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CALCULATIONS IN NEW SEQUENCE SPACES

BRUNO DE MALAFOSSE

ABSTRACT. In this paper we define new sequence spaces using the concepts of
strong summability and boundedness of index p > 0 of r-th order difference
sequences. We establish sufficient conditions for these spaces to reduce to
certain spaces of null and bounded sequences.

1. INTRODUCTION AND PRELIMINARY RESULTS.

This paper is organized as follows. First we recall some well known results on
matrix transformations. In Section 2 we deal with the identity E (A) = E where
FE is either of the sets s;, s(ac), or So. In Section 3 we recall some results on the
sets

[AL(N), Ag ()] ={X €5 : A1 (A) (A2 (1) X]) € sa}
where A; (A) and As (u) are of the form C (&), or CT (£), or A(£), or AT (€)
and we give sufficient conditions to get [A; (A), A2 (1)] in the form s,. The main
results are stated in Theorem 9, Theorem 12 and Theorem 13 of Section 4. Among
other things we give sufficient conditions to reduce the sets

(AT (), AP ()] = {X €51 AT (M) (|42 (1) XP”) € 50}

for Ay = C(A\), or CT (N), or A(XN), or AT (N), and A2 = A(p), or AT (u), or
C (u), or C* (p) to spaces of the form sg.

Now give definitions and notations used in the following. For a given infinite
matrix A = (apm)n,m>1 the operators A,, are defined for any integer n > 1, by

(1) An (X) =) anmm

where X = (,,)n>1, the series intervening on the right hand being convergent. So
we are led to the study of the infinite linear system

2) Ap(X)=b, n=12,...

2000 Mathematics Subject Classification: 40H05, 46 A15.

Key words and phrases: infinite linear system, operator of first order difference, Banach
algebra with identity, BK space.

Received October 7, 2004, revised September 2006.



2 B. DE MALASOSSE

where B = (by,)n>1 is a one-column matriz and X the unknown, see [2-4]. Equation
(2) can be written in the form AX = B, where AX = (A, (X)),,~;- In this paper
we shall also consider A as an operator from a sequence space into another sequence
space.

A Banach space E of complex sequences with the norm || || is a BK space if
each projection P, X = x,, for all X € FE is continuous. A BK space E is said
to have AK, (see [12-14]), if for every B = (bn),~; € E, then B =Y °_ byepm,
(with e, = (0,...,1,...), 1 being in the n—th position), i.e.

H Z bmemH -0 (n—o0).
m=N-+1 B

We will write s for the set of all complex sequences, [, ¢, cg for the sets of
bounded, convergent and null sequences, respectively. We will denote by cs and
l1 the sets of convergent and absolutely convergent series respectively.

In all that follows we shall use the set

Ut ={ (Un)p>1 €8 1 un >0 for all n}.

From Wilansky’s notations [14], we define for any sequence a = (ay,),~; € U™
and for any set of sequences F, the set

(l)il*E:{(q}n)nzles : (m—") GE}.
e an/n
We use the notation

s; if E=c¢,

(l)il*EZ s&c) if EF=c,
Sa if F=ly.

We have for instance

1 -1 o
(3) (a) *Cozsa:{(zn)n21 €s:xy,=o0(an) (nﬂoo)}
Each of the spaces (1/a)_1 x E, where FE € {cg,¢,loo}, is a BK space normed by
|Zn|
@) Xl = sup (5.
& n>1 \ Qn

and s, has AK, see [9].

Now let & = (o), 515 8 = (Bn),,>1 € UT. We denote by S, 5 the set of infinite
matrices A = (@pm)n,m>1 such that sup,~; (305, [anm| am/B) < oo, see [9].
The set Sq g is a Banach space with the norm

oo
o
A =su ( a —m)
H HSaﬂ nzli mZ:l| nm| 671

Let E and F be any subsets of s. When A maps E into F' we shall write A € (E, F),
see [2]. So for every X € E, AX € F, (AX € F will mean that for each n > 1

the series defined by ¥y, = 2221 AnpmTm 18 convergent and (yn)n21 € F). It was
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shown in [9] that A € (sq,sg) if and only if A € S, 3. So we can write that
(Sa’ Sﬁ) = Sa,p-

When s, = sg we obtain the Banach algebra with identity So3 = Sa, (see
2-9]) normed by [|Alls, = [|lls,...

