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ON COMPLETE SPACELIKE HYPERSURFACES WITH
R =aH +b IN LOCALLY SYMMETRIC LORENTZ SPACES

YineBo HaN', Suuxiane FENG, AND Luu Yu?

ABSTRACT. In this note, we investigate n-dimensional spacelike hypersurfaces
M™ with R = aH +b in locally symmetric Lorentz space. Two rigidity theorems
are obtained for these spacelike hypersurfaces.

1. INTRODUCTION

Let Mln+1 be an (n + 1)-dimensional Lorentz space, i.e. a pseudo-Riemannian
manifold of index 1. When the Lorentz space M{”l is of constant curvature ¢, we
call it a Lorentz space form, denoted by M;"**(c). A hypersurface M™ of a Lorentz
space is said to be spacelike if the induced metric on M™ from that of the Lorentz
space is positive definite. Since Goddard’s conjecture (see [7]), several papers about
spacelike hypersurfaces with constant mean curvature in de Sitter space S’?H(l)
have been published. For a more complete study of spacelike hypersurfaces in
general Lorentzian space with constant mean curvature, we refer to [2]. For the
study of spacelike hypersurface with constant scalar curvature in de Sitter space
S71(1), there are also many results such as [4, [, 14, [I5]. There are some results
about spacelike hypersurfaces with constant scalar curvature in general Lorentzian
space, such as [8] and [13].

It is natural to study complete spacelike hypersurfaces in the more general
Lorentz spaces, satisfying the assumptions R = aH + b, where R is the normalized
scalar curvature at a point of space-like hypersurface, H is the mean curvature
and a,b € R are constants. First of all, we recall that Choi et al. [6] [12] introduced
the class of (n + 1)-dimensional Lorentz spaces M;"*! of index 1 which satisfy the
following two conditions for some fixed constants ¢; and cs:

(i) for any spacelike vector u and any timelike vector v,

C1
K(u7 ’U) = _; )
(ii) for any spacelike vectors u and v,
K(u,v) > co.
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(Here, and in the sequel, K denotes the sectional curvature of M]".)

Convention. When M"™! satisfies conditions (i) and (ii), we shall say that M+
satisfies condition (x).
We compute the scalar curvature at a point of Lorentz space M{"H,

n
(1) R= Z €aRaa = _2ZRn+1iin+1 + ZRijji = —2¢ + Z Rijji,
A i=1 ij ij
where Rn+1iin+1 :jK(Bi, 6n+1) = %, for i = 1, ey
It is known that R is constant when the Lorentz space M{‘H is locally symmetric,
S0 Y, ; Rijji is constant. In this note, we shall prove the following main results:

Theorem 1.1. Let M™ be a complete spacelike hypersurface with bounded mean
curvature in locally symmetric Lorentz space M{LH satisfying the condition (x).
If R =aH +b, (n—1)%a® + 432 Rijji —4n(n —1)b > 0, and a > 0, then the
following properties hold.

(1) If sup H? < (” 1)0 where ¢ = - + 2¢, then ¢ >0, S = nH? and M™ is
totally umbilical.

(2) If sup H? = 4(7:1;1)0, then ¢ > 0 and either S = nH? and M" is totally
umbilical, or sup S = nc.

(3-a) If ¢ < 0, then either S = nH? and M™ is totally umbilical, or nsup H? <
sup S < St.

(3-b) If ¢ > 0 and sup H?> > ¢ > %c, then either S = nH? and M™ is
totally umbilical, or nsup H?> < sup S < S+.

(3-¢) If ¢ >0 and ¢ > sup H? > 4(" 1)6 then either S = nH? and M™ is totally
umbilical, or S~ <supS < ST.

(4)
2 S

[n?sup H? + (n — 2) sup |H|\/n2sup H2 — 4(n — 1)c| — nc,

2(n—1)

if and only if M is an isoparametric hypersurface with two distinct principal
curvatures one of which is simple.

Here ST Ty [n?sup H?+ (n—2)sup |H|\/n2sup H2 — 4(n — 1)c] —ne, and
ST = 5o [n supH2 (n —2)sup |H|\/n2sup H2 — 4(n — 1)c] — nc.

