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GENERAL IMPLICIT VARIATIONAL INCLUSION PROBLEMS
INVOLVING A-MAXIMAL RELAXED ACCRETIVE MAPPINGS
IN BANACH SPACES

RamMm U. VERMA

ABSTRACT. A class of existence theorems in the context of solving a ge-
neral class of nonlinear implicit inclusion problems are examined based on
A-maximal relaxed accretive mappings in a real Banach space setting.

1. INTRODUCTION

We consider a real Banach space X with X*, its dual space. Let || - || denote the
norm on X and X*, and let (-,-) denote the duality pairing between X and X*.
We consider the implicit inclusion problem: determine a solution u € X such that

(1) 0€ A(u) + M(g(u)) ,

where A, g: X — X are single-valued mappings, and M: X — 2% is a set-valued
mapping on X such that range(g) N dom(M) # 0.

Recently, Huang, Fang and Cho [4] applied a three-step algorithmic process to
approximating the solution of a class of implicit variational inclusion problems
of the form in a Hilbert space. In their investigation, they used the resolvent
operator of the form JZ,VI = (I + pM)~! for p > 0, in a Hilbert space setting.
Here we generalize the existence results to the case of A-maximal relaxed accretive
mappings in a real uniformly smooth Banach space setting. As matter of fact, the
obtained results generalize their investigation to the case of H-maximal accretive
mappings as well. For more literature, we refer the reader to [2]-]20].

2. A-MAXIMAL RELAXED ACCRETIVENESS

In this section we discuss some basic properties and auxiliary results on A-maximal
relaxed accretiveness. Let X be a real Banach space and X™* be the dual space of
X. Let || - || denote the norm on X and X* and let (-,-) denote the duality pairing
between X and X*. Let M: X — 2% be a multivalued mapping on X. We shall
denote both the map M and its graph by M, that is, the set {(x, y):y € M(:c)}
This is equivalent to stating that a mapping is any subset M of X x X, and
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= {y D(x,y) € M} If M is single-valued, we shall still use M (x) to represent
the unique y such that (z,y) € M rather than the singleton set {y}. This interpre-
tation shall much depend on the context. The domain of a map M is defined (as
its projection onto the first argument) by

DM)={zeX:3yeX:(r,y)e M} ={zeX: M)#0}.
D(M) = X, shall denote the full domain of M, and the range of M is defined by
RM)={yeX:3veX:(z,y)eM}.

The inverse M ! of M is {(y, x): (x,y) € M} For a real number p and a mapping
M, let pM = {z,py): (x,y) € M}. If L and M are any mappings, we define

L+M={(z,y+2):(z,y) € L,(z,2) € M}.

As we prepare for basic notions, we start with the generalized duality mapping
Jy: X — 2% that is defined by

Jo(x) = {f* € X"+ (2, f*) = |lal|*, || £ = |l=[|"" "} V2 € X,

where ¢ > 1. As a special case, J; is the normalized duality mapping, and J,(z) =
||z||7=2 J2(z) for z # 0. Next, as we are heading to uniformly smooth Banach spaces,
we define the modulus of smoothness px : [0,00) — [0, 00) by

1
px(t) = sup {S(llz +yll + llz = yl) = 1+ |2l < L[yl < ¢}
A Banach space X is uniformly smooth if

t
tim 2X0 _ g
t—0 t
and X is g—uniformly smooth if there is a positive constant ¢ such that
pX(t)Sctqv q>1

Note that J; is single-valued if X is uniformly smooth. In this context, we state
the following Lemma from Xu [I7].

Lemma 2.1 ([I7]). Let X be a uniformly smooth Banach space. Then X is
g-uniformly smooth if there exists a positive constant c, such that

[z +yll? < 2" + 4y, Jq(2)) + cqllyl|* -
Lemma 2.2. For any two nonnegative real numbers a and b, we have
(a+0)? <29(a? +b7).
Definition 2.1. Let M: X — 2% be a multivalued mapping on X. The map M

is said to be:

(i) (r)— strongly accretive if there exists a positive constant r such that
(u* =", Jy(u—v)) > rllu—v||?V (u,u"), (v,v") € graph (M) .
)—relaxed accretive if there exists a positive constant m such that

(i) (m
(W =", Jy(u—v)) > (—m)||u — 0|2V (u,u"), (v,v*) € graph (M) .
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Definition 2.2 ([5]). Let A: X — X be a single-valued mapping. The map
M: X — 2% is said to be A- maximal (m)-relaxed accretive if:

(i) M is (m)-relaxed accretive for m > 0.
(ii) R(A+ pM) = X for p > 0.