We also have A € (84, 8,) if and only if A € S,. If ||[I — A|ls, < 1, we shall
say that A € T',. Since S, is a Banach algebra with identity, it can easily be
seen that the condition A € T, implies that A is bijective from s, into itself and
A7 € (84, 8a)-

If o = (r")p>1, we will write I',., S, sy, s: and SSC) instead of Iy, Sa, Sa, s;
and s\ respectively (see [2-9]). When 7 = 1, we obtain s; = I, s; = co and
sgc) = ¢, and putting e = (1,1,...) we have S; = S.. It is well known, see [1] that

(81751> = (00,51) = (C,Sl> = Sl .

For any subset E of s, we put

(5) AE)={Y €s:Y =AX forsome X € E} .
If F'is a subset of s, then
(6) F(A)=Fa={Xes:Y=AXeF}.

denotes the matriz domain of A in X.

2. PROPERTIES OF SOME SETS OF SEQUENCES.

In this section we recall [5] some properties of the sets s, (A) for A = A, or AT,
or 2, or £, and we give characterizations of the sets w?, (\), wiP (\), w.? () and
w. TP (N).

Let U be the set of all sequences (uy),~, € s with u, # 0 for all n. We
define C'(A) = (¢um)p s for A = (An),sy € U, by cum = 1/Ay for m < n and
Cnm = 0 for m > n. We put CF () = C (A\)". Tt can be shown that the matrix
A(N) = (c;lm)mm>1 with

An it m=n,
Com = § —An-1 if m=n-1 and n>2,
0 otherwise,

is the inverse of C'()), see [9]. Similarly we put AT (X\) = AN If X = e we
get the well known operator of first-difference represented by A (e) = A and it is
usually written ¥ = C (e). Note that A = £~! and ¥ belong to any given space
Sk with R > 1. Writing D) = ()‘n5nm)n,m21’ (where 6pm = 0 for n # m and
dnn = 1 otherwise), we have AT (\) = D,A™. So for any given o € U™, we see
that if (ap—1/an) | An/An—1] = O (1) (n — 00), then AT (\) € (s(ﬁ),sa). Since
per AT (A\) # 0, we are led to define the set

5o (AT (N) =sa (AT (V)N S(a) = {x = (Tn)p>1 € S(a) AT (N X €sq}.

IA] IA]
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It can easily be seen that

(7) Sz a) (AT (e) = SzL) (A7) =55 (AT (V) -

Y Ry

A
2.1. Properties of the sequence C (a) «. We shall use the following sets

ak) =0(1) (n%oo)},

n

a:{anJr: ain(k

a:{a€U+ ain(k_lak)ec},

or _ 1S a) = -
C] {a€U+ﬂcs n(kz_:ak) o) (n OO)}a
= {ae Ut nh_)ngo(a;_l) 1}

and

F+:{an+: E(O‘"+1)<1}.

n—oo [e77%
Note that o € Tt if and only if 1/a € T'. We shall see in Proposition 1 that if

a € (/Z'\l , then «, tends to infinity. On the other hand we see that A € I',, implies
a €' and a € T if and only if there is an integer ¢ > 1 such that

Oty
g (@) = sup ("1)<1.
n>q+1 ¥ Qn

n

We obtain the following results in which we put [C (o) a],, = ( > ozk)/ozn.
k=1

Proposition 1 ([7]). Let « € UT. Then
i) an—1/an — 0 if and only if [C (o) ,, — 1.
ii) a) e C implies (an—1/an), > € ¢,
b) [C(a)al,, — 1 implies oy /0ty — 1 —1/L.
iii) If a € 6\1 there are K > 0 and v > 1 such that
an > K" forall n.

iv) The condition o € T implies o € 6'\1 and there exists a real b > 0 such that

1
[C(a)a]ngﬁ—i—bx" for n>q+1 and x=r4(a)€]0,1].

v) The condition o € It implies o € C7F.

Put now

f:{aGU"": lim (an_l) <1}.

n— o0 (e 7%

We then have the next result, see [10].
Proposition 2. C=Tcrc 6'\1
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Proof. The inclusion C' C T’ comes from Proposition 1 ii) b); and the inclusion
I' € C was shown in [10]. The inclusion I" C T is obvious and I" C Cy comes from
Proposition 1 iv). O

Remark 1. Note that as a direct consequence of Proposition 1, we have 6’\1 ﬂCfr =
rnrt =¢.