Theorem 1.2. Let M™ (n > 1) be a complete spacelike hypersurface in locally
symmetric Lorentz space M satisfying the condition (x). If ¢ = Lty >0,
co >0 and

(3) W? =tr(W)W,

where W is the shape operator with respect to eny1, then M™ must be totally
geodesic.

Remark 1.3. The Lorentz space form M (c) satisfies the condition (x), where

— < — ¢y = const.
n
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2. PRELIMINARIES

Let M™ be a spacelike hypersurface of Lorentz space M{’H. We choose a local

field of semi-Riemannian orthonormal frames {es,...,en,€nq1} in 1\41""'1 such
that, restricted to M", ey, ..., e, are tangent to M™ and e, is the unit timelike
normal vector. Denote by {wa} the corresponding dual coframe and by {wap} the
connection forms of M{”l. Then the structure equations of M{H'1 are given by

(4) de:*ZGBwAB/\wB, waptwpa =0, =1, €41 =-1,
B
1 _
(5)  dwap=—» ecwac Awep — 3 > ecepRapepwe Awp
c cD
where A, B,C,---=1,...,n+1and i,j,[,---=1,...,n. The components Rep of

the Ricci tensor and the scalar curvature R of M are given by

(6) Rep =Y epRpepp, R=Y eaRaa.
B A

The components Rapc p;E of the covariant derivative of the Riemannian curvature
tensor R are defined by

E eeRaBcp;EwE = dRaBcD — E eg(RepcpwEA
E E

(7) + Rapcpwes + Rapepwie + RapcsweD) -

We restrict these forms to M", then w,+; = 0 and the Riemannian metric of
M™ is written as ds® = ), w?. Since

(8) 0=dwp41 =— an+u Awi,

3

by Cartan’s lemma we may write

(9) Wnt1,i = Zhijwj ; hij = hjz' .
J

From these formulas, we obtain the structure equations of M™:

dwi:— E wij/\wj, wij+wji:0,

J
1
dwij = = win Awkj — 3 > Rijuwi Awi,
k kL

(10) Rijri = Rijr — (hahjr — hakhji)
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where R;;i; are the components of curvature tensor of M". Components R;; of
Ricci tensor and scalar curvature R of M™ are given by

(11) R = ZRkijk - (Z hkk) hij + Zhikh]‘k ,
3

(12) n(n—1)R ZRW +5—

We call

(13) B = Z hijw; ® wj ® eng1
0,70

the second fundamental form of M™. The mean curvature vector is h = % > hiienga.
We denote S = Zm(hij)z, H? = |h|? and W = (hij)ij=1- We call that M™ is
maximal if its mean curvature vector vanishes, i.e. h = 0.

Let hiji and hij; denote the covariant derivative and the second covariant
derivative of hi;. Then we have hjjk = hikj + R(ny1)ijr and

(14) hijri — hijie = — Z Rim Rkl — Z hmg Rkt -
m m
Restricting the covariant derivative RABCD;E on M™, then R(nﬂ)ijk;l is given by
Rins1)ijkt = Ringvyijret + Rint )i kb

(15) + Rnt1)ijns1) her + Z Roijihmi

where R(n+1)ijkl denotes the covariant derivative of R(n—i—l)ijk as a tensor on M"
so that

R(nJrl)ijkl = gR(nJrl)ijk: - Z R(n+1)ljkwli - Z R(n+1)ilkwlj
l l

(16) - Z R(n+1)ijlwlk .
l

The Laplacian Ah;; is defined by Ah;; = >~ hijrk. Using Gauss equation, Codazzi
equation Ricci identity and , a straightforward calculation will give

—AS > hZ+ Z hijNhy

ijk
- Z hz;k + Z nH ’Ljh’bj + Z (n+1)ijk;k + R(n+1)kzk j)h
ijk ijk

Z nHRjRini1yijnt1) + S Z Rins1)k(nt1)k)
ij
(17) -2 Z hiahij Riijr + hithij Riggr) — nH Z hihyihij + S*.
ijkl ijl
Set ®;; = h;j — Hd;j, it is easy to check that ® is traceless and |®|> = S — nH?.
In this note we consider the spacelike hypersurface with R = aH + b in locally
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symmetric Lorentz space M {H'l, where a, b are real constants. Following Cheng-Yau
[5], we introduce a modified operator acting on any C2-function f by

n—1

(18) L(f) =Y _(nHbi; — hij) fij + —

ij

alAf.

