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ON A NONCONVEX BOUNDARY VALUE PROBLEM
FOR A FIRST ORDER MULTIVALUED
DIFFERENTIAL SYSTEM

AURELIAN CERNEA

ABSTRACT. We consider a boundary value problem for first order noncon-
vex differential inclusion and we obtain some existence results by using the
set-valued contraction principle.

1. INTRODUCTION

This paper is concerned with the following boundary value problem for first
order differential inclusions

(1.1) ¥ € A()x + F(t,z), ae. (I), Mz(0)+ Nz(l)=n

where I =1[0,1], F(-,-): I x R" — P(R") is a set-valued map, A(-) is a continuous
(n x m) matrix function, M and N are (n x n) constant real matrices and n € R™.

The present note is motivated by a recent paper of Boucherif and Chiboub ([I]),
where it is considered problem with 7 = 0 and several existence results are
obtained under growth conditions on F(-,-) by using topological transversality
arguments, fixed point theorems and differential inequalities.

The aim of our paper is to present two additional results obtained by the
application of the set-valued contraction principle due to Covitz and Nadler ([6]).
The approach we propose allows to avoid the assumption that the values of F(-,-)
are convex which is an essential hypothesis in [I].

The first result follows a classical idea by applying the set-valued contraction
principle in the space of solutions of the problem. The second result is a Filippov
type theorem concerning the existence of solutions to problem . Recall that
for a differential inclusion defined by a lipschitzian set-valued map with nonconvex
values, Filippov’s theorem consists in proving the existence of a solution starting
from a given “quasi” solution. This time we apply the contraction principle in the
space of derivatives of solutions instead of the space of solutions. In addition, as
usual at a Filippov existence type theorem, our result provides an estimate between
the starting “quasi” solution and the solution of the differential inclusion. The
idea of applying the set-valued contraction principle in the space of derivatives of
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the solutions belongs to Tallos ([7, [9]) and it was already used for other results
concerning differential inclusions ([3} [4, [5] etc.).

For the motivation of study of problem we refer to [I] and references
therein.

The paper is organized as follows: in Section [2] we recall some preliminary facts
that we need in the sequel and in Section [3] we prove our main results.

2. PRELIMINARIES

In this short section we sum up some basic facts that we are going to use later.

Let (X,d) be a metric space and consider a set valued map T on X with
nonempty values in X. T is said to be a A-contraction if there exists 0 < A < 1
such that:

du(T(x),T(y)) < Md(z,y) Vr,ye X,

where dg (-, ) denotes the Pompeiu-Hausdorff distance. Recall that the Pompeiu-
-Hausdorff distance of the closed subsets A, B C X is defined by

du(A,B) = max {d*(A,B),d"(B,A)}, d"(A,B)=sup{d(a,B);ac A},

where d(z, B) = infyep d(z,y).

The set-valued contraction principle ([6]) states that if X is complete, and
T: X — P(X) is a set valued contraction with nonempty closed values, then T'(-)
has a fixed point, i.e. a point z € X such that z € T'(z).

We denote by Fix(T') the set of all fixed points of the set-valued map T'. Obviously,
Fix(T) is closed.

Proposition 2.1 ([8]). Let X be a complete metric space and suppose that Ty, Ty
are \-contractions with closed values in X. Then

L s d(Ti(2). ().

dH ( FiX(T1)7 FIX(TQ)) S 1

Let I = [0, 1], let |x| be the norm of € R™ and || A|| be the norm of any matrix
A. As usual, we denote by C'(I,R™) the Banach space of all continuous functions
from I to R™ with the norm ||z(-)||c = sup,c; |x(t)|, AC(I,R™) is the space of
absolutely continuous from I to R and L*(I,R") is the Banach space of integrable
functions u(-): I — R™ endowed with the norm ||u(-)||; = fol |u%dt.

A function z(-) € AC(I,R") is called a solution of problem (|1.1)) if there exists
a function f(-) € L*(I,R™) with f(t) € F(t,z(t)), a.e. (I) such that

(2.1) 2'(t) = A(t)z(t) + f(t), ae. (0,1), Mz(0)+ Nx(l)=rn.
For each z(-) € AC(I,R"™) define
Sk = {f() € L"(I,R™); f(t) € F(t,z(t)) ae. (I)}.

Let ®(-) be a fundamental matrix solution of the differential equations 2’ = A(t)z
that satisfy ®(0) = I, where I is the (n x n) identity matrix.
The next result is well known (e.g. [I]).
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Lemma 2.2 ([I]). If f(-): [0,1] — R™ is an integrable function then the problem
(2.2) 2 (t) = At)x(t) + f(t), a.e (0,1), Mz(0)+ Nz(1l) =0
has a unique solution provided det(M + N®(1)) # 0. This solution is given by

1
ot) = [ Ge.s)ss)ds.
0
with G(-,-) the Green function associated to the problem . Namely,

D(t)J(s) if 0<t<s,
(2.3) G(t,s) =
O(t)D(s)~L + (1) J(s) if s<t<I1,
where J(t) = —(M + N®(1)) " N&(1)d ().
If we consider the problem with nonhomogeneous boundary conditions, i.e.
problem ({2.1)), then it is easy to verify that its solution is given by
1
(2.4) z(t) = O(t) (M + N@(l))fln +/ G(t,s)f(s)ds.
0

In the sequel we assume that A(-) is a continuous (n X n) matrix function, M
and N are (n X n) constant real matrices such that det (M + N®(1)) # 0.
In order to study problem (|1.1)) we introduce the following hypothesis on F.

