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GLOBAL EXISTENCE AND POLYNOMIAL DECAY
FOR A PROBLEM WITH BALAKRISHNAN-TAYLOR
DAMPING

ABDERRAHMANE ZARAI AND NASSER-EDDINE TATAR

ABSTRACT. A viscoelastic Kirchhoff equation with Balakrishnan-Taylor dam-
ping is considered. Using integral inequalities and multiplier techniques we
establish polynomial decay estimates for the energy of the problem. The
results obtained in this paper extend previous results by Tatar and Zarai [25].

1. INTRODUCTION

The aim of this paper is to extend a previous work by Tatar and Zarai [25] where
an exponential decay result and a blow up result for solutions of the wave equation
of Kirchhoff type with Balakrishnan-Taylor damping have been established. Here
we study the case where the kernel h decays polynomially (or more precisely, of
power type). Namely, we are concerned with the following initial-boundary value
problem

Ugt — (fo + & |[Vu()||3 + o(Vu(t), Vut(t)))Au
Jrfg h(t — s)Au(s)ds = [ulPu in £ x [0, +00)

(1) :
w(z,0) =up(z) and wu(z,0) =wui(z) in

u(z,t) =0 in I x[0,400)

where (2 is a bounded domain in R™ with smooth boundary I'. Here h represents
the kernel of the memory term. All the parameters &, &1, and o are assumed to be
positive constants. When £; = o = h = 0, the equation reduces to a nonlinear
wave equation which has been extensively studied and several results concerning
existence and nonexistence have been established [4], [I0]-[12] [15], [16], [19]. When
&, &1 # 0, 0 = h = 0, the equation in reduces to the well-known Kirchhoff
equation which has been introduced in [I3] in order to describe the nonlinear
vibrations of an elastic string. More precisely, the first (one-dimensional) Kirchhoff
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equation was of the form

L OPu Eh (" /0u 2, 0%
g ={m+ap || (52) o) + 0
for 0 < x < L, t > 0; where u is the lateral deflection, x the space coordinate, t
the time, E the Young modulus, p the mass density, i the cross section area, L
the length, po the initial axial tension and f the external force. Kirchhoff [13] was
the first one to study the oscillations of stretched strings and plates. The question
of existence and nonexistence of solutions have been discussed by many authors
(see [17], [20]-]23], [26]).

The model in hand, with Balakrishnan-Taylor damping (o > 0) and h = 0, was
initially proposed by Balakrishnan and Taylor in 1989 [3] and Bass and Zes [5]. Tt
is related to the panel flutter equation and to the spillover problem. So far it has
been studied by Y. You [27], H. R. Clark [9] and N-e. Tatar and A. Zarai [25] 26].
In case o = 0 the equation in describes the motion of a deformable solid with
an hereditary effect. This phenomena occurs in many practical situations such as
in viscoelasticity. Again, one can find several papers in the literature especially on
exponential and polynomial stability of the system (see [2], [6]-[8], [I8], [24] and
references therein, to cite but a few). The well-posedness is by now well established
and can be found in the cited references (see also [3], [27]).

An important question about the asymptotic behavior of solutions has been raised
by Clark in [9]. It has been proved there that solutions decay exponentially to the
equilibrium state provided that we have a damping of the form Aw,. This damping is
known to be a strong damping. In [25], Tatar and Zarai proved an exponential decay
result of the energy provided that the kernel h decays exponentially. In this paper
we improve this result by establishing sufficient conditions yielding polynomial
stability of solutions under a weaker damping, namely the viscoelastic damping
due to the material itself and in presence of a nonlinear source. This nonlinear
source, of course, will compete with both kinds of damping. More precisely, we
find a “stable” set of initial data where if we start there then the corresponding
solutions will decay polynomially to the stationary state when the kernel h decays
polynomially.

Our plan in this paper is as follows: in Section [2] we give some lemmas and
assumptions which will be used later as well as a local existence theorem. In
Section (3] we show that the energy of system is global in time and decays
polynomially when we start in a certain “stable” set.