We need the following algebraic Lemmas.

Lemma 2.1 ([I1]). Let M™ be an n-dimensional complete Riemannian manifold
whose sectional curvature is bounded from below and F: M™ — R be a smooth
function which is bounded above on M™. Then there exists a sequence of points
rr € M™ such that

klim F(xy) = sup(F),
klirn |VF(xr) =0,
klim sup max{(V?(F)(x))(X, X) : |X| =1} <0,

Lemma 2.2 ([1, I0]). Let p1,...,u, be real numbers such that >, p; = 0 and
> p? = (32, where 3 > 0 is constant. Then

< n—2 3

(19) 2= =5

and equality holds if and only if at least n — 1 of u;’s are equal.

b

3. PROOF OF THE THEOREMS

First, we give the following lemma.

Lemma 3.1. Let M™ be a complete spacelike hypersurface in locally symmetric
Lorentz space M{”i satisfying the condition (x). If R = aH + b, a,b € R and
(n—1)2%a% + 43 Rijji —4n(n —1)b > 0.

(1) We have the following inequality,

n(n —2)

20 L(nH) > [®]*(|®|* -
(20) (nH) 2 [0 (|8 -~

|H]||®| +ncan2> .
where ¢ = 2cy + L.
(2) If the mean curvature H is bounded, then there is a sequence of points

{zr} € M such that
lim nH (x) = sup(nH), klim |VnH (zx)| =0,

k—o0

(21) kli_)n;o sup (L(nH)(zy)) <0.

Proof. (1) Choose a local orthonormal frame field {ey,...,e,} such that h;; =
)\i&j and (I)ij = )\iéij — H(SU Let i = )\i — H and denote (1’2 = Ez /L%. From ,
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(18) and the relation R = aH + b, we have
(n—1)a

5 A(nH)

L(nH) = (nHd;; — hij)(nH);; +
ij
1
=nHAH) = hij(nH); + 3An(n—1)R —n(n—1)b)
1%
1
— 5A[(nH)2 +n(n—1)R] = n’|VH|* = " hij(nH);;
ij
1 _
= §A|:ZR”]1 + S:| — Tl2‘VH‘2 — Z hU(TlH)ZJ
(%) (%)
1
=505~ n?|VH[> =3 hij(nH);; .

ij

From and M7" is locally symmetric, we have
= h¥ —n?|VH]? —nH Y X+ 5

ijk

1 I

(Z nHX R(ni1yiitngr) + S Z R(n+1)k(n+1)k) -2 Z N Rygiin + N Rikar) -

i ijkl

II1
Firstly, we estimate (I):
From Gauss equation, we have
(22) > Rijji+S - n(n—1)R =n(n—1)(aH +b),
17751

Taking the covariant derivative of the above equation, we have

(23) 2Zhijhijk‘ = 2n2HHk—|—n(n— 1)(1H}€.
ijk
Therefore
(24) 45> h3, > 42 (Zh”h”k> 2n2H + n(n — 1)a]?|VH?.
ijk

Since we know
[2n%H +n(n — 1)a]* — 4n*S = 4n*H? 4+ n*(n — 1)%a® + 4n3(n — 1)aH
— 4n? [TLQHQ +n(n—1)R— Z Rijjl}
ij
= ’rL2 |:(TL - 1)26L2 + 4ZR”J1 - 4TL(TL - 1)bj| Z 0.

