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Abstract. We determine improved bounds for the minimum weight of the dual code over F5

of any projective plane of order 25 and describe configurations that could give words of mini-
mum weight.

1 Introduction

If P is a projective plane of order n and p is a prime dividing n, then the minimum
weight of the dual p-ary code of P is not, in general, known, even in the desarguesian
case. It is known that when the order of the plane is a prime p, the minimum weight
is 2p and words of this weight can be constructed from two distinct lines of the plane:
see, for example, [1, Chapter 6]. For the binary dual code of desarguesian planes
of even order q ¼ 2m the minimum weight is qþ 2 and the minimum words are the
incidence vectors of the hyperovals, which always exist in the desarguesian planes.
(See [10] for other results in the even case, and for when the plane has no hyperoval.
In the latter case, again the minimum weight is not known except in some particular
cases.) Some other results for p odd are mentioned in Section 2. In particular, for the
four planes of order 9, Key and de Resmini [11] proved that the minimum weight is
14 for the Hughes plane; and 15 for the desarguesian plane, F, the translation (Hall)
plane, W, and the dual translation plane, WD.

In this paper we concentrate on the dual code of a projective plane of order 25 and
prove the following theorem:

Theorem 1.1. If P is a projective plane of order 25 and C is the code of P over F5, then
the minimum weight d? of C? is either 42 or 44, or 45c d? c 50. If a Baer subplane is

present, then the minimum weight is either 42, 44 or 45. In any case, if the minimum

weight is 42, then a minimum-weight word has support that is the union of two projec-

tive planes, p1 and p2, of order 4 that are totally disjoint and the (scaled ) minimum-
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weight word is vp1 � vp2 . If the minimum weight is 44 then the support of a minimum-

weight word is the union of two complete 22-arcs that have eleven 2-secants in common.
If the minimum weight is 45 then vb � v l , where b is a Baer subplane of P and l is a line

of P that is a line of the subplane, is a minimum-weight word.

(Two configurations in P are totally disjoint if they have no point or line in
common.)

Corollary 1.2. The dual 5-ary code of the desarguesian projective plane PG2ðF25Þ has
minimum weight 45.

In Section 2 we give the background results, definitions and notation, and in Sec-
tion 3 we prove the main theorem through a series of lemmas and propositions.

2 Background results and notation

An incidence structure D ¼ ðP;B;IÞ, with point set P, block set B and incidence I,
is a t-ðv; k; lÞ design if jPj ¼ v, every block B A B is incident with precisely k points,
and every t distinct points are together incident with precisely l blocks. The number
of blocks through a point of a td 1-design is a constant, called the replication num-

ber, and denoted by r. The order of the design is defined to be r� l. An incidence
structure D ¼ ðP;B;IÞ is a group divisible design if P is partitioned into point

classes such that two points in the same class are incident with the same number l1 of
blocks, and if any two points in distinct point classes are incident with the same
number l2 of blocks.

If S is a set of points of D and if B is a block of D that meets S in m points, then
B will be called an m-secant to S. The set S is an ðn1; . . . ; nrÞ-set if S has m-secants
if and only if m A fn1; . . . ; nrg. The 1-secants are the tangents to S.

The linear code C of the design D over the finite field F ¼ Fp is denoted CpðDÞ,
and is the vector space spanned by the incidence vectors of the blocks of D over Fp.
We denote the incidence vector of any subset S of P by vS. We will always take p to
be a prime divisor of the order of D when looking at CpðDÞ: see [1, Theorem 2.4.1].

We view CpðDÞ as a subspace of FP, the full vector space of functions from P to
F . Using the notation of functions, the value of c A FP at a point X A P is denoted
cðX Þ. The support set of c is the set of points X in P for which cðX Þ0 0, and the
weight of c, wtðcÞ, is the cardinality of the support set of c. The minimum weight of a
code C, dðCÞ ¼ d, is the smallest of all the non-zero weights of the codewords of C.
The dual or orthogonal code C? of C is the orthogonal space with respect to the
standard inner product.