Remark 2. The condition o € 6‘\1 does not imply « € T, see [7].

2.2. Some new properties of the operators A and A'. We can assert the
following result, in which we put o = (an+1),5, and s,k (AT) = s, (AT)Ns,;
note that from (7), we have
st (AT (e)) =s5 (A1) =54 (AT) Nsq .
Theorem 3 ([8]). Let « € UT. Then
i) a) sq(A) =84 if and only if « € Ch:
b) s, (A) = if and only if o € Cl,
c) s (A) = s\ if and only if a € T.
i) a)ac C if and only if sq+ (AT) = s, and AT is surjective from s, into
Saty
b) a € Cf if and only if s% (AY) = s, and AT is bijective from s, into
Sa-
¢) a € Cf implies s,* (AT) = s,, and At is bijective from s,, into s,,.
iil) a € Cf if and only if 5o (7)) = 5 and s, (X1) = s, implies s, (X1) = s

As a direct consequence of the preceding result we get

Corollary 4. Let R > 0 be any real. The following assertions are equivalent

(i) R>1,

(i) sr (A )= SR

(iii) sR (A) = sp,

(iv) sg (AT) = sg.
2.3. The spaces w? (\) and w}? ()\) for given real p > 0. Here we shall define
sets generalizing the well known sets

wl (N)={Xes :C\)(X") €l},
wy (A) ={X €s :CN)(IXI) € co} ,
see [13, 14]. It was shown each of the sets wfj = wf ((n),,), and w2, = wk ((n),)

is a p—normed FK space for 0 < p < 1, (that is a complete linear metric space for
which each projection P, is continuous). The set w} has the property AK and every

[&.°]
sequence X = (,,),~; € wP has a unique representation X = le'+ Y (z, — )€,
- n=1
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where [ € C is such that X — le' € w}), (see [13]). Now, let a, A € UT. We put
wk (N ={X€s: CN\(X])€sa},
wi? (\) = {XGS Ot (1IXP) Esa} ,

o

wr ) ={xes: (XM es,},
Wit () = {X €s: 0T (XP) e s;} .
We deduce from the previous section the following.

Theorem 5 ([5]). Let o, A € U and p > 0 real. Then

i) a) The condition a € C is equivalent to wi? (\) = s ;

- (@n7
b) if a € CF, then w P (\) =s" .
(an)P
i) a) The condition aX € Cy is equivalent to w?, (X\) =5 | ;
(an)P

b) if al € Ch, then w.P (\) =5

1
(aX) P

3. NEW SETS OF SEQUENCES OF THE FORM [A7, As].

In this section we recall some results given in [8]. We are led to use the sets

[A1 (V) Ag ()] ={X €5+ A1 (A) (|A2 (1) X]) € sa}

where A; () and As (u1) are of the form C (£), or CF (£), or A (£), or AT (&) and
we give sufficient conditions to get [Aq (A), A2 (1)] in the form s,.
Let A\, u € UT. For simplification, we shall write throughout this section

[A1, Az] = [A1 (V) A2 ()] = {X €5+ A1 (N) (|42 (1) X]) € sa}
for any matrices
AL (N e {AM), AT (), C(N),CT (N}
and
Az (1) € {A (1), AT (1), C (1) . C* (W)} -
So we have for instance
[C.A]={X €s: CN)(A () X]) €sa} = (wa (N)ag, - ete ..

In all that follows, the conditions £ € T, or 1/n € T for any given sequences & and
7, can be replaced by the conditions £ € 6'\1 and n € Cfr.
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3.1. The sets [C,A], [C,AY], [C,C], [CT,A], [CT,AT], [CT,C] and [CT,CT].
For the convenience of a reader we shall write the following identities.

[C,Aﬂ =<4X: i(imkxk_ﬂkxk*‘l') = a,0 (1) (n_)oo)}a

k=1

>
ES

Note that for @« = e and A = p, [C, A] is the well known set of sequences that are
strongly bounded, denoted coo (A), see [12, 14]. We get the following result where
we put o~ = (a,—1),, with the convention a, =1 for n < 1.

