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FROM EULER-LAGRANGE EQUATIONS TO CANONICAL
NONLINEAR CONNECTIONS

MIRCEA NEAGU

ABSTRACT. The aim of this paper is to construct a canonical nonlinear con-

nection I' = (M((;))E’N((;))j) on the 1-jet space J'(T, M) from the Euler-

Lagrange equations of the quadratic multi-time Lagrangian function

L = hoP (8)gy; (t, @)zt + UL (t, @)k, + F(t, 7).

1. KRONECKER h-REGULARITY

We start our study considering a smooth multi-time Lagrangian function L :
E — R, expressed locally by
(1.1) E > (t% 2" 2)) — L(t*, 2", 2) € R,
whose fundamental vertical metrical d-tensor is defined by
(1.2) (@ _L_O°L

(1) () 9 azgaxé

In the sequel, let us fix h = (hag) & semi-Riemannian metric on the temporal
manifold T and let g;;(t7, xk,xi) be a symmetric d-tensor on E = JY(T, M), of
rank n and having a constant signature.

Definition 1.1. A multi-time Lagrangian function L : E — R, having the funda-
mental vertical metrical d-tensor of the form

(1.3) G, 2k, ak) = hef () gy (¢, 2", at)
is called a Kronecker h-regular multi-time Lagrangian function.

In this context, we can introduce the following important concept:
Definition 1.2. A pair MLy = (JYT,M), L), p=dimT, n = dim M, consisting
of the 1-jet fibre bundle and a Kronecker h-regular multi-time Lagrangian function
L:JYT,M)— R, is called a multi-time Lagrange space.
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Remark 1.3. i) In the particular case (T,h) = (R,¢), a multi-time Lagrange
space is called a relativistic rheonomic Lagrange space and is denoted by

RL" = (J'(R,M),L).

For more details about the relativistic rheonomic Lagrangian geometry, the reader
may consult [14].

ii) If the temporal manifold T is 1-dimensional one, then, via o temporal
reparametrization, we have

JNT, M) = JY(R, M) .

In other words, a multi-time Lagrange space, having dim 7' = 1, is a reparametrized
relativistic rheonomic Lagrange space.

Example 1.4. Let us suppose that the spatial manifold M is also endowed with a
semi-Riemannian metric g = (g;;(z)). Then, the multi-time Lagrangian function

(1.4) Li:E—-R, L= ho‘ﬁ(t)gij(x)zgz]é
is a Kronecker h-regular one. It follows that the pair
BSML} = (J'(T, M), L)

is a multi-time Lagrange space. It is important to note that the multi-time La-
grangian £; = Ll\/m is exactly the “energy” Lagrangian, whose extremals are
the harmonic maps between the semi-Riemannian manifolds (7', k) and (M, g) [4].
At the same time, the multi-time Lagrangian that governs the physical theory of
bosonic strings is of kind of the Lagrangian £; [6].

Example 1.5. In the above notations, taking U((S) (t,z) a d-tensor field on F
and F : T'x M — R a smooth function, the more general multi-time Lagrangian
function

(1.5) Ly:E—R, Ly= haﬁ(t)gij(x)xflxé + U((Z.O)‘)(t, z)zl, + F(t,x),

is also a Kronecker h-regular one. The multi-time Lagrange space
EDMLY = (JY(T, M), L)

is called the autonomous multi-time Lagrange space of electrodynamics.
This is because, in the particular case (T, h) = (R, §), the space EDM L} naturally
generalizes the clasical Lagrange space of electrodynamics [10], that governs the
movement law of a particle placed concomitently into a gravitational field and an
electromagnetic one. In a such context, from a physical point of view, the semi-
Riemannian metric hqg(t) (resp. gi;(x)) represents the gravitational potentials

of the manifold T (resp. M), the d-tensor U((io)‘)(t,z) play the role of the elec-
tromagnetic potentials, and F' is a potential function. The non-dynamical
character of the spatial gravitational potentials g;; (x) motivates us to use the term