IS

2. PRELIMINARIES

In this section, we present the following well-known lemmas which will be needed
later.

Lemma 1 (See [I, 14]). Let E(t) be a non-increasing and nonnegative function
defined on [0,00). Assume there are positive constants A, C" and Sy such that

/ E'A(t)dt = CE0)E(S), V S>Sy,
S
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then
(So+C)(14 X))\ >
Et) < EQ0)| ——F———— Vt>0.
0 <EO(Srgre)  Viz
Lemma 2. Let p be a non-negative number (n =1,2) or 0 <p < -4 (n>2)

then, there exists a constant C(p,Q) such that
[ullp+2 < Cp, D Vulla,  for ue Hy(Q).
Now, we state the general hypotheses

(A1) h:RT — R* is a bounded C!-function satisfying

fof/ h(s)ds=1£>0,
0
(A2) There exist positive constants k and p € (2, 00) such that
W(t) < kb5 (t), t>0.
It follows from (A2) that

K
h(t) < ——— t >

for some constant K > 0. Therefore, we have
1
h" € L*(0,00) for any n > —.
p

Now, we state the local existence theorem which can be found for instance in [6].
Theorem 1 (Local existence). Let ug € H}(Q), u1 € L*(Q) and 0 < p < p*.
Here p* = 25, ifn > 3 (oo, if n < 2). Assume further that (A1) and (A2)
hold. Then, problem admits a unique weak solution u € C([0,T]; H}(Q)) N
C'([0,T]; L*(2)) for T small enough.

3. GLOBAL EXISTENCE

Our first result states that the solutions exist for all time ¢ > 0 provided that
we start in a ”stable region” which we will define. We define the energy of problem

by
B(t) = o2 + (& + S2I9ulP) [Vl + (HOVa) (1)

t 2
) _/0 ME)IVuDI ds — =5 ull3, ¢ >0

where

(hDVu)(t):/ h(t—s)/QWu(s)—Vu(t)|2dxds.

0
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Lemma 3. E(t) is a non-increasing function on [0,00) and
(3) E(t)= —20—(2dt||v u ) + (WOVW) () — h(®)||Vul> <0, t>0.
Proof. Multiplying the equation in (1) by u; and integrating over 2, we get

2
S L1+ (& + LIVl 9 - st}

t
_ / _ _
+U(2dt”qu /QVu /0 h(t — s)Vu(s)dsdz = 0.

We remark that

/Vu/ (t — 5)Vu(s) ds dz = ;5[(hmvu)(t)/ot h(s) d5||vu(t)||2]

— SHOVu)(E) + S h(0)|Vul?

The relation (3] follows at once. O
Now let

P = (6= [ 10s)ds) 17l + v’

@ +(HOVu)(1) = = [l 13
then
6 B(t) = /I + F(o).

We define the potential well by
W = {u/I(u(t)) = £|Vu|® = ulp3 > 0} U{0} .
Lemma 4. Let u be the local solution of . If up € W and
Clp, Q)P+ rp+2 p/2
0 = S (P2 )" <

p+2
p

)
then u(t) € W for each t € [0,T]. Here C(p, ) is the Sobolev-Poincaré constant.

)

Proof. Let up € W, then I(ug) > 0. By continuity, this implies the existence of
T, < T such that I(u(t)) > 0 for all ¢ € [0,T;,]. Therefore, from (), and
Lemma, [3] we have

2 ! 9o _DP+2
Al < (60— [ b as) [ vul < 2220
(7) gp—;2E(t)§p;2E(0).

This relation, together with Lemma implies that for ¢ € [0, T,,],

C(p, Q)P+? (p +2
/ pl

p/2
[ull213 < C(p, QP2 || VulPH? < E(O)) [ Vul®.
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That is, by our assumption on «

t
lully 3 < atlVul? < (& - / A(s) ds) | Vul
(8) <l Vul?, Ytel[0,Tn.
Hence
I(t) >0, Vtel0,T,],

which means that u(t) € W, Vt € [0,T,,,] . By repeating the procedure, T, extends
to T. (]

Now we are in position to state and prove our first main result.