Theorem 6. Let o, A € Ut. Then
i) if aX €T, then [C,A] = S(ad)-
m
ii) The conditions a), a\/u € T imply together [C, AT] = S(a2)"
iii) If a), adp € T, then [C,C] = 5(axu)- '
iv) If 1/a, aX €T, then [CT,A] = S(a2)-
v) If 1/a, aN/p €T, then [CT,AT] = S(ad)~
m
vi) If 1/a, adp € T, then [CF,C] = 5(arp)-
vii) If 1/a, 1/aX € T, then [CT,CT] = s(arp)-

Remark 3. If we define

A1, As]y = {X €5 : A1 (\) (|42 (1) X|) € 50},

we get the same results as in Theorem 6, replacing s¢ by 52 in each case 1), ii), iii)
and iv).
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3.2. The sets [A, A], [A,AT], [A,C], [A,CT], [AT,A], [AT,C], and [AT,AT].
From the definitions of the operators A (£), AT (£), C'(§) and C* (£), we imme-
diatly get the following

[A, A] = {X . _)\n—l |Mn—1xn—1 - ,U/n—QZEn—2| + )\n |Mn$n — Un—1Tn-1

[A; A+] = {X : )\n |Mn (-Tn - xn+1)| - )\n—l |,U/n—1 (:Cn—l - xn)|
= 0,0(1) (n — 00)}

A, C] = {X At

(e e ()

Hn—1 nk1

= 2,0(1) (n — oo)} ,

sz
*nl
Hi

[A+; A] - {X : )\n (|,un:cn - Mn71$n71| - |,Un+11'n+1 - ,un:cn|>
a,O(1) (n — o)},

a,0%] = {x

= ,0(1) (n — ) |

[AJra AJr] = {X C A |Mn (-Tn - -Tn+1)| - An |Mn+1 ($n+1 - $n+2)|
=a,0(1) (n — oo)} ,
A n )\ n+1
+ _ . n N n | =
[A ,C’] = {X o ;:m = ;:m =a,0(1) (n — oo)}

We can state the following result

Theorem 7. Let o, A\ € UT. Then
) if a, /AN €T, then [A,A] = S(ak)-
ii) Assume o € . Then [A,AT] = 5(
iil) if a, au/A €T, then [A,C] = 5(
iv) The condition a/X € T implies

—if a/ Ty
and [A,CT] = 5(

I

~— T
~—

PN

ak a%) if/\/OAEF.

AT A =8y =2 G) )

hnAn—1/),

v) If a/X, p=t (@/A) = (an—1/ (tnAn-1)), €T, then

[A"',Aﬂ = S((%i)* = 5( an_a )

Ap—2#n—1/n

m

vi) If o/ A, p(a/A)” = (pnan—1/A=1), €T, then [AT,C] = Su(g)"

Remark 4. Note that in Theorem 7, we have [A;, As] = sq (A142) = (Sa
for Ay € {A(X), AT (X),C(A),CT (N} and Ay € {A (), AT (1), C (1) , CF ()}
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For instance we have

[A,C]:{X : ( i 1)2901 n—anO(l) (n—>oo)}

for a, 5F €T

4. THE SETS [A] (X) AW ()]

In this section we give a generalization of the results obtained in the previous
sections. We will write the sets [A; (A), A (u)] for Ay = A™ (N), or AT"(}), or
C™(A\) or C*7()\) and Ay = AW (1), or A*P (i), or CP (i), or C*P (u) in the
form s¢.

First we need to study the following sets.

4.1. The sets wiP (\), wi™ (\), w.”? (\) and w. ™" (\). In the following we
will consider the operator C” (A\) for r € N, which is defined by C" (A\) X =
C () (C™1(N) X) for all X € s. So we obtain

C"(\) X = /\Lnr [nri::_l [}\nil nrrz;l... )\; nliz (/\11 2%)” for all X €s.

We define C*" () X in the same way.

