called the
Manhattan product and is denoted by

G =G1#G,.

Although not explicitly indicated, the Manhattan product depends on the choice
of the partitions V; = V;(O) U Vi(l), or equivalently on the choice of the parity
functions ;. The Manhattan product of two bipartite digraphs is again bipartite.

Proposition 2.4. Let G; be a bipartite digraph with the adjacency matriz A;,
1 = 1,2. Then the adjacency matrix A of the Manhattan product G = G1# G,
verifies

(A) @)@y = o ™ (A2)) gy + EW (A1) by, z,2" € V3, y,y € Va,

where t(A) = AT stands for the transposition and ; is the parity function of G;.
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3. A SIMPLE EXAMPLE: G# Cs

Let G = (V, E) be a bipartite digraph and consider the Manhattan product
G# C5. Let B be the adjacency matrix of G. Then the adjacency matrix A of
G# (5 is given by

B I
where [ is the identity matrix indexed by V x V.

G\/

FIGURE 1. G# C; (GV: the opposite graph of G)

Lemma 3.1. Let G = (V, E) be a bipartite digraph with adjacency matriz B.
Then the characteristic polynomial of the Manhattan product G# Cs is given by

¢(x) = det((x — B)(z — BY) = I). (3.2)
Moreover, if
o C
B= [D O} :

then we have

22 - 1)1+ COT —x(C + DT
plx) = det V —a:(C)'T +D)  (a? —(1)1 + D%)T} '

Proof. Let A be the adjacency matrix of the Manhattan product G# C5. Then
the characteristic polynomial is given by

(3.3)

¢(x) = det(z — A) = det {“’ -B I }

~I x-BT|"
Applying the standard formula:

X I} — det(XY — 1) = det(YX — 1),

det[l v

where X, Y are n xn matrices and I is the identity matrix, we obtain (3.2). Then
(3.3) follows by direct computation. O
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Remark 3.2. In fact, G#C5 may be defined without assuming that G is bipartite,
see Fig. 1. In that case too, G#C5 keeps the typical properties of the Manhattan
street networks and the formula (3.2) remains valid. Another derivation and some
relevant discussion are found in [9].

Theorem 3.3. Forn=1,2,... we have

km
k=1,2,... 1
k=121 u o)

where every non-zero eigenvalue has algebraic multiplicity one.

ev (P,# Cy) = {2 Ccos
n

Proof. The adjacency matrix of P, is given by
[0 1 0
01

B= 0 . (3.4)

10
0 1
0_

For n > 1 the characteristic polynomial of P,# C5 is denoted by ¢,. It then
follows from Lemma 3.1 that

on(z) = det((x — B)(x — BY) - I).
Applying cofactor expansion we obtain
‘Pn(ﬂﬁ) = :)3290n_1($) - xQQOn—?(x)‘

Then, comparing with the recurrence relation of the Chebyshev polynomials of
the second kind [%], we come to

on(T) = xn_lﬁn—&-l (z),

where in(n 1 1)6
~ sin(n
Un(2cosf) = g
Consequently,
ev (P,#Cy) = {2005 i ck=1,2,...,n+ 1} U {0},
n+2
where every non-zero eigenvalue has algebraic multiplicity one. 0

The asymptotic spectral distribution of P,#C5 as n — oo is obtained explicitly,
where we observe the concentration of zero-eigenvalues.

Theorem 3.4. The asymptotic (algebraic) spectral distribution of P,# Cy is given

by
1 1
5 0o + 3 p(x)dx,

ple) = s N o).

where
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Proof. 1t is sufficient to show that

E )
2cosn—_H

tends to p(x)dx as n — oo. Let f(z) be a bounded continuous function. Then

we have
1
f(x)p,(do) Zf (QCOS 1) —>/ f(2cosmt)dt, asmn — oo,
0

which follows by the definition of Riemann integral. By change of variable, one
gets

+o00

1 2 dl'
2 t)dt = —_—.
| reesmia= [ o) —L
Consequently,
+o0 2 dx +o0
lim ) (dx) = T) ——— = z)p(x)dx
N T B el 0
which completes the proof. O

Remark 3.5. The probability distribution p(z)dz in Theorem 3.4 is called the
arcsine law (with mean 0 and variance 2).