Theorem 2. Suppose that uo € H}(Q) and uy € L*(Q) satisfy (6), then the
solution of problem is global in time.

Proof. It suffices to show that ||u/||? + || Vul|? is bounded independently of t. By
virtue of Lemma [3] and Lemma [4] we get

2
E(0) > B#) = [+ 0)9ul = = [ull2 2}

2
> [|u’]* + IIV I” + pa UK

Therefore, as I(t) > 0, we see that
[uel® + [ Vul[* < c E(Q0) ¥Vt>0

for some positive constant c. (I

4. POLYNOMIAL DECAY

In this section we shall prove the polynomial decay of solutions of problem .

Proposition 1. Suppose that ug € HE () and u; € L*(Q) satisfy @, then we
have for anyT > S >0

[ EE0{(o- [ n6as)I9uor + S1vurt - 25 iz}
< CLE7 (0) E(S)

for some positive constant C1.
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Proof. Let us multiply both sides of the equation in by E% (t)u and integrate
over Q x [S,T], we obtain

/ST E%(t){ (50 - /Ot h(s) ds) V) + & | V| * — IIuIIZﬁ} dt

T T
—/ /E%(t)u”udxdt—a/ E%(t)||vu||2/ V' - Vudz dt
S Q S Q

T t
(9) + /5 /QE e (t)Vu(t) /0 h(t — s)[Vu(s) — Vu(t)] dsdx dt .

By an integration by parts we see that

//Em v udr dt = /Em ()| |* dt — /E )gdaj

/s (E7(t)) /Qu (t) u(t) de dt
and @D becomes

T t o [T o -
[5 E%(1)(6 — / h(s) ds) | Vu(t)|2dt = /S E% (1) 2dt

“pe 2 ! - B ()| da
—U/S E% (t)||Vul /QVuVudxdt /QE () (tyu(t)| d
T t
+/S /QEﬂ(t)Vu(t)/o h(t — s)[Vu(s) — Vu(t)] dsdz dt
- / #(8) | Vul*dt + / B () ullt i dt

T
(10) +/ (E%(t))'/ﬂu’(t)u(t)dzdt.

s
We start with the memory term. By using Cauchy-Schwarz inequality and the
e-Young inequality, we obtain

T t
/ E% (H)Vu(t) / h(t — 5)[Vu(s) — Vu(t)] ds de dt
Q

/E VI Vau(t) / /ht—s\Vu) u(t)\ds)Qdmfdt
—250/ BE(t / (t—s)||Vu(s)—Vu(t)Hds)Zdt

(11) +%°/S EF ()| Vu(t)| dt

for some g¢ > 0.
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Recalling that h'(t) < —th%(t) and using it appears that

/S E%(t)[/g(/o h(t—s)|Vu(s)—Vu(t)|ds> dx]idt

- [ Eo /Oth““”(t— JHEOFD (¢ 5)[Vuts) - Vu(t)] ds) dt
(

RUE (- )| Vu(s) — Vu(t)]? ds) dt

o\w
>
T
Sl
—
V2]
N—
QL
v
N—
/~
o\

o0 ) T t o1
< (/0 h —z(s)ds)/ Ep(t)(/o h+p(t—s)HVu(s)—Vu(t)||2ds) dt

S

IN
|

7;: ! E?’J(t)(/ot W (t— 8)||Vu(s) — Vu(t)]? ds) dt

S
1- T

—~~
—_
N}

~
N

|
=

)

E% (H)E'(t)dt <

s ?"E%(O) E(S)

/ hl_%(s) ds=h,.

0

Therefore, and yield
T t
/ E7 (t) / / h(t — s)Vu(t)[Vu(s) — Vu(t)] dsdz dt
S QJo

E% (0)E(S).