Let D be a 2-ðv; k; lÞ design with replication number r. Let S be the support set of
a codeword in C?

p ðDÞ. For i ¼ 0; . . . ; jSj, let xi denote the number of i-secants to
S. For X a point in S, ziðX Þ is the number of i-secants of S passing through X . It
follows that x1 ¼ 0 and that z1 ¼ 0 for every point in S. From counts on the i-
secants xi of S, 0c ic k, we have
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Xk

i¼0
i01

xi ¼ b;
Xk

i¼2

ixi ¼ sr;
Xk

i¼2

iði � 1Þxi ¼ sðs� 1Þl; ð1Þ

and hence

Xk

i¼3

iði � 2Þxi ¼ sððs� 1Þl� rÞ; ð2Þ

where the last equation is obtained from the previous two.
For a point X in S, with ziðX Þ ¼ zi (a shorthand we shall use whenever X is

obvious),

Xk

i¼2

zi ¼ r;
Xk

i¼2

ði � 1Þzi ¼ ðs� 1Þl: ð3Þ

From these two equations we obtain the useful combination

Xk

i¼2

ði � 2Þzi ¼ ðs� 1Þl� r: ð4Þ

Since the left-hand side of this equation is nonnegative, we have ðs� 1Þl� rd 0, i.e.

sd
r

l
þ 1 ð5Þ

for any word of C?.
A 2-ðn2 þ nþ 1; nþ 1; 1Þ design, for nd 2, is a finite projective plane of order n.

We write PG2;1ðFqÞ for the desarguesian projective plane, i.e. the design of points and
1-dimensional subspaces of the projective space PG2ðFqÞ. Further, AG2;1ðFqÞ will
denote the a‰ne desarguesian plane of order q, i.e. the 2-design of points and 1-flats
(cosets of vector subspaces of dimension one) in the a‰ne geometry AG2ðFqÞ. A k-

arc in a plane is a set of k points, no three of which are collinear. A k-arc is said to be
complete if it is not contained in a ðk þ 1Þ-arc in the plane.

The current state of knowledge of the minimum weights of the dual codes of finite
planes is summed up in the following results. The first is a special case of the designs
from finite geometries and can be found discussed in [1, Theorem 5.7.9]:

Result 2.1. Let C be the p-ary code of the desarguesian plane PG2;1ðFqÞ or AG2;1ðFqÞ
where q ¼ pt and p is prime. Then the minimum weight d? of C? satisfies

ðqþ pÞc d?
c 2q:

Note that a similar range holds for any projective plane: if P is a plane of order n,
p is a prime, and p j n, the minimum weight d? of C?

p ðPÞ satisfies

nþ 2c d?
c 2n:
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The lower bound is obtained by simply noticing that every one of the nþ 1 lines
through a point in the support set of a word of minimum weight must meet the set
again, and the upper bound follows since the vector v l � vm is in C?

p ðPÞ, where l and
m are any two distinct lines of P.

The next result can be found in [5, Corollary 4], and partly in [12]:

Result 2.2. Let P be a projective plane of odd order n, and let p be a prime such that

p j n. Then the minimum weight d? of C?
p ðPÞ satisfies d? d 4

3 nþ 2. Further, if pd 5
then d? d 3

2 nþ 2.

In addition the existence of a Baer subplane in a projective plane of square order
gives us the following improved upper bound for d?; see [12], [5].

Result 2.3. A projective plane of square order q2 that contains a Baer subplane has

words of weight 2q2 � q in its p-ary dual code, where p j q.

In particular, this provides an upper bound for translation planes of square order;
see [6], in which improved bounds for some translation planes were obtained:

Result 2.4. Let P be a projective translation plane of order qm and kernel containing

Fq, where m ¼ 2 or 3, q ¼ pt, and p is a prime. Then the dual code of the p-ary code of

P has minimum weight at most 2qm � ðqm�1 þ qm�2 þ � � � þ qÞ. If P is desarguesian,
this also holds for m ¼ 4.

Definition 2.5. For any vector w A FP
p with support set SJP and a A F�

p define

Sa ¼ fX A S jwðX Þ ¼ ag; sa ¼ jSaj

and

sðwÞ ¼ jfa A F�
p j there exists a point Y in S with wðYÞ ¼ agj:

The set S is a j-secant set if S has a 2-secant, i.e. x2 0 0, and there exists an integer
jd 3 such that xi ¼ 0 for 2 < i < j and xj 0 0.

The next result can be found in [5] and [4].