Hypothesis 2.3. (i) F(-,-): I x R" — P(R") has nonempty closed values and for
every v € R™ F(-,x) is measurable.

(ii) There exists L(-) € L*(I,R;) such that for almost all ¢t € I, F(t,-) is
L(t)-Lipschitz in the sense that

du (F(t,z), F(t,y)) < L(t)|lzr —y| ¥ z,y €R"
and d(0, F(t,0)) < L(t) a.e. (I).

Denote Lg := fol L(s)ds and Gg := sup; . |G(t, s)]|.

3. THE MAIN RESULTS
We are able now to present a first existence result for problem (1.1]).

Theorem 3.1. Assume that Hypothesis is satisfied, F(-,-) has compact values
and GoLg < 1. Then the problem (1.1) has a solution.

Proof. We transform the problem in a fixed point problem. Consider the
set-valued map T': C(I,R") — P(C(I,R™)) defined by

T(z) = {u(-) € C(I,R™); v(t) := () (M + No(1)) 'y

—&—/OlG(t,s)f(s) ds, f € SF}
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Note that since the set-valued map F (,x()) is measurable with the measu-
rable selection theorem (e.g., [2, Theorem IIL.6)) it admits a measurable selection
f(-): I — R™. Moreover, from Hypothesis

|f()] < L(t) + L(t)|=(t)],

ie., f(-) € L'(I,R™). Therefore, Sg, # 0.

It is clear that the fixed points of T(-) are solutions of problem (T.I]). We shall
prove that T'(-) fulfills the assumptions of Covitz-Nadler contraction principle.

First, we note that since Sg, # 0, T(z) # 0 for any z(-) € C(I,R").

Secondly, we prove that T'(z) is closed for any z(-) € C(I,R™).

Let {z,}n>0 € T(z) such that z,(-) — «*(-) in C(I,R™). Then z*(-) € C(I,R")
and there exists f,, € S, such that

zn(t) = @(t) (M + N®(1) 77+/ G(t,8)fn(s)ds

Since F'(-,-) has compact values and Hypothesis is satisfied we may pass
to a subsequence (if necessary) to get that f,(.) converges to f(-) € L*(I,R") in
LY(I,R").

In particular, f € SF, and for any ¢ € I we have

T, (t) — x*(t) = D(t) (M + Nfl)(l))iln —i—/o G(t,s)f(s)ds,

ie., z* € T(r) and T'(z) is closed.

Finally, we show that T'(-) is a contraction on C(I,R").

Let z1(-),xz2(-) € C(I,R™) and v1 € T(x1). Then there exist f; € Sp,, such
that

vi(t) = O(t) (M + N®(1) 77+/Gtsf1() tel.
Consider the set-valued map
G(t) == F(t,z(t)) n{z € R"; | f1(t) —x‘ < L(t)|a1(t) — z2(t)|}, tel.
From Hypothesis [2.3] one has
dg (F(t, 21(t)), F(t,22(t))) < L(t)|z1(t) — 22(t)]

hence G(-) has nonempty closed values. Moreover, since G(-) is measurable, there
exists f2(-) a measurable selection of G(-). It follows that f, € Sp,, and for any
tel

|f1 ()|<L |$1 *332(15)‘.
Define

va(t) = B() (M + No(1) n—i—/Gtsfg() tel,
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and we have

[01(t) — va(t)] S/O IG(, 9]l - !fl(S)—f2(8)!d8SGo/0 [f1(5) = f2(s)lds

1
< GO/ L(s)|21(s) — 2a(s)| ds < GoLolla1 — zslc:.
0

So, [[v1 —v2|lc < GoLollz1 — 22l
From an analogous reasoning by interchanging the roles of z; and x5 it follows

dH (T(Zl), T(ZL’Q)) § GoLQHCﬂl - CEQ”C .
Therefore, T'(-) admits a fixed point which is a solution to problem (1.1). O

The next theorem is the main result of this paper. As one can see it is, in fact,
no necessary to assume that F(-,-) has compact values as in Theorem

Theorem 3.2. Assume that Hypothesis is satisfied and GoLg < 1. Let
y(-) € AC(I,R™) be such that there exists q(-) € L*(I,Ry.) with d(y'(t) — A(t)y(t),
F(t,y(t))) < q(t), a.e. (I). Denote pp= My(0) + Ny(1).

Then for every e > 0 there exists x(-) a solution of problem satisfying for
allt el

o0)=0)] < T Sup [N =)+ =g [ a0y,

Proof. For u(:) € L*(I,R™) define the following set valued maps
1
M,(t) = F(t,®(t)(M + N®(1))"'n —|—/ G(t,s)u(s)ds), tel,
0

T(u) = {¢(-) € L'(I,R"™); ¢(t) € My(t) ae. (I)}.

