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A NOTE ON LINEAR PERTURBATIONS OF OSCILLATORY
SECOND ORDER DIFFERENTIAL EQUATIONS

RENATO MANFRIN

ABSTRACT. Under suitable hypotheses on ~(t), A(t), q(¢) we prove some
stability results which relate the asymptotic behavior of the solutions of
u 4+ () + (q(t) + /\(t))u = 0 to the asymptotic behavior of the solutions
of u’ + q(t)u = 0.

1. INTRODUCTION

Let q: [tg,00) — (0,00) and ~, A: [tg,00) — C be continuous functions. We will
consider the differential equation

(L.1) W () (gt FAD)u=0, fo<t<oo
as a perturbation of
(1.2) W+ qt)u=0, tg<t<oo.

A number of papers have dealt with the linear perturbations of (1.2)) assuming g,
or the solutions of ([1.2]), suitably well-behaved as ¢ — oco. For instance, R. Bellman
[1] proved that if all solutions of (L.2) belong to LP[ty,00) N LP [ty, 0), where

1§p§p’§oo,%—i—i:l(p’:oo,ifp:l)thenallsolutionsof

(1.3) u’ + (q(t) + At)u=0,

where X is bounded, belong to LP[tg, c0) N LP [ty, 00); Z. Opial [9] showed that if ¢ is
nondecreasing, then all solutions of are bounded as ¢ — oo, if [ A q_%dx <
00; W. F. Trench [I0] demonstrated that if [ |A|[2;|?dt < oo (i = 1,2), where
21, z9 are two linearly independent solutions of , then every solution of
can be written in the form az; 4+ Bzo with «a, (8 suitable absolutely continuous
functions. For other results of this type we may refer to [2 3} [].

Now, one observes immediately that many of these criteria place rather ineffective
conditions, since one needs to know the behavior of solutions of the unperturbed
equation as t — 0o. On the other hand, assuming ¢ nondecreasing, in Opial’s
criteria [9] this a-priori knowledge is not required.

In this note, applying some results proved in [7], we will derive new effective
conditions on ¢, v, A which, if g is positive and sufficiently smooth, ensure that
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all solutions of (L.1)) are bounded or p—integrable (i.e. ftzo |u|P dt < oo for some
p > 0) on [tg, c0). Precisely, under the assumption that
dm
(1.4) q(t)>d>0 and gy (q_%) is of bounded variation in [tg, 00),
for some integer m > 1, we shall prove the following;:

Theorem 1.1. Assume (1.4)) holds and that ftzo (Il + 1Al q 3 ) dr < co. Then all
solutions of (1.1)) are p-integrable (p > 0) if and only if ftzo ¢ 5 dt < .

According to the Weyl classification, for p = 2 the conclusion of Th. [[.I] means
that if ||+ |A| ¢~ % is integrable then equation retains the limit circle property.

Concerning the boundedness and the asymptotic behavior of solutions of (L.1)),
we introduce the energy:

(1.5) E(u,t)

Then, we have:

Theorem 1.2. Assume (1.4) and ftzo (1] + |)\|q7%)dx < oo. Then for every

solution u of (1.1)) there exists the finite limit lim;_, o E(u,t) def Eu, with &, >0

if u# 0.
Moreover, if z1, z2 are linearly independent solutions of (1.2)), there exist unique
a, B € AC[tg,00) (i.e. o/, 3 € L'[ty, <)) such that

(1.6) u=az + 82, u=az+p2.

g% [u®)? +q(t) " [ (), t>to.

Finally, if ¢(t) — oo as t — oo, we also have:

Theorem 1.3. Assume (1.4) holds with ¢ — oo as t — oo. In addition suppose
that there exists a constant C > 2 such that

t

1

(1.7) lim sup (/ (317 +4|\q 2 ydr — c 1nq(t)) < 00.
t—oo to

Then all solutions of (L.1) satisfy lim_ o u(t) = 0. Furthermore, (1.6) holds with

a, B € ACoclto, ), ie. o, B’ € LL _[to,0) .

loc

We do not know if the condition C > 2 in (|1.7) is the best possible. However,
we can show that it is not sufficient to require that (1.7) holds for an arbitrary
constant C > 0. See Example [5.4] below.

