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LIE GROUPOIDS OF MAPPINGS TAKING VALUES
IN A LIE GROUPOID

Habib Amiri, Helge Glöckner, and Alexander Schmeding

Abstract. Endowing differentiable functions from a compact manifold to
a Lie group with the pointwise group operations one obtains the so-called
current groups and, as a special case, loop groups. These are prime examples
of infinite-dimensional Lie groups modelled on locally convex spaces. In the
present paper, we generalise this construction and show that differentiable
mappings on a compact manifold (possibly with boundary) with values in a
Lie groupoid form infinite-dimensional Lie groupoids which we call current
groupoids. We then study basic differential geometry and Lie theory for these
Lie groupoids of mappings. In particular, we show that certain Lie groupoid
properties, like being a proper étale Lie groupoid, are inherited by the current
groupoid. Furthermore, we identify the Lie algebroid of a current groupoid
as a current algebroid (analogous to the current Lie algebra associated to a
current Lie group).

To establish these results, we study superposition operators
C`(K, f) : C`(K,M)→ C`(K,N) , γ 7→ f ◦ γ

between manifolds of C`-functions. Under natural hypotheses, C`(K, f) turns
out to be a submersion (an immersion, an embedding, proper, resp., a local
diffeomorphism) if so is the underlying map f : M → N . These results are
new in their generality and of independent interest.

Introduction and statement of results

It is a well-known fact that the set C`(K,G) of C`-maps (for ` ∈ N0 ∪ {∞})
from a compact manifold K to a Lie group G is again a Lie group (compare,
e.g., [16, 19, 31, 32, 35, 40]). Such mapping groups, often called current groups,
are prominent examples of infinite-dimensional Lie groups (notably loop groups
C`(S, G), [40]). We perform an analogous construction for Lie groupoids, and study
basic differential geometry and Lie theory for these current groupoids. In particular,
we identify the Lie algebroid of a current groupoid as the corresponding current
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algebroid. Here, in analogy to the current Lie group/current Lie algebra picture
[35, 36, 40], a current algebroid is a bundle of algebroid-valued differentiable maps
whose Lie algebroid structure is induced by the pointwise operations. Moreover, we
show that certain properties of Lie groupoids, such as being an étale Lie groupoid,
lift to the (infinite-dimensional) current groupoid. The key observation driving our
approach is that superposition operators between manifolds of mappings inherit
many properties from the underlying mappings. These results are new and of
independent interest as they constitute a versatile tool to deal with some of the
basic building blocks in infinite-dimensional geometry.

Let us now describe our results in a bit more detail. Our construction is based on
the fact that a manifold structure can be constructed on C`(K,M) whenever the
target manifold M has a local addition (see Appendix A; cf. [13, 21, 25, 31, 32]).
Here the compact source manifold K may have a smooth boundary, corners, or
more generally a “rough boundary” as defined in [19] (and recalled in 1.2). For
a smooth map f : M → N , it is known that the manifold structures turn the
superposition operator C`(K, f) : C`(K,M) → C`(K,N), C`(K, f)(γ) := f ◦ γ
into a smooth map. Note that the manifolds, Lie groups and Lie groupoids we
study can be infinite-dimensional (in particular, this is the case for the manifolds
of mappings). To deal with manifolds modelled on locally convex spaces beyond
the Banach setting we work in the framework of the so-called Bastiani (or Keller
Ckc -) calculus [5], recalled in Section 1. Throughout the following, we shall always
consider a Lie groupoid G = (G ⇒ M) modelled on locally convex spaces with
source map α and target map β such that G and M admit local additions. Our
results subsume the following theorem.

Theorem A. Assume that M is a smooth Banach manifold, K a compact smooth
manifold (possibly with rough boundary), and ` ∈ N. Then the pointwise operations
turn C`(K,G) := (C`(K,G) ⇒ C`(K,M)) into a Lie groupoid with source map
C`(K,α) and target map C`(K,β). The same conclusion holds if ` = 0 and all
modelling spaces of M are finite dimensional, or if ` =∞ and all modelling spaces
of G and M are finite dimensional.

Lie groupoids of the form C`(K,G) shall be referred to as Lie groupoids of
Lie groupoid-valued mappings, or current groupoids. Since every Lie group can be
interpreted as a Lie groupoid (over the one point manifold), current groupoids
generalise current Lie groups and loop groups.

We then study basic differential geometry for current groupoids. For example,
we identify Lie subgroupoids and Lie groupoid actions which are induced by
subgroupoids and actions of the target groupoids. Further, we investigate whether
current groupoids inherit typical properties of Lie groupoids. To this end, recall
the following typical properties of Lie groupoids.

Definition. Consider a Lie groupoid G with source map α : G→ M and target
map β : G→M . The Lie groupoid G is called

étale: if α is a local C∞-diffeomorphism;
proper: if (α, β) : G→M ×M is a proper map;
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locally transitive: if (α, β) : G→M ×M is a submersion;
transitive: if (α, β) : G→M ×M is a surjective submersion.1

Concerning local transitivity, we observe:

Theorem B. If G is locally transitive in the situation of Theorem A, then also
C`(K,G) is locally transitive.

We mention that C`(K,G) need not be transitive if G is transitive (Example 3.9).
Likewise, C`(K,G) need not be proper if G is proper (Example 3.11). The situation
improves if G is étale, and we can even get around some hypotheses of Theorem A
in this case.

Theorem C. Let G = (G ⇒ M) be an étale Lie groupoid modelled on locally
convex spaces over a smooth manifold M modelled on locally convex spaces, K a
compact smooth manifold (possibly with rough boundary), and ` ∈ N0∪{∞}. If the
topological space underlying G is regular, then C`(K,G) is an étale Lie groupoid.
If, moreover, G is proper, then also C`(K,G) is proper.

Analogs to Theorem C are also available for topological groupoids (see Co-
rollary 3.17). As a consequence of Theorem C, the current groupoid of a proper
étale Lie groupoid will again be a proper étale Lie groupoid. It is well known that
proper étale Lie groupoids are linked to orbifolds (cf. [33, 34, 44]), whence they
are also often called orbifold groupoids. In light of Theorem C, we can thus view
the construction of Lie groupoids of orbifold Lie groupoid-valued mappings as a
construction of infinite-dimensional orbifolds of mappings. However, current grou-
poids are too simple in general to model spaces of orbifold morphisms [9, 42, 43].
This is discussed in detail in Appendix B.

Note that for ` ∈ N0 and G a Banach-Lie groupoid, also the current groupoid
will be a Banach-Lie groupoid (for ` = ∞ and G a Banach-Lie groupoid, the
current groupoid is modelled on Fréchet spaces). Basic (Lie) theory for Banach-Lie
groupoids has recently been established in [6].

On the infinitesimal level, one associates to a Lie groupoid a so-called Lie algebroid
[6, 28]. The infinitesimal objects of current groupoids are as expected:

Theorem D. In the situation of Theorem A, denote by A(G) the Lie algebroid
associated to G. Then there exists a canonical isomorphism of Lie algebroids such
that

A
(
C`(K,G)

) ∼= C`
(
K,A(G)

)
,

where the Lie algebroid on the right hand side is given by the bundle C`(K,A(G))→
C`(K,M) with the pointwise algebroid structure.

