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NATURAL EXTENSION OF A CONGRUENCE OF A LATTICE
TO ITS LATTICE OF CONVEX SUBLATTICES

S. PARAMESHWARA BHATTA AND H. S. RAMANANDA*

ABSTRACT. Let L be a lattice. In this paper, corresponding to a given
congruence relation © of L, a congruence relation ¥g on CS(L) is defined
and it is proved that

1. CS(L/O®) is isomorphic to CS(L)/¥Ye;

2. L/© and CS(L)/¥g are in the same equational class;

3. if © is representable in L, then so is ¥g in CS(L).

1. INTRODUCTION

Let L be a lattice and C'S(L) be the set of all convex sublattices of L. It is
proved in [3] that, there exists a partial order on C'S(L) with respect to which
CS(L) is a lattice such that both L and C'S(L) are in the same equational class. A
natural question that arises is the following:

If © is a congruence relation of L, does there exists a natural extension Vg of ©
to CS(L) such that L/© and CS(L)/¥e are in the same equational class?

This paper gives an affirmative answer to this question. Further, it is proved
that, if © is representable in L, then so is ¥g in C'S(L).

2. NOTATION AND DEFINITIONS

Let L be a lattice and C'S(L) be the set of all convex sublattices of L. Define an
ordering < on C'S(L) by, for A, B € CS(L), A < B if and only if for each a € A
there exists b € B such that a < b and for each b € B there exists a € A such that
b > a. Then (CS(L); <) is a lattice called the lattice of convex sublattices of L (see
[3]), denoted by C'S(L) in this paper.

Let L be a lattice and A and B be convex sublattices of L. Then in C'S(L),

ANB:={z€ L|aj ANby <z < ay by for some ay, ay € A, by, by € B};
AV B:={z€Llay Vb <z<agV by for some aj, as € A, by, by € B}
(see [3]).
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Let L be a lattice and X be a sublattice of L. Then the convex sublattice
generated by X in L, denoted by (X), is given by

(X)y={z€ L|la; <z<ay for some aj, az € X}

(see [I).

Let L be a lattice and © be a congruence relation of L. Then L/© denotes the
quotient lattice of L modulo © and for a € L, a/© denotes the congruence class
containing a (see [2]).

A congruence relation © of a lattice L is said to be representable if there is a
sublattice Ly of L such that the map f: L; — L/O defined by f(a) = a/0 is an
isomorphism (see [I).

3. EXTENDING A CONGRUENCE RELATION OF L TO CS(L)

The following lemma is often used in the paper.

Lemma 3.1. Let L be a lattice, © be a congruence relation of L and A be a convex
sublattice of L. Suppose that the elements x1, x, xo of L satisfy the following
conditions:

(1) o1 <z < o5

(2) x1 = a1(O) for some a1 € A;

(3) x2 = a2(O) for some ay € A.
Then there exists y € A such that x = y(0).

Proof. From (1) and (2), we get

(3.1) r=xVz=zVa(O)

and from (1) and (3), we get

(3.2) r=x Az =2 A azx(0).
Take y = (a1 Aag) V (az A z). Then

(3.3) ap Nag <y < ap
and
(3.4) s hNr<y<a Vz.

Now from (3.1), (3.2)) and (3.4)), z = y(©) and from (3.3)), y € A. O

In the following lemma a congruence relation on C'S(L) corresponding to a
congruence relation of a lattice L is constructed. Note that, in [4], a similar
congruence relation is defined on I(L) of a trellis L, and it is used for proving some
results.

Lemma 3.2. Let L be a lattice and © be a congruence relation of L. Then the
binary relation ¥ on CS(L) defined by “X =Y (V) if and only if for each v € X
there exists y € Y such that x = y(0) and for each y € Y there exists x € X such
that x = y(0©) 7, is a congruence relation on CS(L).
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Proof. Clearly VU is an equivalence relation on C'S(L). To show that ¥ satisfies
the substitution property, consider A, B, C' € C'S(L) with A = C(¥). It is enough
to prove that

AANB=CAB(D);

AV B=CV B(D).

Let © € A A B. Then, by the definition of A A B in CS(L), there exist a1, as
€ A and by, by € B such that a1 Ab; < x <ag Aby. Since a3 € A and A = C(V),
there exists ¢; € C such that a1 = ¢1(0). But then a; A by = ¢; A b1(0©). Similarly,
ag A by = co A b2(0©) for some co € C. Note that ¢; A by and ca Aby € C A B.
Applying Lemma [3.1] for ay A by, z, az Aby in L, noting that C' A B € CS(L), there
exists y € C' A B such that z = y(0).