T
o m 2 p
1 < — E
(13) <3 [ EroIvuoR a2
Next, we note that from (4)) we have
t
p 2 &1 4
> = — st

a Pz 2 (o /O n(s) ds ) [Vull? + (HOVu) (1)} + 2|9

from which we entail that

P

(15) Q] p—— B().
p(&o — [, h(s) ds)

Hence, using Poincaré inequality

(16) lll? < BIvul? < 2B g

pl
where B is the Poincaré constant.

Applying the above inequality and having in mind that F'(¢) > 0; we find

(17) ‘/Q ! (tyult) do| < %\|u'||2 + (p;p?BE(t) < %(1 + (]’J;Z)B) Et).
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Then, from and the fact that E(t) is non-increasing we infer that

(18) /E u()|Sdr < (1 +@—’;77;)B)E%(O)E(S)
and
T / . T
[5 (E% (1) /Qu(t)u(t)da:dtg /S |/ (1) da| dt
1 (p+2)B\ [T  m
<7§(1 i ) i (E% (1)) B(t) dt
(19) %(1 L J;;)B>E%(O) B(S)

Now, using it is easy to see that

T
/E ||qu+2dt<a/ (B ()| Vul? dt

(20) < a/ST E% (1) (50 - /Ot h(s) ds>||Vu||2dt

and for e; >0

T T
—a/ E%(t)nvun?/ Vu'Vudeds < 70 [ B% (1) |Vl far
S Q S

T
+ i E% (4)(Vd/, V)2 dt .
281

Thanks also to formula which implies that
T
—a/ E%(t)||vu||2/ Vu'Vudar dt < 258 / E% ()| Vul|*dt
s Q

(21) + 471 E% (0) B(S).

Taking into account the estimates and 7 in relation , we end up
with

[ (e [ noas)ivuras [ p% onEa

T
+%°/ E%(t)||vu(t)||2dt+“1/ E% ()| Vul* dt
S

+a/TE2"'(t) 50—/th(s)ds>||Vu|2dt+(1+(1H];€2)B)ET(O)E(S)

ﬂ

+7E1?() gl/ E% )| Vul* »(0) E(S).

461 k‘
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If we put g9 = (1 — @) (& — [, h(s)ds), then we obtain

/ST E7 (1) (50 _ /Ot h(s) d.s) 1u()|? dt
T

2 9 T m
Ol P+ (- &) [ B @)Vl
- S

2 /3 1 3p+2B  h,\,.m
22 — — E% (0)E(S).
(22) + (2 Tt T 250k) (0) B(S)

Now, multiplying both sides of the equation in by the expression

E%(t)/o h(t — s)[u(s) — u(t)] ds,

integrating over Q x [S, T| and setting
(hou)(t) = /0 Bt — ) [u(s) — u(t)] ds,
(hoVu)(t) = /0 h(t — s)[Vu(s) — Vu(t)] ds

we find

/STET (t) /Q o (howu)(t)dzdt

/EP D€ + &0 Va3 + o (Vult), Vus(t) /Auhou)()da@dt
/Ep /Q /ht—s)Au()ds)(hou)()da:dt
/ B /Q|u\pu(h<>u)(t)dxdt.

An integration by parts yields
/ B / hou)()dmdt:ET(t)/Qu(t)(hou)(t)dw]s
T m /
—/ (E™7 (1)) / u'(t)(hou)(t)d dt
s Q

_/TE? t) /u’t V(B o u)(t) da dt
+ [ Era( [ a)ora,
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and a substitution in gives

T t ) - )
/S E7(t)</0 h(s)ds)”u (t)||2dtf/s Ep(t)/Q|u| u(h o u)(t) de dt

T
_E%(t)/ﬂu’(t)(hou)(t)dm@+/S E%(t)/ﬂu’(t)(h’ou)(t)dxdt
T
+/ (E%(t))'/gu'(t)(hou)(t) dz dt
/ B (8)(6 + & |Val)|3 + o(Vu(t), Vu (¢ /Auhou)()dmdt

(24) /E // (t — s)Au(s)d )(hou)(t)dxdt.