Remark 1.4. It is possible to prove all the previous results under slightly different
assumptions on g. More precisely, the following holds:
Assume ¢(t) > 0 and (¢~ 2)™) € AC)oe[to,0) for some integer m > 1. Then

Th. remain to hold if, instead of ([1.4]), we suppose:

(1.8) Tim (¢74(0)' 7 | HP0[F =0, 1<h<m,
and

_ d _1\™M dm+1 1\ Im+1
(1.9) q /2 (@q 2) (Wq 2) € L' (to,0),



LINEAR PERTURBATIONS OF SECOND ORDER EQUATIONS 107

for all integers 7,, ..., Mm+1 > 0 such that
(1.10) S om=m, > hpp=m+1.
0<h<m+1 1<h<m+1

See [7, Prop. 6.1, Cor. 6.3]. One can also show that ¢ satisfies (1.8])—(1.10] if (1.4)
holds and (¢~ 2)(™ € ACjuc[to, 00). In some cases the conditions (T.8)—(T.10) are
less restrictive than (I.4). See [§], [7, Section 7] and Remark [5.3] below.

2. SOME PRELIMINARIES

To demonstrate Th. and we will apply some results of [7] (see also
[6, [8]) on the asymptotic behavior of solutions of the unperturbed equation (1.2).
Below we briefly state the main results which will be needed in the proofs.

Theorem 2.1 ([7, Th. 1.1]). Assume that (L.4) holds. Then all solutions of (1.2)
are p—integrable, p > 0, if and only if LZO ¢ 1dt < oo.

Theorem 2.2 ([7, Th. 1.2]). Assume that (L.4) holds and let u be a solution of
(1.2). Then there exists the finite limit

(2.1) lim E(ut) €&, with £,>0 if u#0.

Remark 2.3. All these statements remain true if, instead of (1.4)), we assume one
of the following conditions:

— ¢ satisfies the conditions ([1.8))—(1.10)), see [7];

- 0<0<q(t) < 5 < oo and ¢™) is of bounded variation for some m > 1;
if m =1 it is enough to suppose ¢(t) > § > 0. See [§].
On the other hand if, instead of with m > 1, we only suppose ¢ > 6 > 0 and
q_% of bounded variation, the conclusions of Th. and Th. are, in general,
false. This happens even if we further require that g(t) — oo as t — oco. See [4].

Notation. Given a,b € R, we shall use the symbol aVb for max{a,b}.

From now on we fix

(2.2) 21, 22: [to,00) — C,
two linearly independent solutions of (|1.2)). Namely we suppose that, for ¢ = 1,2,
(23) Z:;/ + q(t)zl = 0 in [t(), OO) y

with nonzero wronskian, i.e. W(z;, z2) = 2125 — 2{z2 # 0.
Applying Th. 2:2] we deduce the following:

Lemma 2.4. Assume that (1.4) holds. Then there exists the finite limit
(2.4) lim <q% 21 Ey g E zgzg) L
In addition, setting &; def limy o E(24,t) (i =1,2), the quadratic form

(2.5) Qa,b) L & |a? + & |b]* + 2Re(Erpab), (a,b) € C2,
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is positive definite.
Proof. By Th. there exist finite, the limits as t — oo, of
(2.6) E(z1,1), E(z2,1), E(21 + 29,t), E(21 +i22,1).
Observing that
(2.7) E(z1 + 20,t) = E(21,t) + E(22,1) + 2Re(q% 2Es 4 q 7 ziZé) ,
we deduce that there exits the finite limit
(2.8) tlin(;lo Re (q% nE+q? z:'léé) .
Moreover, since
(2.9) E(z1 +iza,t) = E(21,1) + E(22,t) + QIm(q% MZ+q 2 212'2) ,
we also deduce that there exits the finite limit
(2.10) tli)rgo Im (q% 2Es 4 q® ziéé) .
Thus, it is clear that there exists the finite limit .
To continue, if u = azy + bz (a,b € C) is any solution of , we easily have
tlgglo E(u,t) = tlirgo E(az + bz, t)
= |af* lim E(z1,t) + |b]* lim &(zo,t)
(2.11) e e
+2Re tlirglo ab((ﬁ Z1Z22 +q 2 ziéé)
=& |a|2 + & \b|2 + 2Re(€12 a?)) ,
Since lim;_ oo E(u,t) > 0 if u # 0, by definition it follows that