Similarly, for each x € C' A B there exists y € A A B such that = y(0). Hence
ANB=CAB(D).

By the dual argument it follows that AV B = C'V B(7U). O

Definition 3.3. For a given congruence relation © on L, the congruence relation
on CS(L) defined in Lemma [3.2)is denoted by ¥e.

One can easily verify the following lemma.
Lemma 3.4 ([3]). L/© is a suborder of CS(L) for any © € Con L.

Theorem 3.5. Let L be a lattice and © be a congruence relation of L. Then
CS(L/O) is isomorphic to CS(L)/¥Ye.
Proof. Define a map f: CS(L/©) — CS(L)/ Ve by

f(X) = (UX)/Ve.
It is easy to see that UX is a convex sublattice of L and hence the map f is
well-defined.

To prove f is one to one, suppose that (UX)/Tg = (UY)/Tg. We assert that
UX = UY which eventually proves X =Y. Let x € UX. Since (UX) = (UY)(Tg),
there is a y € UY such that 2 = y(0). Now 2/0 = y/© € Y so that z € UY. Hence
UX C UY. Similarly it follows that UY C UX. Thus f is one to one.

To prove f is onto, we need some preliminary considerations.

Let A CS(L) and S =U{B € CS(L) | B= A(¥o)}.

Claim 1: S is a convex sublattice of L.
Let z, y € S. Then z € A; = A(Ve) and y € Ay = A(Vg) for some Ay,

As € CS(L) Now A1 AN Ay =A; V Ay = A(\I/@) Note that TNy € A1 N Ag
CS(L) CS(L) CS(L)

andxVye Ay V As. Hencex AyandzVye€S.
CS(L)

Leta<z<binLanda,be€ S.Thena € 41 = A(Vg) and b € Ay = A(Vg) for

some A, Ay € CS(L). We can assume w.l.g that A7 < As. Let C= [A;) N (A2,
cS(L)
where [A) is the filter of L generated by A; and (As] is the ideal of L generated
by As. Then C' is a convex sublattice of L. Also A1 < C < Aj so that
cs(L)  CS(L)
A; =C = Ay(TPg). Thus z € C C S. Claim 1 holds.
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Claim 2: S = A(Vg).
Let € A. Since A C S, clearly z € S and # = 2(0). On the other hand, let
y € S. Then y € B = A(Vg) for some B in CS(L), i.e. there exists € A such
that y = 2(0). Claim 2 holds.

Now set

X :={z/0€L/O|xe S}

We shall prove that X is a convex sublattice of L/O. Let a/©, b/© € X. Then
a/© = x/© and b/© = y/O for some z, y € S . Now, since S is a sublattice of
L,z ANy and z Vy € S. Therefore z Ay/O = 2/O Ay/O =a/O Ab/O € X and
zVy/©=2/0Vy/0=a/OVDH/O € X.

Let a/© % c/© § b/O and a/O, b/© € X. We can assume w.l.g that a,

L/e L/e

be S. Using Lemma there exist « € ¢/© and b, € b/O such that a < z < by.
Applying Lemma [3.1] for a <2 < by in L and S € C'S(L), there exists y € S such
that z = y(0), ie., y/© = /0 = ¢/© € X. Hence X is a convex sublattice of
L/®.

It is easy to see that UX = S(V¥g). Now X € CS(L/O) and from claim 2,
UX =5 = A(¥g), so that f is onto.

To prove that f is order preserving, let X < Y. Consider any = € UX.

cs(L/e)
Then /0 € X < Y and hence there exists y/© € Y such that /0 < y/0.
cs(L/e) Lje
Now 2/OVy/© = (xVy)/© =y/O €Y. Hence x Vy € UY and also z < z V y.
Similarly for each y € UY we can find z € UX such that x < y. Thus UX g( : uy.
cs(L
Therefore (UX)/Tg < (UY)/Pg, proving f is order preserving.
CS(L)/¥e

It remains to prove that f~! is order preserving. First we observe the following
fact.
Claim 3: Let X € CS(L/©) and S =U{A4 € CS(L)|A =UX(¥g)}. Then S = UX.
Since UX € CS(L) and UX = UX (¥g), UX C S. On the other hand, if z € S,
then x € A = UX(Pg), for some A € CS(L). Now there exists y € UX such that
z = y(©). But then, /0 = y/O© € X. Hence z € UX. Claim 3 holds.