Lemma 8. Let a, A € UT and r > 1 be an integer. (i) If a)\® € 6'\1 fori =
1,2,...,r, then

Sa (CT (X)) = saar and s, (CT (X)) = s, y» -
(ii) If aX? eaforz’ =0,1,...,7 =1, then
Sa (CT"(N) = Sarr  and S, (Ct"(N) = Sor -

Proof. (i) First the condition aX € 6'\1 implies that A is bijective from s, to
itself. So

Sa (C(N) =A(N) sq = AD)rso = ASax = San -

Now let j with 1 < j < r — 1 and assume s, (C’j (/\)) = 5, for a\' € 6’\1 with
i=1,2,...,j. Then

sa (CTTP (V) ={X €s: CT(N)(C(N)X) € sa}
={Xes: CAN)XeEs,(CT(N)} .
Since sq (C7 (X)) = sox; we then have
sa (C7F1 (V) = s5a (C7 (V) (C(N) = saxi (C(A) = A(N) san -

Now the condition aM*! € 6’\1 implies A (A) sqxi = AD)sqai = Asgyi+1 and
Sa (Cj+1 ()\)) = s,0+1 for aX! € Cy with i = 1,2,...,5 + 1. This concludes the
proof of (i). Similarly we get s, (C7 (\)) = s..,. if a\' € Cy for i =1,2,...,7.
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(ii) By Theorem 3 iii), the condition « € 511 implies
sa(C’+(/\)) = {X €s: E+D1/>\X € sa}
={Xe€s:DipXesa (X))}
:{Xes : Dl/AXesa} = Sa) -
So « 6\61: implies sq (CT (X)) = sax. Assume now sq (C7 (N)) = s,y for
aXt € Cf fori=0,1,...,5 — 1 for given j > 1 integer. Then
s (CTUTIN)) ={X es: C(N)(CT(N)X) €sa}
={Xes: CT(N)Xes.(CTN)}.
Since so (CF7 (X)) = sua we then have s (CTUTD (X)) = 5,5, (CT (X)). Now if
aN € 51: then
Sa (C+(j+1) ()\)) = S(ar)A = Saritl -

Thus if e\’ € Cf for i =0,1,...,j, then so (CTUTD (X)) = s,5,+1. Similarly we
can show s, (C*7 (\)) = s.,,.. This concludes the proof. O

For r € N and p > 0 real, put now

(8) wiP (N ={X €5 : 0" (N (XP) € sa},
(9) wP(A) ={X €5 : C"(\) (IX]P) €5,
(10) wi™ (N ={Xes: CT"(\) (I X[") € sa}
(11 w, P (N ={X €s: CTTN) (X)) €.}

Theorem 9. Let o, A € UT. Then
(i) if aXt € Cy fori=1,2,...,r, then

wiP (A) = $(garmy1/e and w."P(\) = s

o

(a/\r)l/p;
(ii) if aXt € CF fori=0,1,...,7 — 1, then

wi™ (\) = S(aaryi/p and w, TP (N = s

(aAr)L/P -
Proof. (i) First
wiP (N ={X €s: |X|"€5,(C"(\)};
and if e\t € C) for i = 1,2,...,7, then s, (C" (X)) = saxr. Since |X|P € sqar if
and only if
Il _00) mew).
(A}, ) 7

we conclude

we” (A) = S(qamy1/p -
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Similarly we get w,™? (\) = Szay)l/F'
(ii) We see that
wiP(N) = {X €s:|X|"€sa (CJFT (/\))} :

From Lemma 8, if a\’ € Cff for i =0,1,...,7 — 1, then s, (CT" ()\)) = s4xr and
[ X[" € s (CF7(N)) if and only if |X| € s(,yr)1/p. Similarly we get w, TP (N) =
s:ay)l/p. This concludes the proof.

To express the next corollary we require a lemma.

Lemma 10. Let ¢ > 0 be any real and o € U™ a nondecreasing sequence. Then
(i)a e C, implies a4 € C1 forq>1,
(i) ot € Cy implies o € Ch for0<q<1.
Proof. Let ¢ > 1. Since « is nondecreasing we immediatly see that for any given
integer
n

Saifagt—at ™) =

i=1

v

N
Il
-

(agflai — ag) >0 forall n,

and
(12) L(sa)z L (Sa).

“n N Y an i=1 '
Since a € Cy implies (> ) /o = O(1) (n — o0), we obtain (i) using the
inequality (12). Now, writing v = a? € C; and applying (i), we get a = /9 € O}
for 0 < ¢ < 1. This permits us to conclude for (ii). O

Corollary 11. Let A € UT. Assume )\ € 6’\1 and A\, is a non decreasing sequence.
Then wliP (A) = Syr/p.