Again this generalises the case of current groups for which the construction
yields (up to a shift in sign, see Remark 4.7) the well-known construction of a
current algebra [23, 36].

1Our usage of “transitive” is as in [33] and [6] (but differs from the notion of transitivity in [28]).
Our concept of local transitivity is as in [6] (where only Banach-Lie groupoids are considered).
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The main point of Theorem A is to see that C`(K,α) and C`(K,β) are submersions,
and Theorem B requires showing that C`(K, (α, β)) is a submersion. Similarly,
Theorem C requires showing that C`(K,α) is a local diffeomorphism (resp., that
C`(K, (α, β)) is proper). The following result provides these properties.

Theorem E. Let M and N be smooth manifolds modelled on locally convex spaces
such that M and N admit a local addition. Let k, ` ∈ N0 ∪ {∞}, f : M → N be
a Ck+`-map and K be a compact manifold (possibly with rough boundary). Then
the Ck-map

C`(K, f) : C`(K,M)→ C`(K,N) , γ 7→ f ◦ γ
has the following properties:

(a) If f is a submersion, N is modelled on Banach spaces, k ≥ 2 and ` <∞,
then C`(K, f) is a submersion, assuming ` ≥ 1 if some modelling space of N
is infinite-dimensional.

(b) If f is an immersion, M is modelled on Banach spaces, k ≥ 2 and ` <∞,
then C`(K, f) is an immersion, assuming ` ≥ 1 if some modelling space of M
is infinite-dimensional.

(c) If f is a local Ck+`-diffeomorphism and M is a regular topological space,
then C`(K, f) is a local Ck-diffeomorphism.

(d) If f is a proper map, M is a regular topological space and N = N1 × N2
with smooth manifolds N1 and N2 such that N1 admits a local addition and
pr1 ◦ f : M → N1 is a local Ck+`-diffeomorphism, then C`(K, f) is proper.

We remark that Theorem E (a) and (b) generalise a similar result by Palais [37,
Theorem 14.10] for certain morphisms of (smooth) fiber bundles.

If f in Theorem E (b) is, moreover, a homeomorphism onto its image, then so
is C`(K, f) (see Lemma 1.14), whence C`(K, f) is an embedding of Ck-manifolds.
What is more, we have the following variant (which also varies a result in [31]), as
a special case of Proposition 2.10:

Theorem F. Let e : M → N be a smooth embedding between finite-dimensional
manifolds, K be a compact smooth manifold (possibly with rough boundary), and
` ∈ N0 ∪ {∞}. Then C`(K, e) : C`(K,M)→ C`(K,N) is an embedding.

If ` = 0, then K can actually be replaced with an arbitrary compact topological
space in Theorems A–F (in view of [1, Remark 4.9]), assuming moreover that K is
locally connected for the conclusions concerning properness (cf. Proposition 2.16
and Corollary 3.17).

1. Preliminaries

We shall write N = {1, 2, . . .} and N0 := N ∪ {0}. Hausdorff locally convex real
topological vector spaces will be referred to as locally convex spaces. If E and F are
locally convex spaces, we let L(E,F ) be the space of all continuous linear mappings
from E to F . We write L(E,F )c and L(E,F )b, respectively, if the topology of
uniform convergence on compact sets (resp., bounded sets) is used on L(E,F ). We
write GL(E) for the group of automorphisms of E as a locally convex space; if E is
a Banach space, then GL(E) is an open subset of L(E)b := L(E,E)b. A subset U
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of a locally convex space E is called locally convex if for each x ∈ U , there exists
a convex x-neighborhood in U . Every open set U ⊆ E is locally convex. We shall
work in a setting of infinite-dimensional calculus known as Bastiani calculus or
Keller’s Ckc -theory, going back to [5], and generalizations thereof (see [19] and [1],
also [15, 21, 31], and [32]).

1.1. If E and F are locally convex spaces and f : U → F is a mapping on a locally
convex subset U ⊆ E with dense interior U0, we write

(Dyf)(x) := d

dt

∣∣∣
t=0

f(x+ ty)

for the directional derivative of f at x ∈ U0 in the direction y ∈ E, if it exists. A
mapping f : U → F is called Ck with k ∈ N0 ∪ {∞} if f is continuous and there
exist continuous mappings d (j)f : U × Ej → F for all j ∈ N with j ≤ k such that

d (j)f(x, y1, . . . , yj) = (Dyj · · ·Dy1f)(x) for all x ∈ U0 and y1, . . . , yj ∈ E.

1.2. As compositions of Ck-maps are Ck, one can define Ck-manifolds modelled on a
set E of locally convex spaces as expected: Such a manifold is a Hausdorff topological
space M , together with a maximal set A of homeomorphisms φ : Uφ → Vφ (“charts”)
from an open subset Uφ ⊆ M onto an open subset Vφ ⊆ Eφ for some Eφ ∈ E
such that

⋃
φ∈A Uφ = M and φ ◦ ψ−1 is Ck for all φ, ψ ∈ A. If the sets Vφ in the

definition of a Ck-manifold are only required to be locally convex subsets with
dense interior of some Eφ ∈ E (but not necessarily open), we obtain the more
general concept of a Ck-manifold with rough boundary modelled on E .

If all locally convex spaces in E are Banach, Fréchet or finite-dimensional spaces,
we say that M is a Banach, or Fréchet or finite-dimensional manifold (possibly
with rough boundary) respectively. Note that a priori all manifolds in this paper
are allowed to be modelled on locally convex spaces and we suppress this in the
notation (only emphasising the special cases of Banach and Fréchet manifolds). If
E = {E} consists of a single locally convex space, then M is a pure Ck-manifold.
Only this case is considered in [19], but it captures the essentials as each connected
component of a Ck-manifold is open, and can be considered as a pure Ck-manifold.
However, the manifolds C`(K,M) we are about to consider need not be pure (even
if M is pure).

Remark 1.3. Every ordinary finite-dimensional manifold with smooth boundary
also is a smooth manifold with rough boundary, and so are finite-dimensional
smooth manifolds with corners in the sense of [31].

1.4. As usual, a map f : M → N between Ck-manifolds (possibly with rough
boundary) is called Ck if it is continuous and φ ◦ f ◦ ψ−1 is Ck for all charts ψ
and φ of M and N , respectively.

For a Ck-map f : M → N between manifolds without boundary, we say (see
[18, 21]) that f is

(1) a submersion (or Ck-submersion, for emphasis) if for each x ∈M we can
choose a chart ψ of M around x and a chart φ of N around f(x) such that
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φ ◦ f ◦ ψ−1 is the restriction of a continuous linear map with continuous
linear right inverse;

(2) an immersion (or Ck-immersion) if for each x ∈M there are charts such
that φ ◦ f ◦ ψ−1 is the restriction of a continuous linear map admitting a
continuous linear left inverse;

(3) an embedding (or Ck-embedding) if f is a Ck-immersion and a topological
embedding;

(4) a local Ck-diffeomorphism if each x ∈M has an open neighborhood U ⊆M
such that f(U) is open in N and f |U : U → f(U) is a Ck-diffeomorphism.

