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POLYNOMIALS WITH VALUES
WHICH ARE POWERS OF INTEGERS

RACHID BOUMAHDI AND JESSE LARONE

ABSTRACT. Let P be a polynomial with integral coefficients. Shapiro showed
that if the values of P at infinitely many blocks of consecutive integers are
of the form Q(m), where Q is a polynomial with integral coefficients, then
P(z) = Q(R(x)) for some polynomial R. In this paper, we show that if the
values of P at finitely many blocks of consecutive integers, each greater than
a provided bound, are of the form m? where ¢ is an integer greater than 1,
then P(z) = (R(z))? for some polynomial R(z).

1. INTRODUCTION

Several authors have studied the integer solutions of the equation
y" = P(z)

where P(x) is a polynomial with rational coefficients, and m > 2 is an integer. If
P is an irreducible polynomial of degree at least 3 with integer coefficients, then
the above equation is called a hyperelliptic equation if m = 2 and a superelliptic
equation otherwise.

In 1969, Baker [I] gave an upper bound on the size of integer solutions of the
hyperelliptic equation when P(z) € Z[z] has at least three simple zeros, and for
the superelliptic equation when P(z) € Z[x] has at least two simple zeros.

Using a refinement of Baker’s estimates and a criterion of Cassels concerning the
shape of a potential integer solution to 2P — y9 = 1, Tijdeman [I1] proved in 1976
that Catalan’s equation 2P — y?¢ = 1 has only finitely many solutions in integers
p>Lig>1,xa>1,y>1.

Suppose that y™ — P(x) is irreducible in Q[z,y] where P is monic and
ged(m,deg P) > 1. Under these conditions, Masser [6] considered the equation
y™ = P(z) in the particular case m = 2 and deg P = 4. In particular, setting
P(z) = 2* + ax® + bz? + cx + d where P(z) is not a perfect square, it was shown
that for H > 1 and X (H) defined as the maximum of |x| taken over all integer
solutions of all equations y? = P(x) with max{|al, |b|,|c|, |d|} < H, there are ab-
solute constants k > 0 and K such that kH? < X(H) < KH3. Walsh [13] later
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obtained an effective bound on the integer solutions for the general case. Poulakis
[7] described an elementary method for computing the solutions of the equation
y? = P(x), where P is a monic quartic polynomial which is not a perfect square.
Later, Szalay [10] established a generalization for the equation y? = P(x), where
P is a monic polynomial and ¢ divides deg P.

Suppose that oy, as, ..., q. are the roots of P(z) with respective multiplicities
e1,€2,...,¢e.. Given an integer m > 3, we define, for each i =1,...,r,
m
m; = e N.
(eiv m)

It has been shown by LeVeque [5] that the superelliptic equation y™ = P(x) can
have infinitely many solutions in Q only if (mj,ms,...,m,) is a permutation
of either (2,2,1,...,1) or (¢,1,1,...,1) with ¢ > 1. In 1995, Voutier [12] gave
improved bounds for the size of solutions (xg,yo) to the superelliptic equation with
o € Z and yy € Q under the conditions of LeVeque.

Given a polynomial P(z) € Z[z] and an integer ¢ > 2, it is then natural to ask

when the equation

y' = P(z) =0
will have infinitely many solutions (zg,yo) with o € Z and yo € Q. It is clear
that this will immediately be the case when P(z) = (R(:c))q for some polynomial
R(x) € Q[z]. Indeed, this serves as our motivation.

In 1913, Grosch solved a problem proposed by Jentzsch [4], showing that if a
polynomial P(x) with integral coefficients is a square of an integer for all integral
values of , then P(x) is the square of a polynomial with integral coefficients. Kojima
[], Fuchs [2], and Shapiro [9] later proved more general results. In particular, Shapiro
proved that if P(z) and Q(x) are polynomials of degrees p and g respectively, which
are integer-valued at the integers, such that P(n) is of the form Q(m) for infinitely
many blocks of consecutive integers of length at least p/q + 2, then there is a
polynomial R(z) such that P(z) = Q(R(z)).

Recall that the height of a polynomial

P(z) = apz? + ap_m#’*1 + -+ a1z +ag € Clz]
is defined by
H(P)= max |a;
1=0,...,p

where |a;| denotes the modulus of a; € C for each i = 0,...,p. We will prove the
following result:

Theorem 1. Let P(z) = a,a? +a,_ 12771 +--- 4+ ag be a polynomial with integral
coefficients where a, > 0, and let ¢ > 2 be an integer that divides p. Suppose that
there exist integers m;, 1 = 0,1,...,p/q+ 1, such that P(ng + i) = m;? for some
consecutive integers ng,ng + 1,...,n9 + p/q + 1 where

p/q+2
no > 1+ (p/q+ 1) pg?/ T HP)P 2 T Gp—3j+1)°.
=2
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Set M := Zfi%"'l (p/'11,+1) My /q1—il. If there exist at least M more blocks of such
consecutive integers ni+1i, 1 =0,...,p/q+1, such that ng, > ng_1+p/q+1 for each
k=1,...,M and P(np+i) =m{, forallk=1,...,M andi=0,...,p/q+1 for
some integers my, ;, then there exists a polynomial R(x) such that P(x) = (R(x))9.