It follows from the definition and that z(-) is a solution of problem
(LI)—@:2) if and only if 2/(-) — A(-)z(:) is a fixed point of T'(-).

We shall prove first that T'(u) is nonempty and closed for every u € L!(I,R™).
The fact that the set valued map M, () is measurable is well known. For example
the map t — ®(t)(M + N(I)(l))_ln + fol G(t, s)u(s) ds can be approximated by
step functions and we can apply in [2, Theorem I11.40]. Since the values of F are
closed with the measurable selection theorem ([2, Theorem III1.6]) we infer that
M, (-) admits a measurable selection ¢. One has

6(t)] < d(0, F(t,0)) + dir (F(t, 0), F(t, d(t)(M+ NO(1)) "'y + [ Glt,s)u(s) ds))

1
< L(t)(1+ |®(t) (M + Nq>(1))’1n| + Go/o lu(s)| ds),

which shows that ¢ € L*(I,R™) and T'(u) is nonempty.

On the other hand, the set T'(u) is also closed. Indeed, if ¢, € T(u) and
l¢n — ¢|l1 — 0 then we can pass to a subsequence ¢, such that ¢,, (t) — ¢(t) for
a.e. t € I, and we find that ¢ € T'(u).

We show next that T'(-) is a contraction on L!(I,R").
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Let u,v € L'(I,R™) be given and ¢ € T'(u). Consider the following set-valued
map:

H(t) = My(t) 1 {w € R";[6(t) — a] < L(t)‘ /01 G(t,5) (u(s) — v(s)) ds]} .

From Proposition I11.4 in [2], H(-) is measurable and from Hypothesis 2.3 ii) H(-)
has nonempty closed values. Therefore, there exists ¢(-) a measurable selection of
H(.). It follows that ¢ € T'(v) and according with the definition of the norm we
have

vl = [ 1oy —violar< [ 1 ( [ 1669 ) oo ds)

= /0 (/0 L(t)||G(t, s)| dt) |u(s) — v(s) = big|ds < GoLo|lu— | .

We deduce that
d((b, T(U)) S G0L0||u — U||1 .
Replacing u by v we obtain
dH(T(u)7T(v)) < GoLollu — |1,

thus T(+) is a contraction on L (I, R™).
We consider next the following set-valued maps

Fi(t,z) = F(t,z) + q(t)B, (t,z) e I x R",
Mj(t)=Fy = (t,®(t)(M + N®(1) u+/ G(t,s)u(s)ds),
={v() YI,R™); (t) € My(t) ae. ()}, u(-) € LY(I,R"),

where B denotes the closed unit ball in R™. Obviously, Fi (-, ) satisfies Hypothesis
2.9

Repeating the previous step of the proof we obtain that 77 is also a Gg Lg-contraction
on L'(I,R"™) with closed nonempty values.

We prove next the following estimate

(3.1) du(T(u), Ti(u))

1
< sup [9(0)(M + N(1) " (= )| Lo + / a(t) dt

Let ¢ € T(u) and define

—1

Hi(t) = My(t)n{z € R"; |p(t) —z| < L(t) |®(t) (M +N®(1)) (n—p)|+q(t)}.

With the same arguments used for the set valued map H(-), we deduce that
H; (+) is measurable with nonempty closed values. Hence let ¢(-) be a measurable
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selection of Hj(-). It follows that ¢ € T1(u) and one has
! —1
16— ¥l f/ l6(2) \dt</ [L() [B() (M + No(1) (- )|
0
g(t)]dt < / L(1)[®(8)(M + NO(1) " (n — p)|dt + / a(t)
0 0

< Losup |®(t) (M + N@(l))*l(n — )| +/ q(t)dt.
tel 0

As above we obtain ([3.1)).
We apply Proposition [2.I] and we infer that

dy (Fix(T), Fix(T1))
<Lsup’¢> (M—!—NCI)(l))_l(n—u)’l/lq(t)dt
~ 1—-GoLo ter 1—GoLo -

Since v(-) = y'(-) — A(-)y(-) € Fix(T1) it follows that there exists u(-) €
Fix (T") such that for any & > 0

—1
lv =l < 751119!@( )(M+Ne(1)) (n— )|
GoLo ter
1 1
+71—G0L0/ ()dt+G70
We define z(t) = ®(t) (M + N@(l)) n+ fo Ju(s)ds, t € I and we have

|2(t) — y(1)] < [®(t) (M + NO(1)) ™ (n — )|

), IG(t )|l - [u(s) — v(s)| ds < Sup [@(t)(M + N(1)) ™ (1 — p)

GoLg

_ G 1
00 sup |®(t) (M + N(1)) ™ (- )| + 70/ q(t)dt + ¢
1—GoLo ter 0

1 _ G, 1
< ———sup|®(t) (M + N®(1)) 1(n—u)\+70 / q(t)dt+e,
1 —GoLo ter 0
which completes the proof. (I

Remark 3.3. Taking into account Hypothesis ii) the assumptions in Theorem
is satisfied by y(-) = 0 and ¢(-) = L(-).
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