Moreover, in virtue of (5 and (| 7 we have

\/ Y(h o u)( da:‘< t)||2+2i€2/9((h<>u)(t))2dx

2B@) + QB; ( /Ot h(s) ds) (hOVu)(t)

2
%( €2+ w)E(t) < %(62 + Bz(fo —f)) E(S)

€2

I /\

for some €9 > 0 and t > S. So,

PN T
/QE e (tu (t)/o h(t — s)[u(s) — u(t)] ds dx|s

(25) < (eo+ 2= 520 (3.

€2

On the other hand, it is clear that

/STE?(t)/Qu'(t)( dmdt<—/ B ()| (1)]|2dt

! ()/ </ |hl<t )H ) ()'d) t
+ 283 . E o — S)|juls S dx d
and for some g3 > 0

/ST (E%(t))//gu’(t)(hou)(t) drdt < (22 + w) /ST (B (1) E(t) dt
<- (52 + w)E%(o) E(S).

€2
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Since h'(t) < 0, the relation implies that

S e ) -t

< [ Wy [ (e= o)l uts) — ) s
< —h(0)B(WOVu)(t) < —h(0)BE'(t).
Therefore

/S E%(t)/ﬂu’(t)/o B (t —s)[u(s) — u(t)] dsdz dt
(26) < ;/T E% (8| (t)|2dt + %E%(o) E(S).
Furthermore,
/ E%()(é0 + & [Va(t)|3 + o (Vult), Va () /Auhou)()dwdt
:_50/ BE( /VuhoVu)()dzdt
_/S §1E7(t)||Vu(t)||2/QVu(hoVu)(t)da:dt

T
_ / o E% () (Vu(t), Vus (1)) / Vulh o Vu)(t) dz dt
S Q

and the application of e-Young inequality and the relation and yield
/ Ep (§0+§1HVU( WE + o(Vu(t), Va/( /Au hou)(t)dxdt

< — fo/ Ep /VuhoVu)()dxdt+ /E ®)||Vu(t)|? dt

255/ E% (6)(Vu, V2 [ Vu(t)|? dt

1 2
to | " ()/Q((hoVu)(t)) da dt

255

GE0)2(p+2)%h, m

e s BT OB
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for €4, €5 > 0. Thus, and imply that

T
| EFO G0+ alvuol + o (Tu). V' 0) | Suthow(s)deds

Q
T
gf&)/s E%(t)/ﬂvu(hovu)(t) da dt

T 2 2 27,
+5 [ EFOIVa) P i+ 51E(20()pg;;2) b 5% (0) B(3)

n (55U(p+2)E(0) n h, ) m

(28) o 5o) B (0 B(S).

Moreover, we have

—/STEZ‘(t)/Q(/oth(t—s)Auds)(hou)(t)dxdt
_ /STEZ‘(t)/Q(/Oth(t—s)vuds)(hovu)(t)dxdt
_ /STE’Z(t)(/Oth(s)ds)/Qvu(hovu)(t)dxdt

T
(29) +/S E%(t)/g((hoVu)(t))2dxdt.

So, thanks to (12) we obtain

(30) x (h o Vu)(t) dz dt + %E%(O) E(S).

The first term in the right-hand side of together with the first term in the
right-hand side of , can be estimated as follows

/;EW / o) ds - o) / Vu(t) (ho Vu)(t) d dt

/ BE% go— / ds)‘ /Q Vu(t) (ho Vu)(t) dz| dt

ggo/s E%(t)‘/QVu(t) (h o Vu)(t) dx‘dt
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and by we get

/ST EZL(t)(/t h(s)ds — fo) / Vu(t) (ho Vu)(t) dz dt

€Oﬁp

E%(0)E(S).
per B (0) B(S)

(31) 054/ B ()| Vu()|2 dt +

Now, the relations f lead to

/E )& + &0 ITu) I+ o(Vu(t). Vau 1) | Au(hou)(t)deds

m

- TE/J(t)/g(/Oth(t—s)Auds)(hou)(t)dxdt

S
- GE0)?(p+2)°  esop+2)E0) 1 €0
= hp(% 2(pl)2eqk : 4p€ﬁp 2esk 264k)
(32) xE%(O)E(5)+54(2 50)/S E% ()| Vu(t)||? dt