Proof. Since a = e, it follows from Lemma 10 and Theorem 9, that A € 6'\1
implies ' € C for all i > 1 integer and WP () = $y,/». O

4.2. The sets x (A" (\) with x = s, or s,, and s, (AT" (\)).
Here we have A" (A) X = A (A" ' (A)X) forr > Land A'(\) X = AN X =
(AnZn — Ap—1Zn—-1),,>; With 2o = 0. We obtain a similar definition for A™" (X).
There is no explicit expression of the sequences A” (A) X or AT" ().

In the following we will use the convention z,, = 1 for n < 0. So we get for
instance

X/ = (ZL'n,Q)n = (1, 1,1‘1,1‘2, .. ) y

and X’ € s, if and only if x,_2/a, = O(1) (n — o0).
Theorem 12. Let o, A € Ut and let v > 1 be an integer. Then

(i) if a/ Nt € 6\1 fori=0,1,...,r—1, then

sa (A7) =5(g) and 5o (A"(N) = s(

T

) )

P
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(i) if /A, (n-1/ Ane1An)) s (@nrg1/ Pnertts -3 An)),, € Ch, then
Sq (AJFT ()\)) = S( S ) .

N A1

I/’\roof. (i) First so (A (M) = D1/xYsa = 84/ for a € C1. Now suppose a/Xt e
Cy for i =0,1,...,j — 1 for given integer j > 1. Then sq (A7 (X)) = 54,5
Sa (ATTE(N) ={X €s: AVA) (AN X) €sa}
={X€es: AN X Esq(AT(N)} =350/ (AN) .
If /N € C; then Sa/xi (A (X)) = s4/x+1 and we have shown
sa (AL (N) = 5o ) for L e, i=01,...,5.

AJ+1

o

Similarly we obtain s, (A" () = s

(i) First we have so (AT (V)
r = 1. Let j be an integer with 1

Sa (A—H ()\)) = S( an_j )n

) This concludes the proof of (i).

A

S(an_1/An_1), i a/\ € C; so (ii) holds for
7 <r—1 and assume

IN

A A

n—j-An—1

for /A, (an—1/ An1An))ys -5 (@n—ji1/ An_j1---An)), € Cr. Then
Sa (A+<j+1> ()\)) —{Xes: AT\ (AT (V) X) € 50}
={Xes: AT\ X eso (AT (N)}

= S(an—i /g A, (AT (V)
Now the condition

Qnp—j i) —~
(13) (AH ) O
implies
S{ e AT (V) =s an_1-j =s, . .
(=5=)., ( ) (7*"*1;{';?"*2) (=),

Since condition (13) is equivalent to

Oy (4 —
( (G+1D+1 ) el
)\n,(j+1)+1 “e )\n n

we have shown that a/A, (an—1/(An—1An)), ;- (@n—rn+1/Mn— (1)1 - - -
)\n))n € C1 implies

Sa (A+(j+1) A\))=s

( “n—(j+1) ) '
Gt An1/n
This completes the proof. O

Remark 5. We immediatly see that o € 6'\1 successively implies

Sa (A7) = 54, s; (A") = s;, Sa (A”) = S(a,_,), and s; (A”) = szanir) )
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4.3. The sets [A{ (A) ,Agp) (,u)] for Ay = A()\), or AT ()), or C (A\), or C* (})

and A = A (u), or AT (u), or C (u), or CT (u). In this subsection we consider
sets that generalize those given in Subsection 3.1.
We will put

[AT (), AP ()] = {X €5 = AT(N) (|42 () XI) € 50},

for Ay = C(A\), or CT (N), or A(XN), or AT (N), and A2 = A(p), or AT (u), or
C (p), or C* (n).

First we will deal with the sets [A] (X) ,Agp) (1) ], for Ay (A) € {C(N),CT (M)}
and As (u) € {A (1), AT (1), C (p),CF (u)}. We get the following

Theorem 13. Let a, A\, p € UT.

