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TANGENT DIRAC STRUCTURES OF HIGHER ORDER

P. M. KovorcHOP WAMBA, A. NTyaM, AND J. WOUAFO KAMGA

ABSTRACT. Let L be an almost Dirac structure on a manifold M. In [2]
Theodore James Courant defines the tangent lifting of L on T'M and proves
that:

If L is integrable then the tangent lift is also integrable.

In this paper, we generalize this lifting to tangent bundle of higher order.

INTRODUCTION

Let M be a differential manifold (dim M = m > 0). Consider the mapping ¢as
defined by:

oOv: TMOT*M Xy TMeT*M — R

(X1, 1), (X2, a2)) = 1(<X17062>M-&-<X2,041>M)

[\

where (-)5s is the canonical pairing defined by:
TM xpyT°M — R
(X, Oé) — <X, Oé>]\/[

An almost Dirac structure on M, is a sub vector bundle L of the vector bundle
TM & T*M, which is isotropic with respect to the natural indefinite symmetric
scalar product ¢ (i.e V(X1, 1), (X2, a2) € T'(L), op((X1,a1), (X2,a2)) = 0),
and such that the rank of L is equal to the dimension of M.

We define on the set T'(TM @& T*M) of sections of TM & T*M a bracket by:

V(X1, 1), (Xa, an) € D(TM @& T* M)
(X1, 1), (X2, a2)]c = ([X1, Xa], Lx, 000 — ix,dov) .

This bracket is called Courant bracket. A Dirac structure (or generalized Dirac
structure) is an almost Dirac structure such that:

V(Xlaal)a (X27 a2) € F(L) ) [(Xla al)v (X27a2)] € F(L) .

This condition is called “integrability condition™.
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For (X5,03) €e T(TM @ T*M), in [2] is defined the 3-tensor Trasqr+n on the
vector bundle TM & T*M by:

Trver-m (X1, a1), (X2, 02), (X3, a3)) = éar ([(X1, 1), (X2, 02)], (X3,03)) .

We put Tr, = Tryver-wm ey xrz)- The integrability condition of L is deter-
mined by the vanishing of the 3-tensor T, on the vector bundle L.

For all integer r,k > 1, we have the jet functor T} of k-dimensional velocity
of order r and, when k = 1, this functor is denoted by 7" and is called tangent
bundle of order r. When r = 1, T is a natural equivalence of tangent functor T.

The main results of this paper are theorems 2 and 3: giving an almost Dirac
structure L on M, we construct an almost Dirac structure L” on T"M and we
prove that: L is integrable if and only if L” is integrable.

All manifolds and maps are assumed to be infinitely differentiable. r will be a
natural integer (r > 1).

1. OTHER CHARACTERIZATION OF GENERALIZED DIRAC STRUCTURE
Let V be a real vector space of dimension m. We consider the map

ov: VeV xVeVs — R

1

((u, u*), (U,v*)) =5

where (-) is the dual bracket V x V* — R.

((u,v*) + (v,u*))

Definition 1. A constant Dirac structure on V' is a sub vector space L of dimension
m of V@& V* such that:

Y(u,u*), (v,v*) € L, ¢V((u,u*),(v,v*)) =0.

Theorem 1. A constant Dirac structure L on V is determined by a pair of linear
maps a: R™ — V and b: R™ — V* such that:

(1) a*ob+b"0a=0

(2) kera Nkerb = {0}

Proof. Condition is the isotropy of constant Dirac structure, and condition
is the maximality of the isotropy. ([
Remark 1.

(1) We say that the constant Dirac structure L is determined by the linear
maps a and b.

(2) An almost Dirac structure on a differential manifold M is a sub vector
bundle of TM & T*M such that: Yz € M, the fiber L, of L over z is a
constant Dirac structure on T, M.

(3) An almost Dirac structure at a point € M is determined by a pair of
maps az: R™ — T, M, by: R™ — T*M such that:

ayoby+bloa, =0
ker a, Nkerb, = {0}
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Corollary. An almost Dirac structure is determined in a neighbourhood U of a local
trivialization L)y =~ U x R™ by a pair of vector bundle morphisms a: U x R™ —
TyM, b: U x R™ — TH M over U such that:

ey, Juebtbioa =0
ker a, Nkerd, = {0}

We denote by p; and py the natural projections of TM & T*M onto T'M and
T*M respectively. Note that a: L — TM and b: L — T*M are really globally
defined and are nothing more than the projections p; and ps.

Example 1. Let M be an m-dimensional manifold.
(1) Let w be a differential form on M of degree 2.
'={(X,ixw), XeX(M)}.

I" is the set of differential sections of an almost Dirac structure on M. It is
a Dirac structure if and only if w is pre-symplectic form.

(2) Let II be a bivector field on M.
I ={(ina,a), acQY(M)}.

IV is the set of differential sections of an almost Dirac structure on M. It
is a Dirac structure if and only if II is a Poisson bivector.