Result 2.6. Let D be a 2-ðv; k; lÞ design with replication number r and order n. Let S
be the support set of a non-zero word w A C?, the dual code of the p-ary code CpðDÞ,
where p is an odd prime and p j n. Suppose jSj ¼ sc 2r

l
. Then z2 ¼ z2ðX Þd

2r� ðs� 1Þl for every point X in S. Further, S is a j-secant set for some jd 3 and

(1) for any X in S, z2ðX Þd r
j�1

j�2
� l s�1

j�2

l m
;

(2) sd
sðwÞ

sðwÞþ j�2

rð j�1Þ
l

þ 1
h i

d
2
j

rð j�1Þ
l

þ 1
� �

.

Further, sðwÞ is even, and if p > 3 and j ¼ 3, then sðwÞd 4.
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In the next section we apply these results to the case where D is a projective plane
of order 25. For these parameters, the inequalities in Result 2.6 become, writing s for
sðwÞ,

z2ðX Þd 26j � s� 25

j � 2

� �
¼ 26� s� 27

j � 2

� �
; ð6Þ

for any X A S, and

sd
s

sþ j � 2
ð26j � 25Þ: ð7Þ

Using the notation of Definition 2.5 and Result 2.6, we have the following:

Lemma 2.7. Suppose that pF r, as is the case for a projective plane. Then

X
a AF �

p

asa 1 0 ðmod pÞ:

Proof. We have
P

B AB vB ¼ rvP. Thus if pF r, the all-one vector || ¼ vP is in CpðDÞ,
and the congruence follows from its orthogonality to the words of C?

p ðDÞ. r

3 Projective planes of order 25

In what follows, let P be a projective plane of order 25 and set C ¼ C5ðPÞ. From
Results 2.1 and 2.2, the bounds on the minimum weight d? are 40c d? c 50; or,
from Result 2.3, 40c d? c 45 for planes containing a Baer subplane. In this section
we investigate the structure of a support set S of a word w in C? having weight
in this range. We first note that a constant word in C? must have size at least
ðqþ 1Þðp� 1Þ þ 1 ¼ 105. From Result 2.6, sðwÞ ¼ s is either 2 or 4, and S is a j-
secant set for some jd 3. We now look at the di¤erent values of s and j to determine
the possible configurations of the set S of points in P. If we fix s and take s ¼
jSjc 49, then by using inequality (7) we can determine the largest value of j for
which S is a j-secant set.

Lemma 3.1. Let S be the support set of a word w of C?. Suppose that s ¼ jSjc 49
and s ¼ sðwÞ is as defined in Definition 2.5, and suppose S is a j-secant set. Then

. if s ¼ 4 then j ¼ 3 and sd 43;

. if s ¼ 2 then

s 49 48 47 46 45 44 43 42 41 40

j ½4; 16� ½4; 12� ½4; 10� ½4; 8� ½4; 7� ½4; 6� ½4; 5� ½4; 5� 4 4

where ½4; n� denotes the range 4c jc n for j.
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Recall that two configurations in P are called totally disjoint if they have no point
or line in common. In what follows, we often refer to a point in Sa as an a, and
specify a secant by listing its point in this notation. Thus a 1333 (secant) is a 4-secant
with one point in S1 and three points in S3.

Lemma 3.2. Let w be a word of C? and let S be the support set of w. Let sðwÞ ¼ 4 and

suppose that for some X in S, z2ðX Þ ¼ 53� s, where s ¼ jSj. Then s > 45.

Proof. Note first that inequality (6) implies that 53� s is the smallest possible value
for z2. By way of contradiction, assume that 43c sc 45. One has z3ðX Þ ¼ s� 27
and ziðX Þ ¼ 0 for i > 3 from Equation (4). On scaling we may assume that X A S1.
Since the 3-secants on X have the form 113 or 122, the only secants on X and a point
of S4 are 2-secants, and s4 ¼ z2ðX Þ. Let X be on t1 113 secants and t2 122 secants.
Then by counting the points in S1, S2, and S3, we obtain the equations

s1 ¼ t1 � 1; s2 ¼ 2t2; s3 ¼ t1:

Thus s3 ¼ s1 � 1, and as t1 þ t2 ¼ s� 27, we have s2 ¼ 2s� 52� 2s1. These counts
hold for all X in S1. Again as 53� s is the smallest possible z2, sa d 53� s for all
a A F�

p . If we consider the 113 secants on a fixed 3, we see that s1 has to be even.
Similarly, the 122s on a fixed 2 show that s1 þ 1c s2. For s ¼ 43 there is no set of sa
values satisfying these conditions at all. The other possibilities are:

case s s1 s2 s3 s4
1 44 10 16 9 9
2 45 10 18 9 8
3 45 12 14 11 8

ð8Þ

Case 1 is out, because rescaling w by 3 produces another word with s4 ¼ 9 whose
other sa values no longer fit the parameter lists.