Definition 2.3 ([5]). Let A: X — X be an (r)-strongly accretive mapping and let
M: X — 2% be an A-maximal accretive mapping. Then the generalized resolvent
operator J%A: X — X is defined by

Tpia(uw) = (A+ pM)~*(u).
Definition 2.4 ([2]). Let H: X — X be (r)-strongly accretive. The map M : X —
2X is said to be to H-maximal accretive if
(i) M is accretive,
(ii) R(H + pM) = X for p > 0.
Definition 2.5. Let H: X — X be an (r)-strongly accretive mapping and let

M: X — 2X be an H-accretive mapping. Then the generalized resolvent operator
J%H: X — X is defined by

TMy(w) = (H + pM) ™ (u).

Proposition 2.1 ([B]). Let A: X — X be an (r)-strongly accretive single-valued
mapping and let M: X — 2% be an A-maximal (m)-relaved accretive mapping.
Then (A 4+ pM) is mazimal accretive for p > 0.

Proposition 2.2 ([5]). Let A: X — X be an (r)-strongly accretive mapping and
let M: X — 2% be an A-mazimal relaxed accretive mapping. Then the operator
(A + pM)~1 is single-valued.

Proposition 2.3 ([2]). Let H: X — X be a (r)-strongly accretive single-valued
mapping and let M : X — 2% be an H-maximal accretive mapping. Then (H + pM)
is mazimal accretive for p > 0.

Proposition 2.4 ([2]). Let H: X — X be an (r)-strongly accretive mapping
and let M: X — 2% be an H-mazimal accretive mapping. Then the operator
(H + pM)~! is single-valued.

3. EXISTENCE THEOREMS

This section deals with the existence theorems on solving the implicit inclusion
problem based on the A— maximal relaxed accretiveness.

Lemma 3.1 ([5]). Let X be a real Banach space, let A: X — X be (r)-strongly
accretive, and let M : X — 2% be A-maximal relaxed accretive. Then the generalized
resolvent operator associated with M and defined by

Jpl‘fIA(u) = (A+pM)  (u)Vue X,

i (Tfpm)—Lz'pschitz continuous for r — pm > 0.
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Lemma 3.2. Let X be a real Banach space, let A: X — X be (r)-strongly accretive,
and let M : X — 2% be A-mazimal (m)-relazed accretive. In addition, let g: X — X
be a (B)-Lipschitz continuous mapping on X. Then the generalized resolvent operator
associated with M and defined by

I () = (A+pM)H(w)Vu e X,

satisfies

17754 (g(w) = Tpa(g(w))]| < [l =],

r—pm
where r — pm > 0.

Furthermore, we have
(Jo(Tpialg(w)) = Jpla(g(0))), g(u) = g(v)) = (r — pm)[|T;%4 (9(w)) = Tp%a(g(0))II
where r — pm > 0.

Proof. For any elements u,v € X (and hence g(u), g(v) € X), we have from the
definition of the resolvent operator J %A that

%[gm) — A (g(w))] € M (I, (g(w)),

and
1

;[Q(U) - AU%A(Q(”)))] € M(J%A(g@))) .
Since M is A-maximal (m)-relaxed accretive, it implies that
@ (9(u) = g(v) = [A(T14(g(w)) = A(TL4(g(W))]s Ja(Tpla(g(w) = Tpla(g(v))))
> (—pm)|| 134 (g(w)) = Tpla(g(0)) "
Based on (2)), using the (r)-strong accretiveness of A, we get
(9(w) —g(v), Jq(Jpal9(w) = Tp"a(9(v))))
>(A(T)0(g(w)) = A(T04(9())), Jo (T2 (g(w) = T3 lalg(v))))