Let (UX)/%o < (UY)/Tg. We prove that UX < UY which leads to

CS(L)/ Ve cs(L)
X CS(%/@) Y. Using Claim 3, it can be assumed that UX = 51 and UY = S5 where
S1 and Sy are as defined in Claim 3. It remains to show that Sy §( : Ss.
cs(L

Let z € S;. Then v € A =UX(Vg), for some A € CS(L).

Since S1/¥e §/ S2/Ve and A € S1/Vg ; by Lemma there exists
CS(L)/%e
B € 5,/Ug such that A < B.Sincex € A < B, there exists y € B such
CS(L) CS(L)
that © < y. Clearly B C Sy, so that y € Ss. Similarly one can prove that for each
x € Sy there exists y € S7 such that y < z. Thus 5; g( : Ss. O
cs(L

With the aid of Theorem we obtain the following result.
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Corollary 3.6. Let L be a lattice and © be a congruence relation of L. Then L/©
and CS(L)/ Vg are in the same equational class.

Proof. It is known that for a lattice L, L/© and CS(L/©) are in the same
equational class ( [3]). Now by Theorem CS(L)/¥e is also in the same
equational class. O

Next theorem shows that, the map ©® — Wg, preserves representability. But it
requires a lemma.

In the following lemma a sublattice of C'S(L) corresponding to a sublattice of L
is constructed.

Lemma 3.7. Let L1 be a sublattice of L. Let

Cvz(Ly) == {(X) e CS(L)| X € CS(L41)}.
Then Cvz(Ly) is a sublattice of CS(L).
Proof. The result follows by noting that, for (X), (Y) € Cvx(L,),

Xy AN Y)Y=(X AN Y
(X) CS(L) () < CS(Ly) >
and
Xy v Y)=(X Vv Y).
( >CS(L)< ) < Cs(Ly) > O

Theorem 3.8. If © is a representable congruence relation of L, then so is Vg of

CS(L).

Proof. Let © be a representable congruence relation of L. Then there exists a
sublattice Ly of L such that the map Ly — L/©, a — a/©, defines an isomorphism.
Let Cvx(L1) be the sublattice of C'S(L) as defined in Lemma

Define a map f: Cvz(L;) — CS(L)/Ye by

f(X)) =(X) /%o,
where X € C'S(L1). We shall prove that f is an isomorphism.
Clearly f is well defined and a homomorphism.
Let (X) = (Y) (Vo). We claim that X =Y, which proves that f is one to one.
Let « € X. Then there exists y € (Y) such that = y(©). Since y € (Y), there
exist y1, y2 € Y such that y; <y < yo. Then

(3.5) Y1 =y Ay1 =2 Ay (0)
and
(3.6) Yo =yVys =z Vy(0).

Since z, y1, y2 € L1 and Ly has only one element in each congruence class,
and give y1 < x < yo. Now 2 € Y by the convexity of Y in L;. Therefore
X CY. Similarly, by interchanging X and Y, we get ¥ C X.

To prove that f is onto, let A € C'S(L). Set

X :={z e Li|An(z/0) # 0}.
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Then X is nonempty. In fact, A is nonempty therefore there exists an element

a € A and
A=AnL=An(J z/0)= |J (An(2/0))
€Ll €L,

so that a € AN (z/0O) for some = € Ly. But then z € X.

We prove that X is a convex sublattice of Li. Let a, b € X. Since L; is
a sublattice of L, a Ab and a Vb € Ly. Further, since AN (a/O) # 0 and
AN(b/O) # 0, take x € AN (a/O) and y € AN(b/O). Then zAy € AN((aAb)/O)
and xVy € AN ((aVb)/O), proving AN ((aAb)/O)# 0 and AN ((aVb)/O)#D.
Thus aAband aVbe X.

Let z1, 72 € X and 71 < z < z9. Since AN (21/0) # 0 and AN (z2/0) #£ 0,
L1 L1y

take a € AN (z1/0) and b € AN (z2/0). By Lemma there exists y € A such
that x = y(©). Therefore y € AN (z/0), so that AN (z/0) # (. Thus z € X.
Hence X is a convex sublattice of L.

Now we prove that (X) = A(¥e).

Let 2 € (X). Then there exist z1, o2 € X such that z; < z < 5. Since
AN(z1/0) # 0 and AN (x2/0O) # 0, take by € AN (21/0) and by € AN (x2/0O).
Then again by Lemma there is a y € A such that = = y(O).

Oun the other hand, if z € A, then x € AN (y/O) for some y € L;. Clearly y € X
and y = z(0) holds. O
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