Since information on zi possibilities for s ¼ 45 and z2 c 11 will be needed here and
later, we present it now. The values not given in a row are 0, and the lists are those
allowed by Equation (4):

z2 z3 z4 z5 z6
8 18
9 16 1

10 14 2
10 15 1
11 12 3
11 13 1 1
11 14 1

ð9Þ

If Y A S2 in Case 2 of table (8), then z2ðY Þc 9 (from s3 ¼ 9), and z3ðYÞd 16. But Y
is on ten 122 secants and at most four 244 secants, which is not enough. In Case 3,
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each Y A S2 is on 12 122 secants, so that Y is on one further secant with another
2 and no 1. As z2ðY Þc 11, the possibilities in (9) show that this additional secant
is an i-secant with i ¼ 4; 5, or 6. It is thus either a 2233, making z2ðYÞc 9; a
22344, making z2ðYÞc 10; or a 224444. Then in any event, z3ðYÞd 14, so that Y
must be on at least two 244s. But there are only 8

2

� �
¼ 28 pairs of 4s for the 14 pos-

sibilities for Y . Hence each Y is on exactly two 244s and therefore on a 224444. At
this point, however, there are too many pairs of 4s required, and Case 3 is also not
possible. r

Proposition 3.3. Let S be the support set of a word w of C?. Suppose that s ¼
jSjc 49. Then either s ¼ 42 and S consists of two totally disjoint projective planes of

order 4, or sd 44.

Proof. First take s ¼ 2 and 40c sc 43, so that S is a j-secant set where j A f4; 5g,
by Lemma 3.1. We may scale w and assume that S ¼ S1 US4 without loss of gen-
erality. Suppose first that S is a 4-secant set. If X is a point on a 4-secant with

X A S1, we have s4 d z2 þ 2, and similarly for s1. Thus sd 2 79�s
2

l m
þ 4, so that

sd 42. If s ¼ 42, then s1 ¼ s4 ¼ 21 and z2 d 19 for all points, while z2ðX Þ ¼ 19 if X
is on a 4-secant. In this case, with X A S1, the remaining six lines through X must
have intersection with S completely in S1. Since these lines will all have to be 5-
secants at least, there would have to be at least 24 more points in S1, which is too
many.

If s ¼ 43, then z2 d 18 and, as above, the existence of 4-secants gives that sa d 20
for a ¼ 1; 4. But by Lemma 2.7, s1 1 s4 1 4 ðmod 5Þ, so that one of the sa must be 19
and the other 24. Thus s0 43.

Suppose now that S is a 5-secant set, and again s ¼ 2, S ¼ S1 US4. From
Lemma 3.1, s ¼ 42 or 43. Suppose s ¼ 42. Then from inequality (6), z2 d 21 for any
X A S. Thus s1 ¼ s4 ¼ 21, forcing z2 ¼ 21. Then Equations (3) give us that z2ðX Þ ¼
21, z5ðX Þ ¼ 5, and ziðX Þ ¼ 0 otherwise. It follows that any two points in S1 are
together on exactly one 5-secant of S. Thus S1 is a 2-ð21; 5; 1Þ design, i.e. a projec-
tive plane of order 4. The set S4 is also a 2-ð21; 5; 1Þ design and these designs do not
share points or lines. Hence S1 and S4 are a pair of totally disjoint projective planes
of order 4 embedded in P.

If s ¼ 43 in the 5-secant case, then z2 d 21 and sa d 21. Once again, Lemma 2.7
gives the contradiction that the sa are 19 and 24.

Consider now the case where s ¼ 4, so that S is a 3-secant set and sd 43, by
Lemma 3.1. If s ¼ 43, then z2ðX Þd 10 for all X A S, by inequality (6). Then each
sa d 10; as we cannot have sa > 10 for all a, we may scale to take s4 ¼ 10, making
z2ðX Þ ¼ 10 for X A S1. However, Lemma 3.2 rules out this situation.