1571
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if follows that
(25) > h¥y = n?’|VH|?.
ijk

Secondly, we estimate (II):
It is easy to know that

(26) Zx\?an3+3HZ,u?+Z,uf.
i i i
By applying Lemma [2.2] to real numbers i1, ..., fi,, we get
S®—nHY N = (|9 +nH?)? - n*H* — 3nH?|®” —nH Yy}

"2 e,

27 o|* — nH?|D|? —
(27) > |®| |P| o= 1)

Finally, we estimate (III):
Using curvature condition (x), we get

(28) (ZTLHA R (n41)ii(n+1) T SZR(n+1)k(n+l)k) =c1(S — nHz) .
ij

Notice that S —nH? = 3= 37, (A — A;)?, we also have

—2) "(AkAiRuiik + A Rigir) = —QZ (Nidk = A7) Rikki
ik
(29) > ¢ Z Ai — Me)? = 2neo(S — nH?).
ik
From , 77, , and set ¢ = 2cy + -, we have

nin —2)

vn(n—1)

(2) Choose a local orthonormal frame field {e1,...,e,} such that h;; = X;d;;. By
definition, L(nH) = > ,(nH — X;)(nH ) + @ > ;(nH)y. If H = 0 the result is
obvious. Let suppose that H is not identically zero. By changing the orientation of

M™ if necessary, we may assume that sup H > 0. From
(/\1)2 < S = 7’L2.['I2 —+ TL(TL — 1)R — ZRijji
j

= n?H? + TL(TL — 1)(aH + b) — ZRijji
ij

L(nH) > |<1>|2(|<1>|2 - |H]| \<1>|+nc—nH2).

:(nH—i—m

1 _
5 )2 - *(n — 1)2a2 — ZRijji + n(n — 1)b

4 —
ij
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we have
(n—1)a
2 5
Since H is bounded and Eq. 7 we know that S is also bounded. From the
Eq. ,

(31) [Ai| < |nH +

Rijji = Rijji — hiihj; + (hij)2 > cg — hyihj;
(32) :CQ*AZ‘)\jZCQ*S-
This shows that the sectional curvatures of M™ are bounded from below because

S is bounded. Therefore we may apply Lemma to the function nH, and obtain
a sequence of points {z;} € M™ such that

klim nH(xy) = sup(nH), klim |V(nH)(zy)| =0,
(33) klim sup (nH“(xk)) <0.

Since H is bounded, taking subsequences if necessary, we can arrive to a sequence
{zx} € M™ which satisfies and such that H(xzp) > 0 (by changing the
orientation of M™ if necessary). Thus from we get

(n

_Tl)a ~ Dalze)| < nH(zp) + @ — ()

n—1)a n—1)a
(34) < nH(zy) + % + [Ai(zn)| < 2(nH (zk) + %).
Using once the fact that H is bounded, from we infer that {nH (xy) —

A (z)} is non-negative and bounded. By applying L(nH) at zy, taking the
limit and using and we have

0 < nH(xg)+

(35)  lim sup(L(nH))(xr)

k—o0
(n—1)a

5 —)\i)(a:k)nHii(xk) <0.

< Zkli_)n;o sup(nH +
d

Remark 3.2. When a = 0, then R = b is constant, the inequality appeared
in 3] [8] [13].

Proof of Theorem [I.1l According to Lemma (2), there exists a sequence of
points {x} in M™ such that
(36) lim nH(zy) =sup(nH), lim sup (L(nH)(z))) <0.
k—o0 k—o0
From Gauss equation, we have that

(37) |®? =S —nH?=n(n—-1)H?+n(n—1)(aH +b) — ZRijji.

j



ON COMPLETE SPACELIKE HYPERSURFACES WITH R = aH +b 159
Notice that limy_.o(nH)(zx) = sup(nH), a > 0 and }_,; Ri;ji is constant, we
have
(38) lim |®|*(xy) = sup |®[?.
k—o00

Evaluating at the points z of the sequence, taking the limit and using ,
we obtain that

0> lim sup (L(nH)(zx))

-2
(39) > sup |<I>\2(Sup |®|? — n=2) sup |H|sup |®| + nc — nsup H2) .
nin —1)
Consider the following polynomial given by
-2
(40) PsupH(x):mz—wsup\hﬂm—i—nc—nsup[{z.

nin—1)

(1) If sup H? < 4(2 U ¢ holds, then we have ¢ > 0 and P(sup |®|) > 0. From
([39), we know that sup |®| = 0, that is |®| = 0. Thus, we infer that S = nH? and
M™ is totally umbilical.