“autonomous”.
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Example 1.6. More general, if we consider the symmetrical d-tensor g;;(¢,z) on
E, of rank n and having a constant signature on E, we can define the Kronecker
h-regular multi-time Lagrangian function

(1.6) Ly: E—R, Ls=h""(t)g;(t,2)alal + U (t 2)al, + F(t,2).
The multi-time Lagrange space

NEDMLY = (JY(T, M), Ls)

is called the non-autonomous multi-time Lagrange space of electrody-
namics. From a physical point of view, we remark that the spatial gravitational
potentials g;; (¢, z) are dependent of the temporal coordinates ¢”. For that reason,
we use the term “non-autonomous”, in order to emphasize the dynamical character

of g (t, x).

2. THE CHARACTERIZATION THEOREM OF MULTI-TIME LAGRANGE SPACES

An important role and, at the same time, an obstruction in the subsequent
development of the theory of the multi-time Lagrange spaces, is played by

Theorem 2.1 (of characterization of multi-time Lagrange spaces). If p = dimT
> 2, then the following statements are equivalent:

i) L is a Kronecker h-regular Lagrangian function on JY(T, M).

ii) The multi-time Lagrangian function L reduces to a multi-time Lagrangian
function of non-autonomous electrodynamic kind, that is

L = h*P()gi; (t, w)wl 2l + U (t )2l + Pt ).

Proof 1. ii) = i) It is obvious.
i)= ii) Let us suppose that L is a Kronecker h-regular multi-time Lagrangian
function, that is
1 0°L
2 8x38zé
For the beginning, let us suppose that there are two distinct indices o and 3
from the set {1,...,p}, such that % # 0. Let k (resp. 7) be an arbitrary element
of the set {1,...,n} (resp. {1,...,p}). Deriving the above relation with respect
to the variable ¥ and using the Schwartz theorem, we obtain the equalities

= hB(t7)gi; (t”,xk,x,ﬁ) .

)
k
Y

agij haﬁ _ agj_k hﬁfy _ agzk e

, Yao,8,ve{l,...,p}, Vi, jke{l,...;n}.

Contracting now with A, we deduce

agl «a
a—:céh Phyw=0, Ype{l,... p}.
.- . 8 . . 99ij
In these conditions, the supposing h*” # 0 implies that ok 0 for all two
x
5

arbitrary indices k and «. Consequently, we have g;; = g;; (t*, ™).
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Supposing now that h*% = 0, ¥V a # 3 € {1,...,p}, it follows that we have
hoB = h%og, V a, B € {1,...,p}. In other words, we use an ortogonal system of
coordinates on the manifold 7". In these conditions, the relations

0%L .
%:0, Va#ﬁe{l,...,p}, Vl,je{l,...,n},
Oz, 0z
1 0%L
2he(t) axgaxé

=gi;(t", 2™ xy), Yae{l,...,p}, Vije{l,...,n}

hold good. If we fix now an indice « in the set {1,...,p}, from the first relation we
oL
deduce that the local functions e depend only by the coordinates (t*,z™, ).
T
Considering 3 # « in the set {1,...,p}, the second relation implies
1 o’°L 1 9°L
2he(t) §ai 9zl 2hP(t) 8z%8xé

m

= gij(t", 2™, x), Vi, je{l,...,n}.

Because the first term of the above equality depends by (¢, 2™, z7"), while the
second term is dependent only by the coordinates (¢t#, 2™, acgl), and because we
have o # 3, we conclude that g;; = g;; (t*, ™).