This completes all the cases for the proposition, so we have sd 44. r

To finish the proof of the main theorem, we need to consider the possibility that
s ¼ 44 or s ¼ 45. We show first that s ¼ 44 can happen only if disjoint complete 22-
arcs are present, and we do this through two lemmas dealing with the di¤erent cases.
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In both lemmas we have S the support set of a word w in C?
5 ðPÞ of weight 44, where

P is a projective plane of order 25.

Lemma 3.4. If S is a 4-secant set of size 44 then, on scaling, s1 ¼ s4 ¼ 22, and, for
every point X A S, z2 ¼ 20, z4 ¼ 1, and z5 ¼ 5.

Proof. From Lemma 3.1, s ¼ 2, and from inequality (6), for any X A S, z2 d 18. As
in the 4-secant argument in Proposition 3.3, it follows that (on scaling) sa d 20 for
a ¼ 1; 4. By Lemma 2.7, it must be that s1 ¼ s4 ¼ 22. For a point X on a 4-secant,
the only feasible solution is z2 ¼ 20, z4 ¼ 1 and z5 ¼ 5. The possibility of some of the
points not being on 4-secants is easily ruled out by considering cases and invoking
Equation (4), and so this set of parameters holds for all points of S. r

Lemma 3.5. If S has size 44, then it must be either a 4-secant set of the type described
in Lemma 3.4 or else the union of two disjoint complete 22-arcs that have eleven 2-
secants in common. In the latter case, the parameters for S are x0 ¼ 200, x2 ¼ x3 ¼
220, and x4 ¼ 11, and, for every point of S, z2 ¼ 10, z3 ¼ 15 and z4 ¼ 1.

Proof. From Lemma 3.1, if S is not a 4-secant set, then S is a 3, 5 or 6-secant set.
Suppose first that S is a 6-secant set. Then s ¼ 2 from Lemma 3.1 and for any
X A S, z2 d 22, from inequality (6). Thus z2 ¼ 22 for all points of S, and s1 ¼ s4 ¼
22. For any point in S, say X A S1, the remaining four lines that are not 2-secants
must be totally in S1, so there cannot be any 6-secants.

Now suppose that S is a 5-secant set. From Lemma 3.1, s ¼ 2, and from inequal-
ity (6), for any X A S, z2 d 21. Thus we can assume that either s1 ¼ 21 and s4 ¼ 23
or s1 ¼ s4 ¼ 22. But Lemma 2.7 rules out the former case. If s1 ¼ s4 ¼ 22, then if
z2 ¼ 21 for some point X A S4, the remaining five lines through X must cover one
point from S1 and 21 from S4 excluding X . The one point from S1 could then not
have z2 d 21. Thus we must have z2 ¼ 22 for all points of S. The only feasible solu-
tion to this is z5 ¼ 3 and z10 ¼ 1, for all points of S. Counting point incidences with
5-secants gives 44� 3 ¼ 5x5, which clearly has no solution.

Finally, suppose that S is a 3-secant set, so that s ¼ 4. From inequality (6), for
any X A S, z2 d 9. However, Lemma 3.2 excludes z2 ¼ 9; thus sa d 10 for a ¼
1; 2; 3; 4. We show that in fact sa cannot equal 10.

Suppose (by scaling) that s4 ¼ 10; then for all points in S1, z2 ¼ 10, and it follows
that z3 ¼ 15 and z4 ¼ 1. If X A S1, the 4-secant through X cannot contain a 4, so
it is either 1112 or 1333. If it is 1112, then on doing the point counts we arrive at
s2 ¼ 36� 2s1 and s3 ¼ s1 � 3. By the restrictions on the sa, it must be that

. s1 ¼ 13, s2 ¼ 11, s3 ¼ 10, s4 ¼ 10.

On the other hand, if the secant is 1333, then s2 ¼ 32� 2s1 and s3 ¼ s1 þ 2. This time
there are two possibilities: one is the previous one scaled by 3, and the other is

. s1 ¼ 10, s2 ¼ 12, s3 ¼ 12, s4 ¼ 10.