If the tangent map Txf : TxM → Tf(x)M has a continuous linear right inverse2 for
each x ∈M , then f is called a naïve submersion. If each tangent map Txf has a
continuous linear lect inverse, then f is called a naïve immersion.

It is essential for us to consider mappings on products with different degrees of
differentiability in the two factors, as in [1] (or also [19]).

1.5. Let E1, E2, and F be locally convex spaces and f : U × V → F be a mapping
on a product of locally convex subsets U ⊆ E1 and V ⊆ E2 with dense interior.
Given k, ` ∈ N0 ∪ {∞}, we say that f is Ck,` if f is continuous and there exist
continuous mappings d (i,j)f : U × V × Ei1 × E

j
2 → F for all i, j ∈ N0 such that

i ≤ k and j ≤ ` such that

d (i,j)f(x, y, v1, . . . , vi, w1, . . . , wj) = (D(vi,0) · · ·D(v1,0)D(0,wj) · · ·D(0,w1)f)(x, y)

for all x ∈ U0, y ∈ V 0 and v1, . . . , vi ∈ E1, w1, . . . , wj ∈ E2.

One can also define Ck,`-maps M1 ×M2 → N if M1 is a Ck-manifold, M2 a
C`-manifold and N a Ck+`-manifold (all possibly with rough boundary), checking
the property in local charts.

1.6 (Submanifolds). Let M be a Ck-manifold (possibly with rough boundary).
A subset N ⊆ M is called a submanifold if, for each x ∈ N , there exists a chart
φ : Uφ → Vφ ⊆ Eφ of M with x ∈ Uφ and a closed vector subspace F ⊆ Eφ such
that φ(Uφ ∩N) = Vφ ∩ F and Vφ ∩ F has non-empty interior in F (note that the
final condition is automatic if M is a manifold without boundary). Then N is a
Ck-manifold in the induced topology, using the charts φ|Uφ∩N : Uφ ∩N → Vφ ∩ F .
If F can be chosen as a vector subspace of Eφ which is complemented in Eφ as a
topological vector space, then N is called a split submanifold of M .

The following two observations are well known (see, e.g., [19]):

1.7. If N is a submanifold of a Ck-manifold M (possibly with rough boundary)
and f : L→M a map on a Ck-manifold L such that f(L) ⊆ N , then f is Ck if and
only if its corestriction f |N : L→ N is Ck for the Ck-manifold structure induced
on N .

2We then also say that Txf is a split linear surjection.
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1.8. If M is a Ck+`-manifold, L1 is a Ck-manifold, L2 a C`-manifold (all pos-
sibly with rough boundary) and f : L1 × L2 → M is a map with image in a
submanifold N ⊆M , then f is Ck,` if and only if f |N is Ck,`.

1.9. Let k ∈ N∪{∞}. We mention that a Ck-map f : M → N between Ck-manifolds
without boundary is a Ck-embedding if and only if f(M) is a split submanifold
of N and f |f(M) : M → f(M) is a Ck-diffeomorphism (see [18, Lemma 1.13]). If
M and N are Ck-manifolds which may have a rough boundary, we take the latter
property as the definition of a Ck-embedding f : M → N .

1.10. If M is a C1-manifold (possibly with rough boundary) and f : M → U a
C1-map to an open subset U of a locally convex space E, we identify the tangent
bundle TU with U×E, as usual, and let df be the second component of the tangent
map Tf : TM → TU = U × E.

For Lie groups modelled on locally convex spaces, we refer to [19, 32, 35].

1.11. Consider a groupoid G = (G ⇒ M), with source map α : G→M and target
map β : G→M . If G and M are smooth manifolds, α and β are C∞-submersions
and the multiplication map G(2) → G, the inversion map G → G and the
identity-assigning map M → G, x 7→ 1x are smooth, then G is called a Lie
groupoid. If G is a Lie groupoid and both of the manifolds G and M are modelled
on Banach spaces, then G is called a Banach-Lie groupoid.

1.12. Let M and N be Ck-manifolds (possibly with rough boundary), where
k ∈ N0 ∪ {∞}. Given a Ck-map γ : M → N , we set T 0M := M , T 0N := N ,
T 0γ := γ. Recursively, we define iterated tangent maps T jγ := T (T j−1γ) from
T jM := T (T j−1M) to T jN := T (T j−1N). We endow the set Ck(M,N) of all
N -valued Ck-maps on M with the initial topology O with respect to the maps

T j : Ck(M,N)→ C(T jM,T jN) , γ 7→ T jγ ,

for j ∈ N0 with j ≤ k, where C(T jM,T jN) is endowed with the compact-open
topology. The topology O is called the compact-open Ck-topology on Ck(M,N).

We shall use the following fact.

Lemma 1.13. Let M and N be Ck-manifolds modelled on locally convex spaces
(possibly with rough boundary), where k ∈ N0 ∪ {∞}. If (Ui)i∈I is an open cover
of M , then the topology on Ck(M,N) is initial with respect to the restriction maps
ρi : Ck(M,N)→ Ck(Ui, N) for i ∈ I.

Proof. For each j ∈ N0 such that j ≤ k, the sets T jUi form an open cover of
T jM for i ∈ I, whence the compact-open topology on C(T jM,T jN) is initial with
respect to the restriction maps ρi,j : C(T jM,T jN)→ C(T jUi, T jN) for i ∈ I (see
[19, Lemma A.5.11]). By transitivity of initial topologies [19, Lemma A.2.7], the
topology on Ck(M,N) is initial with respect to the mappings ρi,j ◦T j for i ∈ I and
j ∈ N0 with j ≤ k. Again by transitivity of initial topologies, the initial topology
on Ck(M,N) with respect to the maps ρi,j ◦ T j = T j ◦ ρi coincides with the initial
topology with respect to the mappings ρi. �
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If M , N , and S are Hausdorff topological spaces and f : S → N is a continuous
map, then also C(M,f) : C(M,S)→ C(M,N) is continuous for the compact-open
topologies; if f is a topological embedding, then so is C(M,f) (see, e.g., [19,
Appendix A]). Likewise, the following holds:
Lemma 1.14. Let M , N , and S be Ck-manifolds modelled on locally convex spaces
(possibly with rough boundary), where k ∈ N ∪ {∞}. If f : S → N is a Ck-map,
then Ck(M,f) : Ck(M,S) → Ck(M,N) is continuous. If f is a Ck-embedding,
then Ck(M,f) is a topological embedding.
Proof. The first assertion follows from the continuity of the maps T j ◦Ck(M,f) =
C(T jM,T jf) ◦ T j . If f is a Ck-embedding, then f(S) is a Ck-submanifold of N
and f |f(S) : S → f(S) is a Ck-diffeomorphism, by [18, Lemma 1.13]. Hence