Finally, the equality

1 0%L
_%:haﬁ(t’y)gij(t’yawk)a vaaﬁe{la"'ap}7 V’La.je{17an}

2 9x, 0y

implies without difficulties that the multi-time Lagrangian function L is one of
non-autonomous electrodynamic kind. (I

Corollary 2.2. The fundamental vertical metrical d-tensor of an arbitrary Kro-

necker h-reqular multi-time Lagrangian function L is of the form

(2.1) g _ 1 L [ B 0g(tatyh), p=dimT =1
©)() 2 Oz, 0}y hB(#7)gij (7, 2%), p=dimT > 2.

Remark 2.3. i) It is obvious that the preceding theorem is an obstruction in the
development of a fertile geometrical theory for the multi-time Lagrange spaces.
This obstruction will be surpassed in the paper [12], when we will introduce the
more general notion of a generalized multi-time Lagrange space. The gen-

eralized multi-time Riemann-Lagrange geometry on J!(T, M) will be constructed

using only a Kronecker h-regular vertical metrical d-tensor nga))(gf ) and a nonlinear

connection I', “a priori” given on the 1-jet space J1(T, M).

ii) In the case p = dim T > 2, the preceding theorem obliges us to continue our
geometrical study of the multi-time Lagrange spaces, sewering our attention upon
the non-autonomous multi-time Lagrange spaces of electrodynamics.
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3. CANONICAL NONLINEAR CONNECTION I’
Let MLy = (JYT, M), L), where diimT = p, dim M = n, be a multi-time
Lagrange space whose fundamental vertical metrical d-tensor metric is
@@ 1 PL { W (8 (t, 2%, y%), p=1
@@ 2 axgaxé | R gi (17, 2F), p>2.
Supposing that the semi-Riemannian temporal manifold (T, k) is compact and

orientable, by integration on the manifold T, we can define the energy functional
associated to the multi-time Lagrange function L, taking

Er:C®(T,M) — R, SL(f):/L(t“,xi,xg)\/|h| dt* NdtEA LA AP
T

where the smooth map f is locally expressed by (%) — (z(t*)) and ¢, = gf;
It is obvious that, for each index ¢ € {1,2,...,n}, the extremals of the energy
functional &, verify the Euler-Lagrange equations
o < L . L 2L L
j 027 - . - o :
where z, 5 = I and H ; are the Christoffel symbols of the semi-Riemannian

temporal metric hog.

Taking into account the Kronecker h-regularity of the Lagrangian function L, it
is possible to rearrange the Euler-Lagrange equations of the Lagrangian £ = L\/m
in the following generalized Poisson form:

(3.2) Apa® 4+ 265 (", 2™, 27) =0,
where

ApzF = haﬁ{xiﬁ — Hgﬁxs} ,
{ 8’L . OL 8L OL

J -
Dzi0z. " oz | oozt | oL

ki
k_ 9 o .
2g — 7 H;/V —+ QQW}L ﬁH;/ﬁSCJV}
Proposition 3.1. i) The geometrical object G = (G") is a multi-time dependent
spatial h-spray.
ii) Moreover, the spatial h-spray G = (G') is the h-trace of a multi-time depen-
dent spatial spray G = (G&))ﬁ), that is G = hO‘BGgg)ﬁ.

Proof 2. i) By a direct calculation, we deduce the local geometrical entities

ki 2
k_9gty L ; OL
257 =73 {azjaxg% azi}’
(3.3) r_ gty 9L oL . .
M= {ataazg + axgHw}’

27" = h*PH] gad
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verify the following transformation laws:

~ . OxP ap 0P oty 596
287 = 28" —
S S oxr 8xl otr 8:cﬂ Yo
- OxP . 0P oty 596
3.4 P _ T el iiete]
(34) 2HT = 2H oz" 8zl otH ata ’
. OxP daP 91 O
P — T opz Z7 0
277 =23 oz" h ozl otr ot

It follows that the local entities 2GP = 28P + 2HP + 2. 7P modify by the transfor-
mation laws

ap 0P o1y, 5

8:03 Oxp ™’

o oz"
(3.5) 2G" = 2GP o
that is what we were looking for.

ii) In the particular case dimT = 1, any spatial h-spray G = (G') is the h-trace
of a spatial spray G = (Ggll))l), where Ggll))l = h11G'. In other words, the equality
gl = G, is true.