Hence we may assume we have one of these two sets of values; then all points of S1
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are on the same type of 4-secant. If that secant is 1112, then s1 must be divisible by 3;
so the case s1 ¼ 13 is out. When s1 ¼ 10, there will be 60 122 secants. However, if we
do the same argument for points in S4, we shall find ten 2224 secants. But then these
two types of secants contain 60þ 30 ¼ 90 pairs of 2s, and yet there are only 12

2

� �
¼ 66

available.
We can thus take sa ¼ 11 for 1c ac 4. By Lemma 3.2, z2 0 9 for all points in S,

and we get three possibilities for the secant counts through a point. Suppose that
X A S1. Then X is on at most ten 113 secants and at most five 122 secants. For each
of the secant counts for X , we can list the possibilities for the numbers of 3-secants of
the two types and see whether the remaining points can be incorporated in the needed
further secants. The results are these:

case z2 z3 z4 z5 # 113 # 122 further secants
1 10 15 1 0 10 5 1234

2 11 13 2 0 8 5 1112, 1333
3 11 14 0 1 10 4 12223

4 11 14 0 1 9 5 11233

However, in Case 3, the 3 on the 5-secant would have z2 c 8 (the three 2s on the
5-secant are not on 2-secants with 3), and in Case 4, the 2 on the 5-secant would have
z2 c 9. Neither of the resulting z2 values allows a 5-secant, so these two cases are out.
As X is on five 122 secants in either remaining case, all 55 pairs of 2s appear on these
secants. But the same argument applies to all the Sa. That means there can be no
aaab secants at all, and z2 ¼ 10 is the only possibility. All the 4-secants are 1234s,
and each point of S is on exactly one of them. We have x2 ¼ x3 ¼ 220 and x4 ¼ 11.
Both S1 US4 and S2 US3 are complete 22-arcs in the plane and the eleven 4-secants
are common secants to the two arcs. This completes the proof. r

Proposition 3.6. If C is the code over F5 of a projective plane P of order 25 with no

complete 22-arcs then C? has no word of size 44.

Proof. By Lemma 3.5, if P has no complete 22-arcs the support set S of a word of
weight 44 must have the configuration described in Lemma 3.4. Let S ¼ S1 US4 as
in Lemma 3.4, and let T ¼ S1.

We have z2 ¼ 20, z4 ¼ 1, and z5 ¼ 5 for any point of S. Each 2-secant meets T in
one point, each 4-secant meets T in two points, and each 5-secant meets T in five
points. For t A T, let t 0 be the other point of T on the 4-secant through t; we have
ðt 0Þ 0 ¼ t. Let F be the collection of 5-subsets of T of the form l VT, where l is a 5-
secant meeting T. If t; u A T are distinct and t 0 0 u, then the line on t and u must be
a 5-secant; denote the corresponding member of F by ½t; u�. It follows that ðT;FÞ is
a group divisible design in which the groups are the sets ft; t 0g. Moreover, if F A F,
then because each point of F is on four other members of F, and F and the resulting
20 members of F are all distinct, there is a unique F 0 in F that is disjoint from F . If
t A F , then as t 0 does not appear on any of these 20 members of F, t 0 must be on F 0.

Now let T1 be a set of representatives of the pairs ft; t 0g, t A T, and let F1 be a set
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of representatives of the pairs fF ;F 0g. Let M be the 11� 11 matrix with rows
indexed by F1 and columns indexed by T1, in which the ðF ; tÞ entry is given by

0 if t; t 0 B F

1 if t A F

�1 if t 0 A F :

Then each column of M has five nonzero entries. Suppose t and u index di¤erent
columns of M, and let F ¼ ½t; u�, G ¼ ½t 0; u�. Then F 0 ¼ ½t 0; u 0� and G 0 ¼ ½t; u 0�. The
rows in which both the columns indexed by t and u have nonzero entries correspond
to the pairs fF ;F 0g and fG;G 0g. It follows that the 2 by 2 submatrix for these two
rows and columns is some scaling of

1 1

1 �1

	 

:

Consequently, the columns of M are orthogonal, and MTM ¼ 5I11. But that would
mean detM ¼ 511=2, which is impossible.

Thus there is no such word. r

Proposition 3.7. Let w be a word of weight 45 in C? ¼ C?
5 ðPÞ, where P is a projective

plane of order 25. Then w is a scalar multiple of vb � v l , where b is a Baer subplane of

P and l is a line of P that is a line of the subplane.