(2.12) Q(a,b) >0, ¥(a,b) € C2\ {(0,0)}.
Thus the quadratic form (2.5)) is positive definite. ([

Further, we also have:

Lemma 2.5. Assume that (1.4) holds. Given A > 1 there exists tx > to such that
for all solutions u of (1.2) one has

(2.13) At E(u,t1) < E(u,ta) < AE(u,ty),
for all t1,ty > ty.

Proof. It is clearly sufficient to prove the second inequality in ([2.13).
Since the quadratic form ([2.5) is positive definite, there exists p > 0 such that

(2.14) Q(a,b) > 2p(|la]* +b|*), V(a,b) € C.
By a continuity argument, this in turn implies that

(2.15) E(azy + bz, t) > p(lal* +16*), V(a,b) € C?,



LINEAR PERTURBATIONS OF SECOND ORDER EQUATIONS 109
provided t is large enough, say t > t > to. Moreover, Ve > 0 there exists ¢, > t,
such that
(2.16) E(az + bza, o) — E(azy + baa, t1)| < e (|a]* + [b]?),
for all (a,b) € C?, for all t1,ty > t.. Hence
(2.17) |E(azy + bza, ta) — E(azy + bzo, t)| < ep™t E(azy + bza,ty)
if t1,t3 > (t-Vt). From this, we obtain that
(2.18) E(azy + bza, ta) < (1 + spfl) E(azy + bzo, 1),

for all (a,b) € C?, if t1,ts > (t.V1).
Hence, if

(2.19) u = azy + bzo

is any solution of (1.2)), we have

(2.20) E(u,ty) < (T+ep™') E(u,ty), Viti,ta > (tVE).

Finally, given A > 1, setting

(2.21) e=p(A—1) and ty=(t.Vt),

we obtain the second inequality of . O

3. PrROOFs OF THEOREMS [I.1]

Let 21, z2 be the independent solutions of (1.2]) fixed in (2.2)—(2.3). Denoting
with

(3.1) W W (21, 20) = 212, — 2, 20
the wronskian, we clearly have
(3.2) W(t) =W(tg) #0, Vt € [tg,0).
Then, recalling , we introduce the quantity

def

(3.3) A= sup [E(z1,t)VE(2,t)].
t>to
By Th. 2.2] we know that 0 < A < .

Besides, since £(z;, t) ef q()2 |z:(8)]2 + q(t) "2 |2}(t)|?, for all £ >t we have:

|Zl|7 ‘22| < \/qui 3

1
(3.4) 211, 12| < VA g7,
212l 2 2] < 5
where the last inequality of (3.4)) is a consequence of the fact that
(3.5) (0 (1) <278t (= 1,2),

via the classical inequality: ab < (a* +b?)/2 for a,b € R.
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Now, let
(3.6) u: [tg,00) — C

be a given solution of (I.1)). Following the argument of W. F. Trench [I0], we look
for «, B: [tg,0) — C such that

(3.7) u=qaz + Pz, u =az +p2.
If (3.7) holds, then «, § are uniquely determined by

w2 —uz
3.8 a=—=——"and =—-=_"
(3.8) W B 7
On the other hand, differentiating the expression az; + (Bz2 twice and substituting

into ([L.1]), we easily see that (3.7)) holds if and only if «, § verify
{o/ 2L+ B 2 = =y (czf + B25) — A (az1 + B22) ,

uzh —u 29

3.9
(39) o2+ 2=0,

with initial data, at t = tg,

uzh —u zo u' 2y —uzy

. Blto) = ‘ .
w ‘t:to Blto) w t=to
Solving (3.9) with respect to o/, 3’ we obtain the first order, linear system

(3.10) alty) =

(3.11)

{a/:%(7222'1+>\2122)+51(722'2%—")‘2%) t>to.