We denote by (z¢,4%) and (z¢, p;) a local coordinates system of TM and T*M
respectively. Let L be an almost Dirac structure on M defined locally by:

a:UxR™ —>TM and b:UxR™ —T*M.
We have:
i _ 0
a(z’,e;) = a; ok
b(z',e;) = bjpda®
where (e;) denote the canonical basis of R™. Locally the 3-tensor field 17, is:
b, daj
_ p~Z7Is s p_"J

2. TANGENT DIRAC STRUCTURE OF HIGHER ORDER

Ky T"TM — TT "M and oy, : T*T"M — TTT*M denote the natural trans-
formations defined in [I] and [7]. We have:

(K (w), v ) e = (u, @y (V) peag s (w,0") € T"TM Xqrpy TT"M
where (Y, =7 0 T7() and 7,.(jip) = Wf(t)\tzo.

We denote by €}, the inverse map of o,.
Consider the maps a: U x R™ — TM and b: U x R™ — T*M. We take their
tangents of order r, to get:

T'a: T"U x R™U+YD  7rpag and  T"b: T"U x R™0+Y _ prp*pr
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We apply natural transformations %, and €7, respectively, to get the vector bundle
maps over idpry defined by:

a":T"U x R™MH) o TT"M and b7 T°U x R™UTD 7770

Theorem 2. The pair of maps a” and b" determines a generalized almost Dirac
structure L™ on T" M, which we call the tangent lift of order r of the generalized
almost Dirac structure on M determined by a and b.

Proof. Firstly, we prove that: (a”)*ob"+(b")*oa” = 0. Let jj, jie € TT(U xR™),
where ¢, 1: R — U x R™ differentials. We have:

((@")" o b"(jow), o) = (0" (o), a” (o))
= (e o T"b, Ky 0 T"aljo 1))
= (T"b(jo), T"alio¥)) e

=7 ojo((bop,aot)um)

By the same way, we have:
(") e a(fow), jo) = 7" 0 jo ((b" cao @, ¥)ar)
we deduce that:
(((a") 00" + (V)" 0 a) (o), o) = 77 0 jg ({(a" 0 b+ D" 0a) o p,9h) ) = 0.

Secondly we prove that: kera” Nkerd” = {0}. We prove this case for r = 2. The
proof for r > 3 is similar.
In the local coordinates system, we have:

a:UxR™ — UxR™ b:UxR™ — Ux(R™)*

(z,e) —  (x,ae) (z,€) — (x,be)

a*(x, 2, i, e, ¢ ) = (v,&, &, ae, ae + aé, e + aé + ad)

V2 (x, i, i, e, e, &) = (x,i,i, be + bé + bé, be + bé, be)
a 0 0 e b b b
a*(e,;é,¢)=|a a 0| [e] and b*(e,é,8)= (b b 0
a a a é b 0 0

If a(e, ¢, ) = b2(e, é,€) = 0, we have:
ae=0 be=0 = eckerankerb={0}.

and it follows that ¢ = 0.
{be'+be=0 _ {bézo

aé+ae=0 ae =0
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e and é are constant, it follows that é = 0.

bé =0 .
{aé:O = €é=0.

Thus ker a? Nker b* = {0}. O

Theorem 3. The almost Dirac structure L on M is integrable if and only if the
almost Dirac structure L™ on T" M is integrable.

Proof. Consider the local coordinates system {z!,..., 2™} of M, we have:
a(z',ej) = GZ@ and b(z e;) = bypda® .
We have: _
a; ... 0 ()
. . bZJ “ e b74]
a” = . . : and b = . .
(r) ‘ : . :
a; e a; bij e 0

We get a” = (A§)1§i,jgm(r+1) and b" = (Bjj)i<i j<m(r+1)- For ¢,d =0,1,...7, we
have:

W(i.d) €lgm + 1. mlg + 1)} x {dm + 1, m(d+ 1)},
5= e
and
Bij = (bi—mg,j—ma)""7"?

We adopt the following notation:
0 0 0 (@)

a7~ oaf e G

(am+1§p§a(m+1)).

The Courant tensor Tj;;, of the almost Dirac structure is given by:

0B, 0A?
Tiji = E AP 3 ; A+ Afa—;Bks, we wish to verify that T;;, = 0.
x x
cyclic, 1,7,k

We take hm+1<i<m(h+1),m+1<j<m{l+1)andtm+1<k<m(t+1)
for h,¢,t =0,1,...,r. We have:

r r gq(m+1) d(m+1)

8B, . . OAS
I 9 S O SV L R

q=0 d=0 p=gm+1 s=dm+1

— (ar=may(a—m Ibizmesma) T
1—m axg—mQ
s—md) (d—2)

(aj_ ¢
+ (af:;:}ff)(q—h)#
oxl— ™

(ag_m) ="

(bkfmt,sfmd)(r_d_t)
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m h me,s—m
= (af_m;ll)(q )( J{)xz’ mq
6a§ m )(d*Z*Q)

—m — —mi
e (G

(r—t—d—q)
) (a )"

)(rfdft)

( k—mt,s—md

s—md

_ (gp-mai=mts—md oma) "D pomg 90— m (r—t=h—t)
- i—mh Hrp—ma k—mt i—mh Hxp—maq k—mt,s—md
s—md
= ( P—mqmarmdjwp—mq aj—méb )(r—e—h—t)
= i—mh HxP—ma k—mt i—mh Hxp—ma k—mt,s—md

the calculation above shows that 77, = 0 if and only if T = 0. [l

Remark 2. This construction generalizes the tangent lifts of higher order of
Poisson and pre-symplectic structure to tangent bundle of higher order.
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