On the other hand, in the case dimT > 2, the Theorem of characterization of
the Kronecker h-regular Lagrangian functions ensures us that

L = hP(t)gi; (t, x)atal + U((f‘)(t z)zl + F(t,z).

In this particular situation, by computations, the expressions of the entities S*, H!
and J* reduce to

Bl .j 9 [ j _ OF
S h F k:C :Cﬁ+ |:U(’L)j Ot 6$1 5

(3.6)

o' = —h*PH) ga! + L

(o)
dgi; . OU;
ap Y9y ) (4) (@)
2h Do Ty + ora + U(Z) H'V

27" = h*PH) gal

where

oxk T dxd Ot
are the generalized Christoffel symbols of the multi-time dependent metric g;; and
(c) (@)
@ _ 90 9
()j oxJ Ozt
Consequently, the expression of the spatial h-spray G = (G') becomes
(3.7) 267 = 287 + 2HP + 277 = h*OTh alaf 4 2T,

r :9_”(39ij+39ik 39jk)

where the local components

4 (o)

: dg; “ios OF
. o7t = L |opaBZu \i  17(@) i ) @Oy 2
(3 8) 2 Dt + U ’L)j o + oL +U i) a'y ot
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represent the components of a tensor d-field 7 = (7*) on J*(T, M). It follows
that the d-tensor 7 can be written as the h-trace of the d-tensor

70 _ has
(@B = T

where p = dim7. In other words, the relation 7' = h“ﬁT((i)) 3 is true. Obvi-
ously, this writing is not unique one but represents a natural extension of the case
dimT = 1.

Finally, we can conclude that the spatial h-spray G = (G') is the h-trace of the
spatial spray

O _ Y ok o)
that is the relation G! = hO‘BGgg)ﬁ holds good. O

Following previous reasonings and the preceding result, we can regard the equa-
tions (3.2) as being the equations of the harmonic maps of a multi-time dependent

spray.

Theorem 3.2. The extremals of the energy functional £ attached to the Kro-
necker h-regular Lagrangian function L are harmonic maps on J*(T, M) of the
multi-time dependent spray (H,G) defined by the temporal components

1 .
—-H},(t)y", p=1

(@ _ 2
Hoe=9 1
—iHaBzv, p>2

and the local spatial components GEQ)B =

hug*p 0L . 0L ~ 90°L 9L ol
B 1 73zj8ykyj_@+—8tayk+@H11+2h Higuy'|, p=1

Lo g i
S Ll + 7"

=2,

()87
where p = dim T'.

Definition 3.3. The multi-time dependent spray (H,G) constructed in the pre-
ceding Theorem is called the canonical multi-time spray attached to the
multi-time Lagrange space M L.

In the sequel, by local computations, the canonical multi-time spray (H, G) of
the multi-time Lagrange space M L} induces naturally a nonlinear connection I’
on JYT, M).

Theorem 3.4. The canonical nonlinear connection

_of® N
= (M) Nia);)
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of the multi-time Lagrange space MLy is defined by the temporal components

gl i _
and the spatial components
oG*
i a A hll—. , p= 1
(3.11) AVRRLCIS S
()i o, v P g'* g . g o .,
jkxa+76tc¢ T+ 4rhayUplyys p>2,

i __ paf (1)
where G* = h G(a)ﬁ'

Remark 3.5. In the particular case (T, h) = (R, §), the canonical nonlinear con-
nection I' = (0, N, ((3]) of the relativistic rheonomic Lagrange space

RL™ = (JY(R, M), L)

generalizes naturally the canonical nonlinear connection of the classical rheonomic
Lagrange space L™ = (R x TM, L) [10].
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