B =—-2(yazl+AzE) - %(*yzl Zh+ Az 22)
Since the Cauchy problem (3.10)—(3.11)) has a unique solution in [tg, 00), we conclude

that there exist a, 3 such that (3.7) holds.
Now, using the integral representation

t
a(t) = alto) + %/ [a(yze 21+ Az122) + B(7 222 + A 2)] ds,

(3.12) "
B(t) = Blto) — % [a(y 2121 +A27) + B(y 2125 + Az 22) | ds,

to

for all t > tg, we can estimate «, (.
In fact, setting

def
(3.13) Z(t) = |e(t)| +|B8(1)],
from (3.4) and (3.12)) it follows that
A t
(3.14) Z(t) < Z(to) + 5757 | ZBhl+4 ¢ %)ds,
to

for all t > tg. Then, applying Gronwall’s Lemma to (3.14)), we finally deduce

A ¢ 1
) < — ~3
(3.15) 2(0) < 200) e g5y [ (3114~ ds,

for all £ > tg.



LINEAR PERTURBATIONS OF SECOND ORDER EQUATIONS 111

Remark 3.1. More generally, given t1,ts > tg, one can also prove that

A t2 .
. < — T2 :
(3.16) Z(ty) < Z(t1) exp 2|W|‘/t1 (3 Il + 4]\ ¢ )dé"

For ty > t1 it is clear that (3.16) holds; for to < t; it sufficient to apply Gronwall’s
Lemma backward in time. In particular, if ftzo (Iv]+ Al q: )da < oo, it follows
from (3.16]) that there exists the finite limit

lim Z(t) ' Z, with Zo >0 if u=0.

t—oo

We are now in position to prove Th. and then Th.

3.1. The Proof of Th. The assumption
(3.17) / (] + D ) dt < oo
to

and inequality imply that Z(¢) < C in [tg, 00), for a suitable C' > 0. Thus
(3.18) la@®)], [B®)] < C in [ty 00).

From this, we easily see that

(3.19) E(u,t) <2C*A forall t>tg.

Further, from (3.4)), (3.17)) and (3.18]), it turns out that the integrals in the right
hand-side of (3.12)) are absolutely convergent. This means that «, 8 € AC[tg, 00),

ie. o, 3 € L[ty,o0). In particular, it follows that there exist the finite limits

)

(3.20) tli)rgo B(t) = P s tlg(r)lo a(t) = as -

By Th. 2.2l and Lemma we know that there exist the finite limits:
(3.21) tlg(r)lo E(ziyt) =& (i=1,2),

(3.22) Jim (q% mE gt zj,é;) — &)

Then, by (3.7, one has
lim E(u,t) = lim &(az; + Bz2,t)
t—o0 t—o0

= lim loa?E (21, ) + Jim 8% £ (22, 1)

(3.23) + 2Re tlirglo aﬁ(q% 2122 + qié 2'12'2)
= gl |OCOO|2 + 52 |ﬂoo‘2 + 21{(3(512 aooBoo)
= Q(aoo7/600>7

where Q(+,-) is the quadratic form (2.5). This means that £(u,t) tends to a finite
limit as ¢ — oco. Moreover, by Remark we know that

(3.24) lovoo] + |Boc] = Zoe >0 if w 0.
Since Q(-, -) is positive definite, the limit (3.23)) is strictly positive if u # 0.
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3.2. The Proof of Th. Assuming (1.4), by Th. the condition ftooo ¢ Tdt <
oo (p > 0) is equivalent to the p-integrability of z;, z2, namely

(o) (o)
(3.25) / 1| dt < oo, / 2|7 dt < oo
t() tO
Be51des the assumption ft (|7 + A ¢~ 2 )dt < 0o and (3.15)) lead to (3.18). Hence,
by (3.7), we obtain

(3.26) / ufP dt < 2?01’/ (Izal” + |=al?) dit < oo

to to

Conversely, let us suppose that all solutions of (|1.1)) are p-integrable. By Th.
we know that for every solution u Z 0 of (|.1]) there exists a finite and positive the
limit
(3.27) lim &(u,t) & &, >0.

t—oo
This implies that if u;,us are two linearly independent solutions of (1.1)) then

(3.28) hmlnf\/ () (lur () + [ua(t)]?) > 0.