(a) We assume aX® € 1 fori=1,2,...,r. Then
(i) if (@A™ € Cy, then

[CT ()‘) 7A(p) (M)} = S (aam)l/p ;

(i) if (aA")? Ju € C1, then
€088 0] = (o oy
(iii) if (aA")? € Cy, then

[CT (), CP (1) ] = s(0pry1/ny, -

(b) We assume aX' € C fori=0,1,...,r —1. Then
(iv) if (aX")P € O, then

[C+T ()‘) ) A(p) (M)] = S(axn)l/p 3

(v) if (@A")? Ju € Cy, then
[, AF®) (w)] = 5((%71XLI)1/:)) .
(vi) if (aA")P € Oy, then
[CF (N, CP (1) ] = 5(qrryim
(vii) if (@A) € CF, then

[C-l-r ()\) , C+(P) (,u/)} = S(a/\r)l/Pu .
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Proof. We will write [A;, As] instead of [A1 (A), Aa ()] for short. So we will
write [C", A®)] instead of [C" (\),A® (y)] for instance. (i) If a\' € O for
i=1,2,...,r, then

[CT, AP] = {X €5 : A(u) X €wi? (X) = 5(qrr1/n }
= S(aar)l/p (A (w) -
Since (oz)\’”)l/p €y W/e\conclude [C’T,A(?’)} = S(axr)1/7
(ii) Assume a)! € C for i = 1,2,...,7. Then
[CT,AHI’)} ={Xes: AT ()X cwi? () = s(a/\T)l/p}
= S(aar)1/p (AJr (u)) .
Then (aX")? /u € C1 implies S(aaryt/e (AT (1)) = s<(an71)\271)1/p/unil) . This

shows (ii).
(iii) The condition a\! € Cy for i =1,2,...,r implies

(€T, 0] ={X €5 : C(n) X €wi (\) = s(qpryi/n }
= S(aar)l/e (C(w) 3
and the condition (a)\T)l/pu € 6'\1 implies [CT, C(p)] = S(aar)/pp
(iv) Assume o\ € Cf for i = 0,1,...,r — 1 and (a)\T)l/p € 6'\1 Reasoning

as above we easily see that if a\’ € Cf for i = 0,1,...,r — 1, then w}™ ()\) =
S(arryt/p and

[CT AP ={X €5 : A(p) X € wiP (N) = $(qnryi/n }
= S(a)\r)l/p (A (/L)) .

Now since (oz)\’”)l/p € C; we conclude Saaryr (A (1) = Sgxryrmy,- Thus we
have shown [C7, A(p)} = S(anr
(v) Here we have

[C’+T,A+(p)} ={Xes: AT ()X cw™”(\) = S(a)\r)up}
= S(ak.,-)l/p (AJ’_ (/,L)) y

since a\! € Cf fori =0,1,...,r — 1. Now we have

P

S(arr)1/p (AT () = 5((%,,1/\;71)1/19/%71)

since (aA")"? /i € C1. We conclude

+r +(®)] —
[CTr, AT = ((naXp ) )

The statements (vi) and (vii) can be shown similarly. O
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Remark 6. We deduce from the preceding theorem and Lemma 8 that the identity
[CT, A(p)} = S(x/p)/v holds in the next cases:

(i) r > pand A € Cy;

(ii) 1 <r < p and NP e Oy,

It remains to deal with the sets [Af (A) ,Agp) (1) ], for A1 (A) e {A(N), AT ()}
and Az () € {A(n), AT (1), C (1), C* (1)}
Theorem 14. Let o, A\, p € U™.
(a) We assume a/\' € Ch fori=0,1,...,7r—1. Then

(i) if (/AP € C1, then

(A7), AP ()] = 5o yra s

(i) of (a)\_T)l/p p~t e Cy, then
[A7 (), AT (u) ] = s

(iii) if (a/A")/P € C1, then
(A" (N),C®P) (u)] = O

(iv) if (a/A)VP € 51:, then
[AT ()\) , C+(P) (,U/)} — SM

(b) We assume (atn—j/ (An—j, ..., An)),, € Cy forj=0,1,...,r—1. Then
) if B
([ an—r/ ()\n—ra sy )‘n—l)]l/p)n €y,

then
AT (A), AP = . e\
AT ()] S((ﬁ) / ).
(vi) if
([ O‘nfr/ (/\nfh LRRE An)]l/pﬂgl)n € 6\1 ’
then
[AJFT ()‘)aAJr(p) (:U’” = S(()\ an,r,k )1/1J . ) ;
(vii) 4f
([ an=r/ Cners - X)), € Ch
then
[A*7 (), c® (n)] = S(#n(xn,ffiln,l)l/p)n :
(viii) if
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then
[ATT(A), TP ()] = s
Proof. (i) We have
AT, AP = {X €5 : |A(u) X[P € 50 (A" (V) }.