2. PRELIMINARIES

Let P(z) and Q(x) be non-zero polynomials with integral coefficients of degrees
p and ¢ respectively. The following properties are easily verified:

(i) H(P) =
(ii) H(P') < pH(P)
(iii) H(P+ Q) < H(P)+ H(Q)

(iv) HPQ) < (1+p+qH(P)H(Q)
The first and second properties are trivial, while the third follows immediately from
the triangle inequality. The last property follows by noting that the coefficient of z*
in the product of a,z? —I—ap,lmp_l +---4ag and b9x4 +bq,1xq_1 +---+bg is given
by Z a;b;, where the number of summands is at most [(p+¢)/2]+1 < 1+p+gq.

itj=k
We recall a result which can be found in Rolle [§].

Lemma 1. Let f(x) € R[z] be a monic polynomial. If t > 14+ H(f), then f(t) >0

Proof. Let f(z) = 2" +a, 12" ' +---+ a1z +ag. The result follows from writing
f(t) as

ap — 2 a
f(t):tn_l(t“!‘ <an71+ n ++tn81))7
since from ¢t > 1, we deduce that

n—1

Ay — a 1y t
anoy+ 2 SO <Y ()T S Hf) e < 8
i=0
and we conclude that ¢ + (an_l + a"ffz 4+ tfﬂl) is positive. [l

We will also require the following lemma, which is implicit in the proof of the
sole lemma in [9].

Lemma 2. Let f(x) be a branch of an algebraic function, real and regular for all
x > xg for some xq, and satisfying |f(x)| < Cx® where C > 0 and a > 0. Then
lim f(r+1)(x) = 0, where r is the least integer greater than or equal to c.

r— 00

We now establish a bound on the zeros of a particular class of algebraic functions.

Lemma 3. Let P(x) be a polynomial of degree p with integral coefficients, and let
f(z) be a branch of the algebraic function defined by the equation y? = P(x) where
q is an integer greater than 1. For any integer k > 2, Ry.(z) = ¢* f(x)*1=1 fF) ()
is a polynomial with integral coefficients such that deg R, < k(p—1) and H(Ry) <
(k= 1)!pg* H(P)* TT;_ (jp — j + 1)*.
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Proof. Differentiating f¢ = P with respect to z, we obtain ¢f9=1f = P'. We
have deg P’ = p — 1 and H(P') < pH(P). We now consider Ry, = ¢* f*9=1 (%) and
prove the result by induction on k.

For the base case k = 2, we differentiate ¢qf9~!f’ = P’ with respect to z to
obtain

af 1N+ ala = DT =P
Multiplying both sides of this equation by ¢f?, we obtain
P+ (g = Daf ) af ) = af P
¢ " + (= 1)P'P = qPP",
so that
Ry =g’ f*171 f" = qPP" — (¢ = 1)P'P'.
We then have
deg Ry < max{p + deg P",deg P’ + deg P’}
=max{p+(p—-1)-1Lp—1+p—1}
=2(p—-1),
and
H(Ry) < ¢H(PP") + (¢ — 1)H(P'P')
<q(1+p+degP")H(P)H(P")+ q(1+ deg P' + deg P")H(P")H(P')
< q(L+p+p—2)H(P)[deg P'H(P")] + q(1 +2p — 2)[pH(P)]”
< q(2p — DH(P)(p — 1)[pH (P)] + a(2p — 1)[pH (P)]?
= pa(2p = H(P)*[(p — 1) +p]
= pgH(P)*(2p —1)*.

Therefore, the result holds for the base case.
We now assume that the result holds for some integer £ > 2. Differentiating
Ry, = ¢" fFa=1 f(8) with respect to x yields

g R g (kg = DR = Ry
Multiplying both sides of the equation by ¢f?, we obtain

g I P o (kg — D)la " )l ST ) = af TRy
g" I PR o (kg — 1) PRy = gPRY,

so that
Rpy1 = " fIra=t pHD — gPR — (kg — 1)P'Ry,.
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By hypothesis, we have deg Ry < k(p — 1). Thus,
deg Ri+1 < max{p + deg Ry’, deg P’ + deg Ry}
=max{p+degRr — 1,p — 1+ deg Ry}

=p—1+deg Ry
<p-—1l+k(p-1)
=k+1(p-1).