In fact if - ) does not hold, there exists a sequence {t, }n>1, t, — 00, such
that \/q(tn) (Ju1(tn)|? + |u2(ts)|?) — 0 as n — oco. Then, by Th

(5.29) . |u1< >\2 . |u2< >|2

n—oo ’I’L*?OO
TL n

with 0 < &,, , &4, < 0o. In particular |uf(t,)], \uQ(tn)| > 0 for n large enough,
and

(3.30) lim ()l

_52 5 2.
n—oo fuh(ta)] T

Hence, for a suitable subsequence {7,}n>1 C {tn}n>1 we may suppose that
uh(7,) #0 for all n > 1 and that

4y (7n)

n—oo u/2 (Tn)

(3.31) — ¢ with || = &2 ELF.

Next, we consider

(3.32) o(t) ¥ ui(t) = Cus(t).

Since uj,us are linearly independent, v is a non-zero solution of (1.1)). It follows
that

lim sup v/q(75) |v(7'n)\2

<2 lim q(m) (Jur(m)? + ¢ lua(ra)]?) = 0.

n—oo

(3.33)
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Moreover, by (3.29)) and (3.31)—(3.32)) we have also

R () — Cupm)l?
n—oo q(Tn) n—oo q(Tn)
3.34
o iy WP i) 2
n—oeo q(Tn) u/2 (Tn)

From (3.33)) and (3.34)) it follows that lim, ., (v, 7,) = 0. On the other hand,

by Th.[1.2] we must have lim; .o, £(v,t) = &, > 0 because v Z 0.
This contradiction proves that (3.28) holds.

Now we can show that f:)o ¢ 1dt < oo, if all the solutions of (1.2) are

p-integrable. In fact, (3:28) implies that there exists & > 0 such that \/q(t) (Juq(t)*+
lua(t)|?) > € for t large enough, say t >t > t,. Hence, since p > 0, we have the
inequalities

P

[ ot ()
<(%)

4. PROOF OF THEOREM [L.3|

First of all we prove that the solutions of are bounded if holds. To
this end, we select suitable linearly independent solutions of . More precisely,
fixed 7 > to, we denote by v,, w, the solutions of satisfying, for ¢t = 7, the
initial conditions

1) {mhvdﬂ% {wAﬂO

o (r) =0 wi(r) =1

p
2

7 a7 + o)

(3.35) .
/{ (Jur ()P + uz(t)[P) dt < co.

[SS]

Denoting with W, def vy wh — vl w, the wronskian of v,, w,, from (4.1)) we clearly
have

(4.2) W, (t)=q(r)"2 , Vtety,00).

Taking (|1.5)) into account, we introduce the quantity

(4.3) A, sup [S(UT,t) VE(wT,t)} .

t>T
By Th. 0 < A, < 0o. In addition, we have:
oz, |w-| < /Ay qii )
1
(4.4) o, lwr] < VAr g7,

A
jor erl, fwpwr| < 57,
for all £ > 7. Now, let

(4'5) u: [t07 OO) —C
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be a solution of (1.1). We look for &, B: [to,00) — C such that
(4.6) u=dv, + Pw,, u =av. + puw .

As in the proofs of Th. and differentiating the expression u = av, + Bw-
twice (with respect to t) and substituting into (1.1]), we easily see that &, § must
satisfy the integral equations

t
a(t) = a(r) + WL/ [a(yw- vl + Avewe) + B(yw-wl + Aw?)] ds,

(4.7) t
B(t)ZB(T)—W [a(yvr vl + Av2) + B(yvr wh + Avew,)] ds
with initial data, at ¢t = 7,
a(r) = u(r) q(r)?
(48) {m> (7).

From and 7 it follows that
la(t)] +[B(1)] <|a(r)] +|B(r)]
(4.9)

t
MT/T (&l + 181) (3 |7] +4|Al ¢~ %) ds,

for all ¢ > 7. Thus, by Gronwall’s Lemma, we obtain:

t
(3] +4|X ¢ ) ds.