In addition to that, it is easy to see that the relation implies that
T
/ E%(t)/ |ulPu (b o u)(t) da dt
s Q
T 1 1
/ (E%(t)/ |27+ d:c) ? (E%(t) / ((hou)(t))? dx) * dt
s Q Q

S [ oz [ e [ ([ o)
‘s ; .
2 u2p+2 24 g Q o

/hlJr (t —s)[u(s) — u(t)]st)dxdt

IN

IN

B
(33) hﬂ o

I /\

2 [ ErOg a5 5 0 Bs).

To estimate the term | ST E%(t)||u||§gi§ dt we use Sobolev-Poincaré inequality

lull2pt2 < Cu(p, )| Vul|3"

(34) < .0y (22 B©) IVull = BIVal.
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Here C.(p, () is the Sobolev-Poincaré constant, with 0 < p < +oo (n = 1,2) or

2 (n > 2). Therefore,

T m
/ ET(t)/ lufPu(h o ) (t) da dt
S

3 Bh,
(35) &4/ B ||Vu||2dt+2 " EFO)B(S).

Now, combining the relations 7 ., . ) and (| with , we obtain
T t
/ E7(t)(/ A(s) ds) ol (1)t
s 0

. T m
<CERO)ES)+ 3 [ EROI IR

+ &;(W) /STE?(t)||vU||2 dt,

where

C—h {1 EEW0)2(p+2)?  esolp+2)E(0) &
=Nnp|+ —|— —
k 2(pl)2e,k 4plh, 2e4k

B 2 282 —/ h(0)B
260 HOB
2e4k hp Eghp 283hp

T . t
| EE0( [ neas— )P

T
(36) gOE%(OE(S)er(W)/ E% (1)||Vul?dt.
S

285

or

It is clear that
S So
/ h(s)dsz/ h(s)ds >0, S>5
0 0

and choosing
So
g3 < h(s)ds =: hg,
0

we find

;(/Os°h s) / E% (1) (9)|Pdt < CE% (0)E(S)

o+ HT /S B ()| Vull? dt.
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So
T o 20 m
E%b B @O dt < ———— E* (0) E(S
g &) [lu" @)l _fosoh(s)ds (0) E(S)
(37) +4(1+§0+ﬁ / E% (4)||Vu|? dt.

Plugging estimate into we obtain

/STET:(t) (fo _ /Ot h(s) ds) IVu(t)|? dt

2 <3 L 3p+2)B h, )Em

2 + 4eq 2pl 2e0k

T 11—«

T
(% -a) [ EFOIVl dt+ e ER O E(S)

11—« (1 — Oé)ho
264(1+€0+ﬁ) /T m 2
38 4+ Er (t)||Vu||~dt.
(39) T [ EF @il
. _ (17&)]’1,0@ .
The choice ¢4 = PTG ERwo allows us to write

/ST E7 (t) (Eo _ /Ot h(s) ds)HVu(t)||2dt

4 2C 3 1 3(p+2)B  h,
{{ho + 4eq 2pl + 250k]

T 1l-a
m [xSy] T m 4
x % (0) B(S) + (5 751)/ E%(8)|[Vull* dt}
s
and if we choose €1 = 7[1"—;‘51, since a < 1, the last relation reduces to

/ST E7 (1) (fo _ /Ot h(s) ds) [Vu(t)|? dt
"

(39) +5 [ BRIVt < T BRO BS)

Whereé:%+%+ﬁ+w+2sk

Next, the relations and ( . imply

[ Eromore <2 ps o5
S

(40) 1_0‘/ E" go—/ h(s )ds)uvUH?dtg2C*E%(0)E(S).

171
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Finally, in virtue of (8] and we get

2a
2 [ e omgza < 2 [ Er 06 - [ noas) vl

20C
(41) SmEP(O) (S) < CE»(0) E(S).