Now the condition a/\! € (/Z'\l for i = 0,1...,7 —1, implies s4 (A" (X)) = s4/rr-
Thus we have

(A7, AP =5 amyw (A (1)) -

Finally since

Ci,

we conclude

r AP =
[A,A }—S(%)l/p%.

(ii) Since a/\" € C, fori= 0,1,...,7 —1, then sa(A’”()\)) = Sq/ar, and

[AT,AH}’)] = {X €5 : |A+(M)X|p € sa//\r}
={Xes: AT(pXe s(a//v)l/p}
= S(a/ar)1/p (AT () .

The condition (a)\_T)l/p p~1 e Cp, implies

S(a/ar)L/p (A+ (M)) = S<(an71//\;71)1/pu,1 ) .

n—1

r +()] =
We conclude [A AT ] - S((anfl/)‘:ﬁl)l/p“;il)n.

(ifi) Since /X1 € Cy for i = 0,1,...,r — 1, then s, (A7 (X)) = Sa/ar and
(AT, Cc?P)] = $((a/ar)/7) (C(n)). Then the condition (a/)\T)l/pu € C; implies
5((a/xr)t/7) (C(n) = 5((a/Am) /7 ) and [AT,C(I’)} = S((a/A) /7).

(iv) The condition o/ A" € Cy fori = 0,1,...,r—1, implies s (A" (X)) = 54/"-
Then [A7,CTP)] = S(a/ary/e (CF (1)), and since (a/A")P € 611 we conclude
[Ar,cﬂp)] =5

(v) We have

(/X" 7p)

AT AP ={X es: [A(u)X]P€sa (AT (V)] .
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Since (an_j/ (Anj---An)), € C1 for j = 0,1,...,r — 1, then s, (AT (A)) =
S(an /O ), A0 [AT AP = s o ey (A (w), and sin-
ce ([ an—r/ An—r- .. )\n,l)]l/p)n € 6’\1, then
+r (p)] —
[A ,A p } = S([an—r/()\nf’rv”)\nf1)]1/13#;1)n .
(vi) Here we have
[A+T,A+(p)] ={Xes:|AT (,LL)X‘p € sa (ATT(N)} .
Since /A, (an-1/ An_1xn)),, s+ s (@n—rs1/ An_ri1--.An)), € Cy, then
Sa (AT (N) = S((an_r/Cnr A1), 5

and

[AFr, AP = 5([en—r/Onre-dn-)]V7) (AT (W) -
Finally the condition ([ an—r/(Ap—r ... )\n_l)]l/pu,_ll)n € (/7\1 implies

+ —
S(lan—r/ e An—0)]M/?) (A7 () = F(lan—r—1/On—r—1-An=2)]/? /in—1) |
and [A"'T,A"'(p)] =5

(vii) Now

[on—r—1/Cnm e An )P L)

[A"'T,C'(p)] ={Xe€s:|C(uX["es.(AT"(N)}

= (@) Qe An )P (C(n)
for (an—j/ (An—j..- M), € Cy for j = 0,1,...,r — 1. Then the condition
(un[an_T/()\n_T . )\n_l)]l/p)n € (/7\1 implies

S([an,r/(/\n,T...)\n,l)]l/P)n (C(w) = [A+Tac(p)] = S(Mn[a,,,,r/(xn,r...,\n,,l)]lfp)n :

(viii) The condition a/X, (n—1/ (An=1An)), s+ -5 (n—rt1/ An—rs1---An)), €

6‘\1 implies
o (AT (N) = S0 /A,
S0

(AT CHP ] = {X €5 : |[CH)XIP € S(an_r/GnroAni))n |
— {X € s : C+(M)X S S([Oln—T/(An—T--)\nfﬂ]l/p)n} .
Finally
[A*C ] = (e n), (CF ) = S (e /7)o

since ([ an—r/(Ap—p ... )\n_l)]l/p)n € C;. This concludes the proof. O
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