(4.10)  |a)] +[B8@)] < (ja(n)] +16(r)]) sz/T

Then, from (4.4), (4.6]), (4.8) and (4.10) we have

1

1 A, t 1
(4.11) |u(t)| < Brq(t)"* exp W/ (Blvl+4[Xg72)ds,

for all ¢ > 7, with B, = VA, (Ju(1)|q(1)? + [/ (1)]) .
We can now prove that u remains bounded as ¢ — oco. In fact, by (4.11)), u is
uniformly bounded in [tg, 00) if the quantity

t
e 1 W,

(4.12) K.(t) % / (37| + 4|\ ¢ 2)dz — oA (t)

remains bounded as t — oo, i.e. if ([1.7)) is verified for some C > 21/{;‘*

clearly enough that (1.7) holds for some C such that ’

. Hence, it is

(4.13) C>2inf A

T>to T

We claim that the greatest lower bound of the quotient A,/W. is equal to one.
To see this, we observe that the initial conditions (4.1)—(4.2)) give

(4.14) E(vr,7) = E(wr,7) = g(7) "% .
Thus, by (4.2)—(4.3), we have A,/W, >1 for all 7> ¢.
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On the other hand, by Lemma [2.5] for all A > 1 there exists t5 > to such that

(4.15) E(vr,t) < AE(vr, 1), E(wst) <AE(wr,T),

for all ¢t,7 > t5. Hence, by (4.3) and (4.14)), we have

(4.16) A <Aq(r)™%, for 7>t

It follows that A,/W, < A for 7 > t, and we my conclude that
A

4.17 li T =1.

(4.17) BT

T

Finally, let us prove that u(t) — 0, as t — oo, if ) is verified with C > 2. In

From (4.13) we deduce that v remains bounded if (1.7)) holds with C > 2.
[
fact, by (4.17) we may fix 7, > tg such that

2 A,
(4.18) C> W—TOO
Then, by , there exists p € R such that
(4.19) Kn() < pt (5 oom) gy, vizm,
C 24,

where K, is the quantity introduced in (4.12). Hence, since ¢(t) — oo, from
4.18)—(|4.19) we see that K, (t) — —oco as t — oo. Then, setting 7 = 7, in
4.11)), we deduce that u(t) — 0 as t — oo.

5. SOME APPLICATIONS

We give here some applications of Th. [I.T] [I.2] and [I.3] We will also compare
these results with the criteria of R. Bellman [I] and Z. Opial [9] stated in the
introduction.

In the following examples, C' will stands for a generic positive constant, inde-
pendent of ¢; in addition, 7, r’, s will always indicate real numbers.

Example 5.1. Let us consider equation ([1.1]) in [e, 00), with ¢(¢) = (2 + sin(¢°)) In ¢,
0<s<1;v(t)=2W X\1t) =29 where ¢y, ¢ are bounded, continuous func-

tint? tvInt
tions.
Then ¢(¢t) > Int > 1 in [e, 00), moreover
_1y\(h) this—1)
5.1 2 <C in l|e,00),
6.1 (" <o i o)
for all integers h > 1. Hence ([1.4)) is verified taking a positive integer m > *-.

It is easy to show that holds if 3|1z + 4 ¢2]l < 3. In this case,
applying Th. [1.3]we deduce that every solution u of tends to 0 as t — oco. The
assumptions of [9] are not verified, because ¢ is not monotone. Since f * q_%dt =
+oo for all p > 0, by Th. for every p > 0 there exists at least a solution of
which is not p-integrable on [tg, 00). Thus the criterium of [I] is not applicable.
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Example 5.2. Consider the equation

(5.2) u’ + %u' + [t + at” sin(t*)] u=0 for t>ty>1,

where ¢ is a continuous function, a € R, r > 0.

1) Case r' < 5 —1, = @ < 0. Setting ¢(t) = t", (L.4) is easily verified and we
can apply Th. and Th. Therefore for every solution u of (5.2)) there exists
the finite limit

(5.3) Jim (t2lu@®) +t 2|/ (#))?) =&, with &, >0 if w#0;

if 7 > 0 then every solution u of ([5.2)) is p-integrable for p > % .

1') Case ' < § —1, ¢ bounded. Setting q(t) = tr as above, condition ([1.7)) holds if
we suppose if 3[[¢||r= +4la] < § (3][¢|lL=~ < 5, if " < § —1). In this case, by
Th.[I.3] every solutions u tends to 0 as t — oco.