(2) If sup H?> = %c holds, then we have ¢ > 0 and P(|®]) = (|®] —
"—J;\ﬁf >0.If (|<I>|—"—\/_ﬁ2 0)2 > 0, from we have, sup |®| = 0, that is |®| = 0.
Thus, we infer that S = nH? and M™ is totally umbilical. If sup |®| = ”—\/}12\/5, we
have that sup S = nc.

(3) If sup H? > (” 4D ¢ we know that P(z) has two real roots z_,, i and xl
given by

sup H

Pt =\ gy {7~ 20w Bl = VP sup HE = 4n ~T)e)

@upH \/7{ Sup |H| + \/n2 sup H? — 4(n — 1)0}

It is easy to know that xsup y is always positive. In this case, we also have that

(41) Pap () = (5up | @] — 25, ) (sup [®] — 28, 1) -
From and , we have that
(42) 0 > sup |®|*(sup |®| — x;lpH) sup |®| — bupH)

(3-a) If ¢ < 0, we know that z_, ;; < 0. Therefore, from ([#2)), we have, sup |®| =
0, in this case M™ is totally umbilical, or 0 < sup |®| < "

sup

sup H’ ie.

nsup H2 < supS < S*.

(3-b) If ¢ > 0 and sup(H)? > ¢ > Mc we know that z_ ;< 0. Therefore,
from ( ., We have sup|<I>| =0, in thls case M™ is totally umbilical, or 0 <

sup |(p‘ < x%upH7

nsup H? < supS < S*.
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(3-c) If ¢ > 0 and ¢ > sup(H)? > 4(" 4D ¢ then we have Teupr > 0. Therefore,
from (| ., we have that sup || = 0 in this case M™ is totally umbilical or
:r;upH<sup|¢>\<x ie.

S™ <supS <St.

(4) If S = 5515 [n?sup H? + (n—2) sup |H|\/n2 sup H2 — 4(n — 1)c] —nc holds,
from Gauss equation, we have S = nH? +n(n —1)(aH +b) — > Rijji. Since S is
constant, then H is also constant. We know that these inequalities in the proof of
Lemma and are equalities and S > nH?. Hence, we have H? > %c
from (1) in Theorem Thus, we can infer that n — 1 of the principal curvatures
i are equal. Since S and H is constant, we know that principal curvatures are

constant on M"™. Thus, M™ is an isoparametric hypersurface with two distinct
principal curvatures one of which is simple. This proves Theorem O

Proof of Theorem [[.2l From (@), we have that

(43) > highje =nHhi;, for ije{l,...,n},
k

sup H»

and
(44) Z hfj =n?H?, ie. S=n’H?.

Choose a local orthonormal frame field {e1, ..., ey} such that R;; = v;d;;. From
and , we have R;; = >, Ryiix > (n—1)cy > 0, that is, v; > (n—1)cy > 0,
so we know that Ric = (R;;) > (n — 1)caI, we see by the Bonnet-Myers theorem
that M™ is bounded and hence compact.

From and (44)), we have that n(n — 1)R = > Ri;;i is constant, then from
Lemma F);fl for a = 0, we have the following 1nequahty

(45) L(nH) > |q>|2(|<1>|2 =22 1) 4one nH2>
n(n —1)
Since L is self-adjoint and M™ is compact, we have
2 2 n(n—2) 2
(46) oz/n\cm (12 —ﬁ|H||<I>|+nc—nH)
Since n?|H|? = S and |®|?> = S — nH? = n(n — 1)H?, we have
n(n —2)

ne —nH? + |®* — |H||P|

vn(n—1)
=nc—nH?+n(n—1)H? —n(n—2)H? =nc > 0.

so we know that |®|?> = 0, that is, S = nH?. From Eq. , we know that

n?H? = nH?, so we have H = 0, i.e. S = nH? =0, so M" is totally geodesic. This

proves Theorem [T.2] O
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