So, combining 7 we obtain
T " T . t
| EF@I R [ EF0(6- [ ) ivuolFa

51 ag 2 [Tpm Y
Eﬂ O Vul*dt — P Eﬂ(t)l\ullmt

(42) g( - Q)C*E%(o) E(S).
O

Theorem 3. Suppose that ug € Hj(Q) and uy € L*(Q2) satisfy (6, then we have
the following decay estimate

E(t) < E(O)(Cgljcg))p, Vi>0

for some positive constant c.

Proof. First, applying Holder’s inequality we see that
t
(OV0) = [ W (¢ 9)Vuls) ~ Vo) #
0
1= _2p
X h' "o (t — 8)||Vu(s) — Vu(t)|| 777 ds
= (/ hl (tfs)||Vu( ) U(t)szs)m
0
¢ .
X (/ RS (t — )| Vu(s) — Vu(t)||? ds) '
0

Therefore,

/ B (6 (hOVu) (1) dt
g/s E%(t)(/ hl—%(t—s)nvu(s)—vu(t)||2ds) e

x (/ W (= 8) [ Vu(s) — u(t)||2ds)p%mdt.

0




ON A PROBLEM WITH BALAKRISHNAN-TAYLOR DAMPING 173

Applying Holder’s inequality again it appears that
T m
/ E% (6)(hOV) (t) dt
s
/ BV (t / R~ (t — 8)[|Vu(s) — u(t)||2dsdt)me

(43) x (/S /0 h1+%(t—s)||vu(s)—vu(t)n?dsdt)m

By virtue of the condition h/(t) < —kR'ty (t), we see that

/ E% (£)(hOVu)(t) dt

< (/ST EY Tt )/ R (t = 8)||Vu(s) — U(t)||2dsdt) T

%) o ( - /T /t R (t — 8)||Vu(s) — Vu(t)|? ds dt) o

m

< (/STEHM( )/ R (¢ — 8)||[Vu(s) — U(t)IIstdt) pEe

(- poay

T t m
< (/ B (t)/ R~ (t — s)||Vu(s) — Vu(t)||* ds dt) e
5 0

< (2)77 gt (s)
A .
Further, by Young inequality, we have for e > 0

/s E% ()(hOVu)(t) dt < C(/ BT (8) dt)m

S

H/ " (t = )| Vu(s) = Va(t)||* ds ?Epfm (S)

< (e / W (1= )| Vuts) — V() ds||” B(s)

T
(44) + €6 / EYWo(t)dt
S

for some constant C(eg) > 0.
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So, combining (42)) and we obtain

/ B % (1) dt < (3+ 1—)CE )+ g6 / B % (¢
(45) + ool [ W (e ) 19uls) - vu(r P sl € (s)
' T

/ BT (t) dt

S
(46) <Cy(E +W/h1 (t — 8)||Vu(s) — u@wdsz)Ew)

for some positive constant Cs.
On the other hand we have when m = 2

f1 2(p+2)
/oh (t — 5)||Vu(s) — Vau(t)|? ds < o

/0 h(t - s)(E(s) + E(t)) ds

< Hpt2) / hE(s)dsE(0), Vi¢>0.
pl 0
Therefore
T 2 2
(47) / EY 5 (t)dt < C3E»(0)E(S), ¥ .S>5Sp.
S

Hence, applying Lemma |1l with A = %7 we find
(So+Cs)(1+A) 2

E(t)<FE Vt>0.
0 < B EDEEE s
Now if m = 1, from
¢ 2
/ [Vu(s) — Vu(t)||* ds < 2i / E(s)ds + suptE(t))
0 >0

< C3E(0), Vt=0
and 7 we can write
T
/ EY 5 (t)dt < C4E7(0)E(S), VS >S,.
s

Hence, applying Lemma || with A = % we deduce that

(So+ Cy)(14p)\»
Vt>0.
t+p(So+C4)> ’ -

E(t) < B0)(
g
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