Observe that in cases 1) and 1’) there are no restrictions on s. Even if ¢ =0,
the criterium of [I] is applicable only for r > 2 and 7/ < 0.

2) Case 5 —1< 7" <r, 0<s <1 In this case we must set ¢ =t" + at” sin(t*).
Then, we have the inequalities

(5.4) (g 2) W] <Ot 50 4= FThEDY in (1, 00),

for all integers h > 0, provided ¢y is sufficiently large. This means that is
29+2r —3r
2(1

— if f l‘b‘ < 00, We can apply Th. ! and (1 ﬂ as in the previous cases;

—if¢is bounded7 condition ([1.7) holds if 3||¢||L- < & . In this case, by Th.
every solutions u tends to O as t — oo.

verified if we take a positive integer m > Then we have:

3) Case ' = r, 0 < s < 1. Setting ¢ = t" + at"” sin(t*), we have exactly the
previous situation, provided |a| < 1.

In cases 2) and 3) the criterium of [9] is not applicable if ¢ is not monotone
nondecreasing, i.e. respectively if s >r — 7' and s > 0.

Remark 5.3. Let us consider equation (5.2]) in [1,00) with #' =7 >0, |a| < 1
and s > 1. Setting ¢ = t" + at” sin(t®) as above, we have ¢(t) > t"(1 — |a]) in
[1,00) . The assumptions stated in ((1.8)—(1.10)) of Remark are easily verified if
we suppose

(5.5) r>2(s—1)

and m is a sufficiently large, positive integer. In fact, from we obtain
(5.6) (@) 7 F (g ) MF <ot EFETD yh >,

Thus implies (L.8). In addition, also gives

m—+1 1
(5.7) ‘q mo /2 (jtq %)’“... (%q—%)"”* < O FHmIG-D)
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for all integers 7,,...,Nm+1 > 0 satisfying (1.10]). Hence, (1.9)) is verified if

2 |
(5.8) r>—+2(s—1)”“L

From (5.5)) again, we can see that (5.8)) holds if m is large enough. As stated in
Remark we are therefore in a position to apply Th. [I.1] - 1.2] and [I.3] More
precisely, assuming [ > @ < 00, we can apply Th h and (1 2 as in the previous
cases. Condition (L1.7)) holds if 3||¢|[L~ < § and, in this case, every solution u
tends to 0 as ¢ — oo.

Example 5.4. Here we will show that the conclusion of Th. (u(t) — 0 as
t — 00) may be false if we only require that holds for an arbitrary C > 0. In
other words, we must suppose C > Cy, for a suitable Cy > 0. In fact, let us consider
the equation

(5.9) v+t +qt)u=0, te][r,0).

_1f?
As it is known, if v € C!, the substitution u = ve™ 2 fT 7 transforms (5.9) into

/ 2
(5.10) v"+(q7%fﬁyz)v:0, t € [r,00).

Now, setting ¢ =t,y= ¢ (a € R) and 7 = 1 we obtain the equation

a a2

5.11 " t+ — — —
(5:11) U+(+2t2 42

)vzo tel,00).

Equation satisfies the assumptions of Th. in [tg,00) C [1,00), provided
to is large enough; for every nonzero solution v there exists finite and positive the
limit

(5.12) lim (2 [o(t)]> + 2 ' (1)]%) €&, .

t—oo

Now, let ¢ be a fixed nonzero solution of ((5.11)), thus & > 0. Since ¥ is oscillating,
there exists a sequence {t, }n>1, tn, — 00 as n — oo, such that

(5.13) |0(tn)] >

Then @ = e * Jirar _ t~% ¥ is a solution of (5.9) in [1,00) satisfying:
~ a_ 1
(5.14) la(tn)] > = tn2 %, VYn>1.

In particular, it follows that @(t,) 4 0, as n — oo, if a < —3 . Hence, for a < —5 ,
the conclusion of Th. cannot hold.

On the other hand, taking ¢ = ¢, v = ¢ it is easy to see that equation
satisfies condition only if |a| < §.
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