Ck(M,f |f(S)) : Ck(M,S)→ Ck
(
M,f(S)

)
is a homeomorphism. After replacing S with f(S), we may assume that S is a
submanifold of N and f : S → N the inclusion map. Since T jS is a submanifold of
T jN for each j ∈ N0 with j ≤ k and the topology on the iterated tangent bundle
coincides with the topology induced by T jN , we deduce that the topology on
Ck(M,S) is induced by Ck(M,N). �

1.15. If π : E → M is a Ck-vector bundle,3 we write ΓCk(E) for its space of
Ck-sections σ : M → E (thus π ◦ σ = idM ). The topology induced by Ck(M,E)
on ΓCk(E) makes the latter a locally convex space (see, e.g., [19]). If U ⊆ M is
an open subset, we write E|U := π−1(U). Finally, if all fibers Ex of E are Banach
spaces, Fréchet spaces or finite-dimensional, we say that E is a Banach or Fréchet
or finite rank bundle, respectively.
Canonical manifolds of mappings. We now define canonical manifold struc-
tures for manifolds of mappings. This allows us to identify the properties of
manifolds of mappings necessary for our approach without having to deal with the
details of the actual constructions (these are referenced in Appendix A).
1.16 (General Assumptions). In the following we will (unless noted otherwise)
use the following conventions and assumptions: K will be a compact smooth
manifold (possibly with rough boundary), M,N will be smooth manifolds, and
`, k ∈ N0 ∪ {∞}.
Definition 1.17. We say that a smooth manifold structure on the set C`(K,M)
is canonical if its underlying topology is the compact-open Ck-topology and the
following holds: For each k ∈ N0 ∪ {∞}, each Ck-manifold N (possibly with rough
boundary) modelled on locally convex spaces and each map f : N → C`(K,M),
the map f is Ck if and only if

f∧ : N ×K →M , (x, y) 7→ f(x)(y)

3Thus E and M are Ck-manifolds (possibly with rough boundary), f is a surjective Ck-map
and a vector space structure is given on Ex := f−1({x} for each x ∈ M such that E is locally
trivial in the sense that each x ∈ M has an open neighborhood U ⊆ M for which there exists
a Ck-diffeomorphism θ = (θ1, θ2) : f−1(U)→ U × F for some locally convex space F such that
θ1 = π|f−1(U) and θ2|Ey is linear for all y ∈ U .
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is a Ck,`-map.

Remark 1.18. A canonical manifold structure enforces a suitable version of the
exponential law (cf. [1, 25]) which enables differentiability properties of mappings
to be verified by computing them on the underlying manifolds. Thus we can
avoid the (rather involved) manifold structure on manifolds of mappings in many
situations (similar ideas have been used in [36]). We hasten to remark that the
usual constructions of manifolds of mappings yield canonical manifold structures
(cf. the end of the present section and Appendix A).

Lemma 1.19. If C`(K,M) is endowed with a canonical manifold structure, then
(a) the evaluation map ε : C`(K,M)×K →M , ε(γ, x) := γ(x) is a C∞,`-map.
(b) Canonical manifold structures are unique in the following sense: If we write
C`(K,M)′ for C`(K,M), endowed with another canonical manifold structure,
then id : C`(K,M)→ C`(K,M)′, γ 7→ γ is a C∞-diffeomorphism.

(c) Let N ⊆M be a submanifold such that the set C`(K,N) is a submanifold
of C`(K,M). Then the submanifold structure on C`(K,N) is canonical.

(d) If M1, and M2 are smooth manifolds such that C`(K,M1) and C`(K,M2)
have canonical manifold structures, then the manifold structure on the product
manifold C`(K,M1)× C`(K,M2) ∼= C`(K,M1 ×M2) is canonical.

Proof. (a) Since id : C`(K,M) → C`(K,M) is C∞ and C`(K,M) is endowed
with a canonical manifold structure, it follows that id∧ : C`(K,M) × K → M ,
(γ, x) 7→ id(γ)(x) = γ(x) = ε(γ, x) is C∞,`.

(b) The map f := id: C`(K,M) → C`(K,M)′ satisfies f∧ = ε where ε :
C`(K,M) × K → M is C∞,`, by (a). Since C`(K,M)′ is endowed with a ca-
nonical manifold structure, it follows that f is C∞. By the same reasoning,
f−1 = id: C`(K,M)′ → C`(K,M) is C∞.

(c) As C`(K,N) is a submanifold, the inclusion ι : C`(K,N)→ C`(K,M), γ 7→ γ
is C∞. Likewise, the inclusion map j : N →M is C∞. Let L be a manifold (possibly
with rough boundary) modelled on locally convex spaces and f : L→ C`(K,N) be a
map. If f is Ck, then ι◦f is Ck, entailing that (ι◦f)∧ : L×K →M , (x, y) 7→ f(x)(y)
is Ck,`. As the image of this map is contained in N , which is a submanifold of M ,
we deduce that f∧ = (ι◦f)∧|N is Ck,`. If, conversely, f∧ : L×K → N is Ck,`, then
also (ι ◦ f)∧ = j ◦ (f∧) : L ×K → M is Ck,`. Hence ι ◦ f : L → C`(K,M) is Ck
(the manifold structure on the range being canonical). As ι ◦ f is a Ck-map map
with image in C`(K,N) which is a submanifold of C`(K,M), we deduce that f
is Ck.

(d) If L is a Ck-manifold (possibly with rough boundary) and f = (f1, f2) : L→
C`(K,M1)×C`(K,M2) a map, then f is Ck if and only if f1 and f2 are Ck. As the
manifold structures are canonical, this holds if and only if f∧1 : L×K →M1 and
f∧2 : L×K →M2 are Ck,`, which holds if and only if f∧ = (f∧1 , f∧2 ) is Ck,`. �

Proposition 1.20. Assume that C`(K,M) and C`(K,N) admit canonical mani-
fold structures. If Ω ⊆ K ×M is an open subset and f : Ω → N is a Ck+`-map,
then

Ω′ := {γ ∈ C`(K,M) : graph(γ) ⊆ Ω}
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is an open subset of C`(K,M) and
f? : Ω′ → C`(K,N) , γ 7→ f ◦ (idK , γ)

is a Ck-map.
Proof. As the compact open topology on C(K,M) coincides with the graph
topology (see, e.g., [19, Proposition A.5.25]), {γ ∈ C(K,M) : graph(γ) ⊆ Ω} is
open in C(K,M). As a consequence, Ω′ is open in C`(K,M), exploiting that
C`(K,M) is endowed with the compact-open C`-topology4 which is finer that the
compact-open topology. By Lemma 1.19 (a), the map ε : C`(K,M) × K → M ,
(γ, x) 7→ γ(x) is C∞,` and hence Ck,`, whence also C`(K,M) × K → K ×M ,
(γ, x) 7→ (x, γ(x)) is Ck,`. Since f is Ck+`, the Chain Rule shows that

(f?)∧ : Ω′ ×K → N , (γ, x) 7→ f?(γ)(x) = f(x, γ(x))
is Ck,`. So f? is Ck, as the manifold structure on C`(K,N) is canonical. �

Corollary 1.21. Assume that C`(K,M) and C`(K,N) admit canonical manifold
structures. If f : K ×M → N is a Ck+`-map, then

f? : C`(K,M)→ C`(K,N), γ 7→ f ◦ (idK , γ)
is a Ck-map. �

Applying Corollary 1.21 with f(x, y) := g(y), we get:
Corollary 1.22. Assume that C`(K,M) and C`(K,N) admit canonical manifold
structures. If g : M → N is a Ck+`-map, then

g∗ := C`(K, g) : C`(K,M)→ C`(K,N) , γ 7→ g ◦ γ
is a Ck-map. �

We emphasise that the usual construction of manifolds of mappings using a
local addition (see Definition A.7) produces canonical manifold structures. This is
recorded in the next proposition which slighly generalizes well-known constructions
(cf. [13]);5 the proof can be found in Appendix A.
Proposition 1.23. If M admits a local addition, then C`(K,M) admits a cano-
nical smooth manifold structure, for each ` ∈ N0 ∪ {∞}. Its underlying topology is
as in 1.12 and the tangent bundle can be identified with the manifold C`(K,TM).

Every paracompact finite-dimensional smooth manifold M admits a local addi-
tion (e.g., one can choose a Riemannian metric on M and restrict the Riemannian
exponential map to a suitable neighborhood of the zero-section). Every Lie group
G modelled on a locally convex space E admits a local addition.6 We refer to [45]
for more information on local additions on (infinite-dimensional) Lie groupoids.

4We only included this requirement in Definition 1.17 to enable the current argument.
5In this connection, the second author also profited from a talk by P.W. Michor at the 50th

Seminar Sophus Lie, 2016 in Bedlewo (Poland).
6Given g ∈ G, let λg : G → G, x 7→ gx be left translation by g. Consider the smooth map

ω : TG → TeG =: g, v 7→ (TλπTG(v))−1(v) and choose a C∞-diffeomorphism ψ : V → W from
an open 0-neighborhood V ⊆ g onto an open identity-neighborhood W ⊆ G such that ψ(0) = e.
Define U :=

⋃
g∈G Tλg(V ). Then Σ: U → G, v 7→ πTG(v)ψ(ω(v)) is a local addition for G.
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The tangent map of the push-forward map C`(K, f) can be identified in the
presence of a local addition. As recalled in Appendix A, up to certain (explicit)
bundle isomorphisms it has the following form.

1.24. Assume that M,N admit local additions and f : M → N is a C`+1 map.
Then the identification TC`(K,M) ∼= C`(K,TM) induces a commuting diagram

(1) TC`(K,M)
∼= //

TC`(K,f)
��

C`(K,TM)

C`(K,Tf)
��

TC`(K,N)
∼= // C`(K,TN);

see Corollary A.15 for details.

2. Lifting properties of maps to manifolds of mappings

In this section, we prove that certain properties of mappings between manifolds
(e.g. the submersion property) are inherited by the corresponding push-forward
mappings between infinite-dimensional manifolds of mappings. Notably, we shall
prove Theorem E, in several steps. Whenever we refer to the theorem, K will
denote a compact smooth manifold (possibly with rough boundary). Moreover, M
and N will be smooth manifolds admitting a local addition, and k, ` ∈ N0 ∪ {∞}.

Submersions between manifolds of mappings. The proof of Theorem E (a)
relies on two lemmas, which show that certain linear mappings between spaces of
sections split. To start with, we consider the case of trivial vector bundles.

Lemma 2.1. Let X and Y be locally convex spaces, Z be a Banach space, U ⊆ X
be a locally convex subset with dense interior and f : U ×Y → Z be a C`-map such
that fx := f(x, ·) : Y → Z is linear for each x ∈ U . If Z is infinite-dimensional
and ` = 0, assume that f is C1. If x0 ∈ U such that fx0 is a split linear surjection,
then

(f |U0)? : C`(U0, Y )→ C`(U0, Z) , γ 7→ f ◦ (idU0 , γ)
is a split linear surjection for some open x0-neighborhood U0 ⊆ U .

Proof. As fx0 is a split linear surjection, there exists a closed vector subspace
E ⊆ Y such that fx0 |E : E → Z is an isomorphism of topological vector spaces.
The inclusion map jE : E → Y is continuous linear, entailing that the restriction
map

ρE := L(jE , Z) : L(Y, Z)b → L(E,Z)b , α 7→ α ◦ jE = α|E
is continuous linear. If f is C1, then

f∨ : U → L(Y,Z)b , x 7→ fx

is continuous, by [19, Lemma 1.5.9]. If Y is finite-dimensional and ` = 0, then
L(Y,Z)c = L(Y,Z)b, whence f∨ : U → L(Y,Z)c = L(Y,Z)b is continuous by [19,
Proposition A.5.17]. In any case, f∨ : U → L(Y,Z)b is continuous, whence also

h := ρE ◦ f∨ : U → L(E,Z)b , x 7→ fx|E
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is continuous. Since the set Iso(E,Z) of invertible operators is open in L(E,Z)b,
there exists an open x0-neighborhood U0 ⊆ U such that h(U0) ⊆ Iso(E,Z). As the
inversion map

ι : L(E,Z)b ⊇ Iso(E,Z)→ L(Z,E)b , α 7→ α−1

is continuous, we deduce that the map ι ◦ h|U0 : U0 → L(Z,E)b, x 7→ h(x)−1 =
(fx|E)−1 is continuous and hence also the map

g : U0 × Z → E ⊆ Y , g(x, z) := (ι ◦ h)(x)(z) = (fx|E)−1(z)

(as the evaluation map L(Z,E)b × Z → E, (T, y) 7→ Ty is continuous). Since f
is C`, this entails that g is C` (see [20, Lemma 2.3]; cf. also [19, Exercise 1.3.10],
[21, Theorem 5.3.1]). As a consequence, the linear map

g? : C`(U0, Z)→ C`(U0, Y ) , γ 7→ g ◦ (idU0 , γ)

is continuous (see [19, Proposition 1.7.12]). It only remains to check that g? is a right
inverse to (f |U0)?. But (f |U0)?(g?(γ))(x) = f(x, g(x, γ(x))) = fx((fx|E)−1(γ(x))) =
γ(x) for all γ ∈ C`(U0, Z) and x ∈ U0, entailing that (f |U0)?(g?(γ)) = γ and thus
(f |U0)? ◦ g? = id. �

Lemma 2.2. Let M be a manifold (possibly with rough boundary), such that M
is smoothly paracompact.7 Let πE : E → M be a C`-vector bundle over M , and
πF : F → M be a C`-vector bundle over M whose fibers are Banach spaces. Let
f : E → F be a vector bundle map (over idM )8 of class C` such that f |Ex : Ex → Fx
is a split linear surjection, for each x ∈ M . If ` = 0 and F is not of finite rank,
assume, moreover, that E, F , and f are C1. Then also

f∗ : ΓC`(E)→ ΓC`(F ) , σ 7→ f ◦ σ

is a split linear surjection.