- PmHJé\,lA(Q(U)) - J%A(g(v))‘ !
>(r — pm)||Tp%a (g(w) = T2 (g(0))]|"-
Therefore,
(g(u) = 9(v), Ty (Jpla(g(w)) = Tp"a(g(v)))) = (r = pm) || Tp 4 (9(w)) = Tpla (g ()"
This completes the proof. 0

Theorem 3.1. Let X be a real Banach space, let A: X — X be (r)-strongly
accretive, and let M : X — 2% be A-mazimal (m)-relaved accretive. Let g: X — X
be a map on X. Then the following statements are equivalent:

(i) An element u € X is a solution to ().

(ii) For an u € X, we have

g(u) = T, (A(g(w)) — pA(u)),
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where
Tyl (u) = (A+ pM) ™ (u).

Proof. It follows from the definition of the resolvent operator J %4. O

Theorem 3.2. Let X be a real Banach space, let H: X — X be (r)-strongly
accretive, and let M : X — 2% be H-mazimal accretive. Let g: X — X be a map
on X. Then the following statements are equivalent:

(i) An element u € X is a solution to ().

(if) For an u € X, we have

g(u) = 3% (H(g(w)) — pH(u)),
where
o (w) = (H + pM) ™" (u).
Theorem 3.3. Let X be a real g-uniformly smooth Banach space, let A: X — X
be (r)-strongly accretive and (s)-Lipschitz continuous, and let M: X — 2% be
A-mazimal (m)-relazed accretive. Let g: X — X be (t)-strongly accretive and
(8)-Lipschitz continuous. Then there exists a unique solution z* € X to for

1
9:<1+ )“ 1—qt+cyB9+ /B9 — qrtd + c 5134
r—pm r—pm
(3)
+ YV1—=qrp+cepist <1,
r—pm

forr—pm>1 andcq > 0.
Proof. First we define a function F: X — X by
F(u) = u - g(u) + I (Alg(u) — pA(u))
and then prove that F' is contractive. Applying Lemma [3.I} we estimate
1F(u) = F(0)]| =[ju —v — (g(u) = g(v)) + T2 (Alg () — pA(u))
— M (Ag(v)) — pAW))|

1
gHu —v—(g(u) —g(v))H + r—pm

— A(g(v)) — p(A(u) — A(v))|

[ Ag(w))

<(1+ ) lu = = (o) — g(o)]
L Agu) — Alg(0) ~ (o) — o)
- plA) — AW

Since g is (t)-strongly accretive and (()-Lipschitz continuous, we have
[u—v = (g9(w) = g(@)[|" = llu = vl|* = ¢{g(u) = g(v), Jo(u = v)) + cqllg(u) — g(v)||*
< lu =l = gtllu = v[|7 + g f7u — v[|?

= (L =gt +cgf)|u—vf?.
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Therefore, we have

(5) [ —v = (g(w) — g(@))|| < Y/T—qt + g

Similarly, based on the strong accretiveness and Lipschitz continuity of A and g,
we get

(6) |A(g(w) = A(g(v)) = (g(u) — g(v))|| < /BT — qrtd + c4s939,
and

™) lu— v — p(A() — A@))[| < /T~ arp + cypis.

In light of above arguments, we have
(8) [1F(u) = Fo)|| <0flu—of,

where

1 1
0= (1—}—7) Y1 —qt + ¢+ ——— /B4 — qrtd + c,s931
r—pm r—pm

——— Y1 —qrp+cgpis? <1,
r—pm

for r — pm > 1. ([

(9)

Corollary 3.1. Let X be a real g— uniformly smooth Banach space, let H: X — X
be (r)- strongly accretive and (s)-Lipschitz continuous, and let M: X — 2% be
H-maximal accretive. Let g: X — X be (t)-strongly accretive and ()-Lipschitz
continuous. Then there exists a unique solution z* € X to for

1 1
0= (1—|— 7> Y1 —qt +c B9+ = /B9 — qrtd + c 8131
T r

(10) '
+ =1 —qrp+cepis? <1,
T
forr >1.
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