Proof. Let S be the support set of w and let s ¼ sðwÞ. First we consider s ¼ 2, so
that S is a j-secant set for some j with 4c jc 7, by Lemma 3.1. Scale w to make
S ¼ S1 US4. Inequality (6) implies that z2ðX Þd 17 for any X A S, so that sa d 17.
As s1 þ s4 1 0 ðmod 5Þ and s1 � s4 1 0 ðmod5Þ by Lemma 2.7, we may rescale again
to assume that s1 ¼ 25 and s4 ¼ 20. Then for X A S4, z2ðX Þc 20. By inequality (6)
again, j ¼ 4 or 5. Suppose that j ¼ 4. As a 4-secant meets each Sa in two points, let
X A S1 be on a 4-secant. Then X is also on 17 2-secants and one more secant with a
point in S4. The remaining seven secants through X must meet S in S1 alone, and
so have sizes that are multiples of 5. By Equation (4),

P
ði � 2Þzi ¼ 18, but these

seven contribute at least 21 to the left side. Consequently j ¼ 4 is not possible.
With j ¼ 5, inequality (6) becomes z2ðX Þd 20. Thus for all X A S1, z2ðX Þ ¼ 20.

As above, the remaining six secants on X can only be 5-secants: z5ðX Þ ¼ 6 and
ziðX Þ ¼ 0 for i0 2; 5. If Y A S4, the secants on Y and points of S1 are 2-secants.
Thus z2ðY Þ ¼ 25. The remaining secant on Y must contain all the other points of S4.
That is, z20ðY Þ ¼ 1 and ziðY Þ ¼ 0 for i0 5; 20. In other words, the points of S4 are
collinear; let their line be l. The 25 points of S1 along with the 5-secants now form an
a‰ne plane in P. These 5-secants can meet l only in points outside of S4. It follows
easily that with the addition of the six points of lnS4 to S1 and the line l to the 5-
secants, we create the Baer subplane needed in the statement of the proposition.
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Suppose s ¼ 4, the value that must be ruled out. Then j ¼ 3, by Lemma 3.1, and
for any X A S, z2ðX Þd 8. Lemma 3.2 implies that z2ðX Þd 9, in fact, so that sa d 9
for all a A F�

p . To begin with, suppose by scaling that s4 ¼ 9, making z2ðX Þ ¼ 9 for
all X A S1. Then z3ðX Þ ¼ 16 and z4ðX Þ ¼ 1, from (9). As in Lemma 3.5, the possible
4-secants on X are 1112 and 1333, and we do the point counts in the two cases, with
X on t1 113 secants and on t2 122 secants, to find possible parameter values. If the 4-
secant is 1112, we have

s1 ¼ t1 þ 3; s2 ¼ 2t2 þ 1; s3 ¼ t1; t1 þ t2 ¼ 16:

If the 4-secant is 1333, then

s1 ¼ t1 þ 1; s2 ¼ 2t2; s3 ¼ t1 þ 3; t1 þ t2 ¼ 16:

Since s2 is odd for 1112 and even for 1333, all X in S1 are on the same type of 4-
secant. In particular, s1 must be divisible by 3 when the secants are 1112, and up to a
further scaling, there is only one set of values:

. s1 ¼ 12, s2 ¼ 15, s3 ¼ 9, s4 ¼ 9.

If Y A S2, then z2ðYÞ ¼ 9 also, and z3ðYÞ ¼ 16. But if Y is on one of the 1112

secants, it is on at most nine 122s and at most four 244s, yielding too few 3-secants.
When the 4-secants are all 1333, s1 þ 1c s2 from the 122s on a 2. If s1 ¼ 9, then

s2 ¼ 16 and s3 ¼ 11; scaling the word by 4 produces a parameter list with s4 ¼ 9 that
no longer fits the pattern. Two possibilities remain:

. s1 ¼ 10, s2 ¼ 14, s3 ¼ 12, s4 ¼ 9;

. s1 ¼ 11, s2 ¼ 12, s3 ¼ 13, s4 ¼ 9.

If s1 ¼ 10, then z2ðY Þ ¼ 10 for Y A S4 (as all secants on a 1 and a 4 are 2-secants),
and z3ðYÞd 14 by (9). There are ten 1333s; they use 30 pairs of 3s and leave
12
2

� �
� 30 ¼ 36 pairs. Thus some Y A S4 is on at most four 334s and so on at least ten

244s. But there are not enough 4s available for this.
Similarly, if s1 ¼ 11, there is Y A S4 on at most five 334s. Since Y is on at most

eight 244s, z3ðY Þc 13. As z2ðYÞ ¼ 11, (9) shows that Y must be on a 4-secant.
There cannot be a 1 on it; and as all the pairs of 2s are on the 122s, the only possi-
bility is 3444. But z3ðYÞd 12, so that Y is on at least seven 244s; but again, too
many 4s are needed.