Proof. For each x ∈M , there exists an open x-neighborhood Ux ⊆M such that
E|Ux and F |Ux are trivial. By Lemma 2.1, the continuous linear map

(f |E|Ux )∗ : ΓC`(E|Ux)→ ΓC`(F |Ux) , σ 7→ f |E|Ux ◦ σ

admits a continuous linear right inverse ρx : ΓC`(F |Ux)→ ΓC`(E|Ux), possibly after
shrinking the open x-neighborhood Ux ⊆M . Let (hx)x∈M be a smooth partition
of unity on M such that supp(hx) ⊆ Ux for each x ∈M . Then

ρ(σ) :=
∑
x∈M

(hx · ρx(σ|Ux))̃

defines a linear right inverse ρ : ΓC`(F ) → ΓC`(E) for f∗ (where ˜ indicates the
extension of the given section to a global section of E taking points outside Ux

7Recall that a manifold is smoothly paracompact if it admits smooth partitions of unity, see
[25, Section 16].

8Thus f is a C`-map such that f(Ex) ⊆ Fx for each x ∈M and f |Ex : Ex → Fx is linear.
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to 0 ∈ Ex). Then ρ is continuous as each x ∈M has an open neighborhood Vx ⊆M
such that Φx := {y ∈M : Vx ∩ supp(hy) 6= ∅} is finite, entailing that

ΓC`(F )→ ΓC`(E|Vx) , σ 7→ ρ(σ)|Vx =
∑
y∈Φx

(hy · ρy(σ|Uy ))̃

is continuous (cf. Lemma 1.13). �

We are now in a position to prove Theorem E (a) whose statement we repeat
here for the reader’s convenience:

2.3 (Theorem E (a)). Let f : M → N be a C`+k-submersion and N a Banach
manifold, where 2 ≤ k ∈ N ∪ {∞} and ` ∈ N0. Then C`(K, f) is a Ck-submersion,
assuming ` ≥ 1 if some modelling space of N is infinite-dimensional.

Proof of Theorem E (a). For each γ ∈ C`(K,M), the map g : γ∗(TM) →
(f ◦ γ)∗(TN) taking v ∈ γ∗(TM)x = Tγ(x)(M) to

Tγ(x)f(v) ∈ Tf(γ(x))N = (f ◦ γ)∗(TN)x

is C` (as can be checked using local trivializations)9 and linear in v ∈ γ∗(TM)x.
Moreover, g(x, ·) corresponds to Tγ(x)f (cf. (12) in Corollary A.15), whence it is a
split linear surjection. Now

Tγ C
`(K, f) = g∗ : ΓC`(γ∗(TM))→ ΓC`((f ◦ γ)∗(TN))

is a split linear surjection, by 1.24 and Lemma 2.2. The Ck-map C`(K, f) therefore
is a naïve submersion in the sense of [18]. As ΓC`((f ◦ γ)∗(TN)) is a Banach space
(cf. [48, Section 3]) and k ≥ 2, we deduce from [18, Theorem A] that C`(K, f) is a
submersion. �

Remark 2.4. Note that the proof of Theorem E (a) used extensively the Banach
manifold structure of C`(K,N) as we have established the submersion property
by proving that the push-forward is a naïve submersion. Thus the proof will not
generalise beyond the Banach setting, e.g. for ` =∞ or K non-compact.

However, if f : M → N is a C`-submersion between finite-dimensional manifolds
the push-forward f∗ : C`(K,M)→ C`(K,N) can be proven to be a submersion in
more general cases: In [4], it was shown that for ` =∞ and K (possibly non-compact
and with smooth boundary or corners), the push-forward f∗ is a submersion. This
theorem is known as the Stacey-Roberts Lemma. The proof can be generalised to
` ∈ N0 (with f being C`+2). We note, however, that the results presented here are
distinct from the Stacey-Roberts Lemma whose proof in [4] does not generalise to
infinite-dimensional target manifolds.

9Let φ : Uφ → Vφ ⊆ F be a chart for N , ψ : Uψ → Vψ ⊆ E be a chart for M with f(Uψ) ⊆ Uφ
and W ⊆ K be an open subset such that γ(W ) ⊆ Uψ . Then γ∗(TM)|W =

⋃
x∈W {x} × Tγ(x)M

and the map θψ : γ∗(TM)|W →W × E, (x, y) 7→ (x, dψ(y)) is a local trivialization for γ∗(TM).
An analogous formula yields a local trivialization θφ : (f ◦ γ)∗(TN)|W →W × F of (f ◦ γ)∗(TN).
It remains to note that (θφ ◦ g ◦ θ−1

ψ
)(x, z) =

(
x, d(φ ◦ f ◦ ψ−1)(ψ(γ(x)), z)

)
is C` in (x, z).
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Immersions between manifolds of mappings.

Lemma 2.5. Let X and Z be locally convex spaces, Y be a Banach space, U ⊆ X
be a locally convex subset with dense interior and f : U ×Y → Z be a C`-map such
that fx := f(x, ·) : Y → Z is linear for each x ∈ U . If Y is infinite-dimensional
and ` = 0, assume that f is C1. If x0 ∈ U such that fx0 admits a continuous linear
left inverse, then also

(f |U0)? : C`(U0, Y )→ C`(U0, Z) , γ 7→ f ◦ (idU0 , γ)
admits a continuous linear left inverse, for an open x0-neighborhood U0 ⊆ U .

Proof. Let λ : Z → Y be a continuous linear map such that λ ◦ fx0 = idY . Then
λ∗ := L(Y, λ) : L(Y,Z)b → L(Y ), S 7→ λ ◦ S is a continuous linear map. As in the
proof of Lemma 2.1, we see that f∨ : U → L(Y,Z)b is continuous, whence also

h := λ∗ ◦ f∨ : U → L(Y )b , x 7→ λ ◦ fx
is continuous. Since GL(Y ) is open in L(Y )b, there exists an open x0-neighborhood
U0 ⊆ U such that h(U0) ⊆ GL(Y ). As the inversion map ι : GL(Y ) → GL(Y ) is
continuous, we deduce that the map

g : U0 → L(Y )b , x 7→ (λ ◦ fx)−1

is continuous and hence also the map g∧ : U0 × Y → Y , (x, z) 7→ g(x)(z) (as the
evaluation map L(Y )b × Y → Y is continuous). As λ ◦ f |U0×Y is C`, we deduce
that g∧ is C` (see [20, Lemma 2.3]; cf. also [19, Exercise 1.3.10], [21, Theorem
5.3.1]). Then also

s : U0 × Z → Y , s(x, z) := g∧(x, λ(z)) = (λ ◦ fx)−1(λ(z))
is C`, entailing that the linear map

s? : C`(U0, Z)→ C`(U0, Y ) , γ 7→ s ◦ (idU0 , γ)
is continuous (see [19, Proposition 1.7.12]). It only remains to check that s? is a
left inverse to (f |U0)?. But s?((f |U0)∗(γ))(x) = s(x, f(x, γ(x))) = (λ ◦ fx)−1((λ ◦
fx)(γ(x))) = γ(x) for all γ ∈ C`(U0, Y ) and x ∈ U0, entailing that s?((f |U0)?(γ)) =
γ and thus s? ◦ (f |U0)? = id. �

Lemma 2.6. Let M be a smooth manifold (possibly with rough boundary) which
is smoothly paracompact, πE : E →M be a C`-vector bundle over M whose fibers
are Banach spaces and πF : F → M be a C`-vector bundle over M whose fibers
are locally convex spaces. Consider a bundle map f : E → F of class C` such that
f |Ex : Ex → Fx has a continuous linear left inverse, for each x ∈M . If ` = 0 and
E is not a finite rank bundle, assume, moreover, that E, F , and f are C1. Then
also

f∗ : ΓC`(E)→ ΓC`(F ) , σ 7→ f ◦ σ
has a continuous linear left inverse.