4. THE MANHATTAN PrRoODUCT P,#P,

Let B denote the adjacency matrix of P, as in (3.4). We define n x n matrices
by

1 0

Note that P + () = I. Then the adjacency matrix of P,# P> becomes
B P
Hence the characteristic polynomial of P,# P; is given by
on(x) = det(z — A)

-B -—P
-Q x-BT

= det(x — B) det(x — BT — (=Q)(x — B)"*(—P))
= 2" det(r — BT — Q(z — B)"'P).

= det {x
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Lemma 4.1. It holds that

8

8

( z?
() =a'
p3(x) = a® )
() = a®
pn(z) = 2pn- 2(33) —atppa(r), n>5.

Proof. Writing A, (r) = det(z — BT — Q(x — B) "' P) explicitly and applying the
standard cofactor expansion, we obtain

Ap(x) = 2200 o(2) — Ay_s(2), n > 5.

While, A,,(x) for a smaller n is calculated directly. Then we obtain the recurrence
relations for ¢, (x). O

Lemma 4.2. For m > 1 we have

Gam-3(x) = (=1 ma*™2 + (higher terms),
Cam—2(x) = (=1)"tma*™ + (higher terms),
Oam-1(z) = (=1)™2*™ 2 + (higher terms),
am () = (=1)™x"™ + (higher terms).
Proof. By induction on m using Lemma 4.1. O

Theorem 4.3. Let o, be the algebraic multiplicity of zero-eigenvalue of P,#Ps.
Then forn =1,2,... it holds that

1 1
O./Qn_1:4|:n+ :|—2, Oégn:4|:n+ :|

2 2
Therefore,
! 1 1
im —a, ==.
Proof. Straightforward from Lemma 4.2. OJ

5. THE MANHATTAN PrRODUCT P,#P;

Let B, P, be the n x n matrices defined in the previous sections. The adja-
cency matrix of P,# Pj is given by

B P O
A=|Q BT P
O Q B

and our task is to calculate

on(x) = det(x — A).
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FIGURE 2. Manhattan product Ps# P

Lemma 5.1. Forn =1,2,... it holds that
on(1) = 2" D, (),
D, (z) =det(zx — BT —Q(z — B)"'P - P(x — B)'Q).
Proof. By definition we have
on(x) = det(x — A)

r—B —P @)
=det| —-Q x—-BT -P
O —-@Q zxr—B

— det(z — )det{[ _C’;T x—_PB} _ {—OQ} (¢—B)'[-P 0}}

= det(z — B) det {az B - Q -Bp P }
x— B
= det(z — B)?*det(z — BT — Q( —B)'P - P(x—B)'Q).
This proves o, (x) = 2*"D, (). O
Lemma 5.2. It holds that
Do(z) =
Dy(z) =
Dy(z) = 2® — 272,

D,(z) =D, 1(z) — 2 'D,_3(x), n>3.
Proof. Write D,,(z) explicitly and apply the standard cofactor expansion. Il
Lemma 5.3. For m > 1 we have
Dsp_1(x) = (=)D 4 (higher terms),
Dsp(x) = (—=1)™(m + 1)z ™ + (higher terms),

D3pyi(7) = (_;)m

Proof. By induction on m using Lemma 5.2. 0

(m + 1)(m + 2)z= Y 4 (higher terms).

Theorem 5.4. Let «, be the algebraic multiplicity of zero-eigenvalue of P,#Ps3.
Then forn =1,2,... it holds that

1
an:3n—4{n+ }
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Therefore,
! 1 5
im —a, ==.
n—oo 3N 9
Proof. Straightforward from Lemma 5.3. OJ

In [1] the spectrum of the Manhattan product C,,#C,, for even numbers m,n
is obtained explicitly. We know that the algebraic multiplicity of zero-eigenvalue
mn/4, i.e., the density is 1/4 if m,n # 0 (mod 4). We see from Theorem 4.3
that the density of zero-eigenvalue of P,#P, is 1/2 asymptotically. Similarly,
from Theorem 5.4 the density of zero-eigenvalue of P,# P is 5/9 asymptotically.
Further systematic study on concentration of zero-eigenvalue is now in progress.
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