In addition,
H(Ry+1) < ¢H(PRy') + (kq — 1)H(P'Ry,)
< kq(1+p+deg Ry )H(P)H(Ry')
+ kq(1 + deg P’ + deg Ry )H(P')H(Ry,)
< kq(p + deg Ry,)H(P)[deg R H (Ry)]
+ kq(p + deg Ry,)[pH (P)|H (Ry)
= kq(p+ deg Ry)*H(P)H(Ry) .
By hypothesis, we have deg Ry, < k(p — 1) and

k
H(Rg) < (k—1)lpg" "H(P)* [ Gp — § + 1)
Jj=2
Thus,

k
H(Ry1) < kq(p+k(p — 1)) H(P)(k — 1) pg" " H(P H jp—j+1)7°

k+1
= klpg" H(P)*" [T Gip— 5+ 1)?,
j=2
proving the result. O

Corollary 1. Let P(z) be a polynomial of degree p with integral coefficients, and
let f(x) be a branch of the algebraic function defined by the equation y? = P(x)
where q is an integer greater than 1. If B is a real zero of f*)(x) for any integer
k > 2 such that 3 > 1+ H(P), then 8 < 1+ (k—1)lpg* ' H(P)* TT:_,(jp—j +1)2.

Proof. Let 3 be a zero of f*)(z) such that 8 > 1+ H(P). If f(3) = 0, then
0= f(8)?=P(B) and B <1+ H(P) by Lemma [} We conclude that 3 is not a
zero of f(x).

Since 3 must be a zero of the polynomial Ry, = ¢* f*9=1 f(*) we conclude from
Lemma [1] and Lemma Bl that

k
B<1+H(Ry) <1+ (k—1)pg" H(P)* [[Gip—i+1)?,
j=2

as claimed. 0
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Defining the difference operator A by Af(z) = f(z + 1) — f(z) and recursively
defining higher order difference operators, we have the following lemma from [3]:

k
Lemma 4. Let k > 1 be an integer. Then AF f(x) = Z <
=0

k)(l)”f(z+kz)

?

3. PROOF OF THEOREM [I]

Proof. Let x = ¢(y) denote the branch of the algebraic function inverse to
the polynomial y = x4, that is, ¢(y) = y'/%. Then ¢(y) is positive and free of
singularities for all y > 0.

Set f(z) = ¢(P(x)). Then f(x) is asymptotically a,l,/qacp/q, and f(n) = +m for
any n such that P(n) = mq.

We show by contradiction that f(x) is a polynomial. Suppose that f(z) is not a
polynomial. Then f®/ q+2)(x) is not identically zero. By Corollary |1} any real zero
B of f®P/a+2)(z) satisfying 8 > 1 + H(P) must also satisfy

p/q+2

B <1+ (p/g+1)lpg” T H(PY 2 T Gp—j+1)°.
j=2

Thus, f®/ q+1)(m) is either monotone decreasing or monotone increasing for

p/q+2
x> 1+ (p/q+1)lpg?/ T H(PP/ ] Gp—i+1)°.
=2

Suppose that f/9+1)(z) is monotone decreasing. It must then be strictly positive
for z > 1+(p/q+1) I/ H(P/ " T[IL5™ (jp—j+1)%, since lim f#/0+)(z) =
0 by Lemma 2]

Applying the difference operator A to f(z) p/q+1 times, we find that AP/9+1 f(ng)
is an integer. We now apply the Mean Value Theorem repeatedly to obtain a number
co € (no,no + p/q + 1) such that f®/9+1(cy) = AP/9H1 f(ng) is an integer.

Foreach k =1,..., M, we repeat the above process with each block of consecutive
integers ny +1i,4=0,...,p/q+ 1, to obtain numbers ¢ such that ¢ € (ng,ng +
p/q+1) and f®/at1) (¢, ) = AP/9H1 f(n,) are integers.

By Lemma the integer f®/4+1)(¢y) = AP/9+1 f(ng) is such that

p/q+1
3 (p/q_+ 1) (=1)'f(no +p/q+1—1)

2
=0

p/q+1
p/q+1
=D Dl (A [

i=0
=M.

|f(p/q+1)(60)| —

Since /41 (z) is monotone decreasing, f®/9+1)(¢) < fP/4+1) (¢ _1) for each
k=1,...,M. Thus f®/9*Y(c;) < M — j for j = 0,..., M. This implies that
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f®/a+t) (¢pr) < 0, which contradicts f(/9+1) (z) being strictly positive at

p/q+2
en > o >no > 1+ (p/g+ Vlpg?/ T H(PP? T Gp—id+1)°.
j=2

Similarly, the case where f(P/4%1) (1) is monotone increasing leads to a contra-

diction. Therefore, f(z) is a polynomial and P(z) = f(x)?. O
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