Proof. For each x ∈M , there exists an open x-neighborhood Ux ⊆M such that
E|Ux and F |Ux are trivial. By Lemma 2.5, the continuous linear map

(f |E|Ux )∗ : ΓC`(E|Ux)→ ΓC`(F |Ux)
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admits a continuous linear left inverse λx : ΓC`(F |Ux)→ ΓC`(E|Ux), possibly after
shrinking the open x-neighborhood Ux ⊆M . Let (hx)x∈M be a smooth partition of
unity on M such that supp(hx) ⊆ Ux for each x ∈M . As in the proof of Lemma 2.2,
we see that

Λ(σ) :=
∑
x∈M

(hx · λx(σ|Ux))̃

defines a continuous linear map Λ: ΓC`(F )→ ΓC`(E). It remains to check that Λ is
a left inverse for f∗. Now, given τ ∈ ΓC`(E), we have λx(f∗(τ)|Ux) = λx((f◦τ)|Ux) =
λx((f |E|Ux )∗(τ |Ux)) = τ |Ux for all x ∈M and hence

Λ(f∗(τ)) =
∑
x∈M

(hx · λx(f∗(τ)|Ux))̃ =
∑
x∈M

(hx · τ |Ux )̃ = τ,

which completes the proof. �

We now deduce Theorem E (b), which we repeat for the reader’s convenience

2.7 (Theorem E (b)). Let f : M → N be an C`+k-immersion with ` ∈ N0 and
2 ≤ k ∈ N ∪ {∞}, where M is a Banach manifold, and ` ≥ 1 if some modelling
space of M is infinite-dimensional. Then C`(K, f) is a Ck-immersion.

Proof of Theorem E (b). For each γ ∈ C`(K,M), the map g : γ∗(TM)→ (f ◦
γ)∗(TN) taking v ∈ γ∗(TM)x = Tγ(x)(M) to

Tγ(x)f(v) ∈ Tf(γ(x))N = (f ◦ γ)∗(TN)x

is C` and linear in v ∈ γ∗(TM)x (which can be verified as in the proof of Theo-
rem E (a)). Moreover, g(x, ·) corresponds to Tγ(x)f for x ∈ K, (cf. (12) in Corol-
lary A.15), whence it has a continuous linear left inverse. Now

Tγ C
`(K, f) = g∗ : ΓC`(γ∗(TM))→ ΓC`((f ◦ γ)∗(TN))

has a continuous linear left inverse, by Lemma 2.6. The Ck-map C`(K, f) therefore
is a naïve immersion in the sense of [18]. As ΓC`((f ◦ γ)∗(TM)) is a Banach space
and k ≥ 2, we deduce from [18, Theorem H] that C`(K, f) is an immersion. �

Local diffeomorphisms between manifolds of mappings. Let us turn to
local diffeomorphisms between manifolds of mappings. It turns out that this
property can be established immediately using some topological data.

2.8 (Theorem E (c)). If f : M → N is a local Ck+` diffeomorphism and M is a
regular topological space, then C`(K, f) is a local Ck-diffeomorphism.

Proof of Theorem E (c). Let γ ∈ C`(K,M). For each y ∈ M , there exists an
open y-neighborhood Uy ⊆M such that f(Uy) is open in N and f |Uy : Uy → f(Uy)
is a Ck+`-diffeomorphism. By [12, Lemma 2.1], there exists n ∈ N and open subsets
V1, . . . , Vn ⊆M such that γ(K) ⊆ V1 ∪ · · · ∪ Vn and

(∀i, j ∈ {1, . . . , n}) Vi ∩ Vj 6= ∅ ⇒ (∃y ∈M) Vi ∪ Vj ⊆ Uy .
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Each x ∈ K has an open neighborhood Wx ⊆ K whose closure Lx := Wx is
contained in γ−1(Vi(x)) for some i(x) ∈ {1, . . . , n}. Since K is compact, there exist
m ∈ N and x1, . . . , xm ∈ K such that K = Wx1 ∪ · · · ∪Wxm . Then

P := {η ∈ C`(K,M) : (∀k ∈ {1, . . . ,m}) η(Lxk) ⊆ Vi(xk)}

is an open neighborhood of γ in C`(K,M). The restriction C`(K, f)|P is injective,
as we now verify: Let η1, η2 ∈ P such that f ◦ η1 = f ◦ η2. Given x ∈ K, we
have x ∈ Lxk for some k ∈ {1, . . . ,m}. Since η1(x), η2(x) ∈ Vi(xk) and f |Vi(xk) is
injective, we deduce from f(η1(x)) = f(η2(x)) that η1(x) = η2(x). Thus η1 = η2.

The set Ω :=
⋃m
k=1(Wxk × f(Vi(xk))) is open in K ×N and contains the graph of

f ◦ γ. Moreover,

Q := {θ ∈ C`(K,N) : (∀k ∈ {1, . . . ,m}) θ(Lxk) ⊆ f(Vi(xk))}

is an open neighborhood of f ◦ γ in C`(K,N). We claim that the map

g : Ω→M, (x, z) 7→ (f |Vi(xk))
−1(z) if x ∈ Lxk and z ∈ f(Vi(xk))

is well defined. If this is true, we observe that g is Ck+` on each of the sets
Wxk×f(Vi(xk)) which form an open cover for Ω, whence g is Ck+`. As a consequence,
the map

g? : Q→ C`(K,M) , θ 7→ g ◦ (idK , θ)
is Ck. By construction, g?(Q) ⊆ P and

(2) C`(K, f)|P ◦ g? = idQ ,

whence C`(K, f)(P ) ⊇ Q and thus C`(K, f)(P ) = Q (the converse inclusion
being obvious). As C`(K, f)|P is injective, we see that C`(K, f)|P : P → Q is a
bijection. We now infer from (2) that (C`(K, f)|P )−1 = g∗, which is Ck. Thus
C`(K, f)|P : P → Q is a Ck-diffeomorphism.

It only remains to verify the claim. If k, h ∈ {1, . . . ,m} such that x ∈ Lxk ∩ Lxh
and z ∈ f(Vi(xk))∩f(Vi(xh)), then γ(x) ∈ Vi(xk)∩Vi(xh), whence there exists y ∈ Y
such that

Vi(xk) ∪ Vi(xh) ⊆ Uy .