Therefore sa d 10 for all a A F�
5 . It cannot be that sa d 11 for all a, for then three

sa are 11 and one is 12, and Lemma 2.7 excludes this. Scaling, we take s4 ¼ 10. Up to
further scaling, Lemma 2.7 allows three possibilities:

. s1 ¼ 11, s2 ¼ 13, s3 ¼ 11, s4 ¼ 10;

. s1 ¼ 12, s2 ¼ 11, s3 ¼ 12, s4 ¼ 10;

. s1 ¼ 15, s2 ¼ 10, s3 ¼ 10, s4 ¼ 10.

Suppose that s1 ¼ 15. If X A S1, then X is on at most five 122s and at most ten 113s,
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making z3ðX Þc 15. By (9), z2ðX Þ ¼ 10 and z3ðX Þd 14. Then X is on at least four
122s, so the 15 members of S1 require at least 60 122s. As there are only 45 pairs of
2s available, s1 ¼ 15 is ruled out.

Now let s1 ¼ 12, and use the argument finishing the proof of Lemma 3.2: for
X A S1, X is on at most five 122s and at most 11 113s. The possibilities are

z2 z3 z4 z5 # 113 # 122 further secants
9 16 1 0 11 5 1234

10 15 0 1 11 4 12223

10 15 0 1 10 5 11233

10 14 2 0 9 5 1112, 1333

Regardless of the case, X is collinear with at least five pairs of 2s, so that the secants
on all the points of S1 account for at least 60 pairs (each such pair appears with just
one 1). But there are only 55 pairs of 2s; thus s1 ¼ 12 is out.

Finally, suppose that s1 ¼ 11. Begin by rescaling w by 3 to take s1 ¼ 13, s2 ¼ 10,
s3 ¼ 11, and s4 ¼ 11. Again we seek to reach a contradiction by counting pairs of 2s
as they appear on secants with points in S1. If the secant is a 122, that is the only
secant this pair of 2s is on. We do the same kind of secant analysis for a point X in
S1. There are quite a few, but only two in which X is on at most three 122 secants:

z2 z3 z4 z5 z6 # 113 # 122 further secants
11 13 1 1 0 10 3 1112, 12223
11 14 0 0 1 11 3 112222

As the 3 on the 5-secant in the first case has z2 c 7, this possibility is out. In the sec-
ond, X is collinear with nine pairs of 2s, six of them on the 6-secant. Since this secant
contains two 1s, the count of pairs of 2s from these 1s is six apiece (their 122s give
di¤erent pairs; by (9), no 1 can appear on two such 6-secants). Thus regardless of the
secant pattern of X , we require at least 4� 13 ¼ 52 pairs of 2s for the secant col-
linearities with points in S1, i.e. more than the 45 that are available. r

Proof of theorem and corollary. The theorem is now proved, and for the corollary we
note that if the plane P is desarguesian then complete 22-arcs do not exist; see [3], [9].
Thus 44 is not a possibility. Furthermore, P does not have subplanes of order 4; see,
for example, [2]. Since P has Baer subplanes, the minimum weight is 45. r

Remarks. 1) In [11] it is noted that it is easy to show that in a plane of order 9 with a
word of weight 15 in its dual ternary code, the word must have the same form that is
established in Proposition 3.7.

2) All the known planes of order 25 have Baer subplanes; in particular, all trans-
lation planes of square order have Baer subplanes (see a new proof of this in [6]).
Thus the minimum weight is at most 45 for the known planes.

3) No plane of order 25 has been shown to contain a subplane of order 4, and some
have been shown to not contain any; see [8].

4) The authors are unaware of any proofs of existence or non-existence of complete

Dual codes of projective planes of order 25 S151



22-arcs, except in the desarguesian case. Even if a plane does have a 22-arc, it would
need to have two 22-arcs, C1 and C2, with the additional property that they share
eleven secants, and of the remaining 220 secants to C1, say, 110 are external to C2 and
110 are tangents to C2.

5) It seems most likely that the minimum weight is 45 for all planes of order 25.
Note that the translation planes of order 25 were classified by Czerwinski and Oak-
den [7]. Most of these and some other (non-translation) planes of order 25 can be
found at the web site: http://www.ces.clemson.edu/~keyj/Key/planes25
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