Thus (f |Vi(xk))−1(z) = (f |Uy )−1(z) = (f |Vi(xh))−1(z). �

We mention a variant of Theorem E (c) for spaces of continuous mappings
between topological spaces.

Proposition 2.9. Let K be a compact Hausdorff topological space, M and N be
Hausdorff topological spaces and f : M → N be a local homeomorphism. If M is a
regular topological space, then

C(K, f) : C(K,M)→ C(K,N) , γ 7→ f ◦ γ

is a local homeomorphism.
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Proof. The proof is analogous to that of 2.8, except that C`(K,M) and C`(K,N)
have to be replaced with C(K,M) and C(K,N), respectively. Furthermore, the
words “Ck-diffeomorphism” and “Ck+`-diffeomorphism” have to be replaced with
“homeomorphism”, and the properties “Ck” and “Ck+`” have to be replaced with
continuity. �

In light of the results in this section we can now adapt a classical result by
Michor to our setting.

Proposition 2.10. Let ι : M → N be a C`+k embedding between manifolds mo-
delled on locally convex spaces with local addition, where `, k ∈ N0 ∪ {∞} and we
assume one of the following:

(1) both M and N are finite dimensional (no restriction on `, k),
(2) M is a Banach manifold whose model space is infinite-dimensional and

1 ≤ ` <∞, k ≥ 2.
Then for every compact manifold K (possibly with rough boundary),

ι∗ := C`(K, f) : C`(K,M)→ C`(K,N) , g 7→ f ◦ g
is a Ck-embedding.

Proof. We only have to establish the first case as the second case follows by
combining Lemma 1.14 and Theorem E (b) (cf. introduction). Now, due to Co-
rollary 1.22 the push-forward ι∗ is a Ck-map which is clearly injective with
image ι∗(C`(K,M)) = C`(K, ι(M)) (as sets). Considering ι(M) as a subma-
nifold of N , Theorem E (c) shows that ι∗ corestricts to a Ck-diffeomorphism
ι∗|C

`(K,ι(M)) : C`(K,M)→ C`(K, ι(M)). Arguing as in the proof of [31, Proposi-
tion 10.8]10 to prove that C`(K, ι(M)) is a split submanifold of C`(K,N). Then
[18, Lemma 1.13] entails that ι∗ is a Ck-embedding. �

Proper maps between manifolds of maps. In this section, we investigate
conditions under which the pushforward of a proper map yields a proper map
between manifolds of mappings. To this end, we recall first:

Definition 2.11. Consider a continuous map f : X → Y between Hausdorff
topological spaces. Then f is called

(a) proper if f−1(K) is a compact subset of X for each compact subset K ⊆ Y
(see [38]).

(b) perfect if f is a closed map and f−1({y}) is a compact subset of X for each
y ∈ Y (see [14, p. 182]).

Every perfect map is proper (see [14, Theorem 3.7.2]). If Y is a k-space,11 then
a continuous map f : X → Y is proper if and only if it is perfect (as proper maps
to k-spaces are closed mappings, see [38]). Note that every manifold (possibly

10In loc.cit. ` =∞ is assumed. However, the proof generalises verbatim to ` ∈ N0 due to the
canonical manifold structure on C`(K,M) and C`(K,N) from Appendix A.

11A Hausdorff topological space Y is called a k-space if subsets A ⊆ Y are closed if and only
if A ∩K is closed for each compact subset K ⊆ Y .
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with rough boundary) modelled on a metrizable locally convex space is a k-space
(notably every Banach manifold).

In contrast to our findings concerning submersions and immersions, the push-for-
ward of proper maps will in general not be a proper map as the next example
shows.
Example 2.12. Let {?} be the one-point manifold and consider the (smooth) map
from the circle f : S→ {?}. Then f is proper as S is compact. Now C`(S, {?}) = {?}
and we observe that f∗ : C∞(S,S) → {?} cannot be proper as C∞(S,S) is an
infinite-dimensional manifold (hence non-compact).

However, properness of the push-forward is preserved under additional assump-
tions. Three lemmas will be useful for these discussions.
Lemma 2.13. Let M , N , and L be Ck-manifolds (possibly with rough boundary)
and q : M → N be a local Ck-diffeomorphism. If f : L→M is a continuous map
such that q ◦ f is Ck, then f is Ck.
Proof. Given x ∈ L, let V be an open neighborhood of f(x) in M such that q(V )
is open in N and q|V : V → q(V ) is a Ck-diffeomorphism. Let U ⊆ L be an open
x-neighborhood such that f(U) ⊆ V . Then f |U = (q|V )−1 ◦ (q ◦ f)|U is Ck. �

Lemma 2.14. Let X be a connected topological space, Y be a Hausdorff topological
space and q : Y → Z be a locally injective map to a set Z. Let f : X → Y and
g : X → Y be continuous mappings such that

q ◦ f = q ◦ g .
If f(x0) = g(x0) for some x0 ∈ X, then f = g.
Proof. The subset E := {x ∈ X : f(x) = g(x)} of X is nonempty by hypothesis
and closed as Y is Hausdorff and both f and g are continuous. If x ∈ E, let V
be a neighborhood of f(x) = g(x) in Y such that q|V is injective. By continuity
of f and g, there is an x-neighborhood U ⊆ X such that f(U) ⊆ V and g(U) ⊆ V .
For each y ∈ U , we deduce from q|V (f(y)) = q|V (g(y)) that f(y) = g(y), whence
U ⊆ E and E is open. As X is connected, E = X follows. �

If X is a set and V ⊆ X×X is a set containing the diagonal ∆X := {(x, x) : x ∈
X}, we set V [x] := {y ∈ X : (x, y) ∈ V }.
Lemma 2.15. Let X be a topological space and (Uj)j∈J be an open cover of X. Let
(Aj)j∈J be a locally finite cover of X by closed subsets Aj of X such that Aj ⊆ Uj
for each j ∈ J . Then there exists a neighborhood V of the diagonal ∆X in X ×X
such that V [x] ⊆ Uj for all j ∈ J and x ∈ Aj.
Proof. We set

V :=
⋃
x∈X

(
{x} ×

⋂
j∈J:x∈Aj

Uj

)
.

To see that V is a neighborhood of ∆X , let x ∈ X. Since (Aj)j∈J is locally finite,
the union ⋃

j∈J : x 6∈Aj

Aj
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of closed sets is closed. Thus
W := X \

⋃
j∈J : x 6∈Aj

Aj =
⋂

j∈J:x 6∈Aj

(X \Aj)

is an open neighborhood of x in X. If w ∈W , then {j ∈ J : w ∈ Aj} ⊆ {j ∈ J : x ∈
Aj}, whence V contains the (x, x)-neighborhood

W ×
⋂

j∈J:x∈Aj

Uj .

Thus V is a neighborhood of ∆X in X ×X. It remains to observe that V [x] ⊆ Uj
for each j ∈ J such that x ∈ Aj , by definition of V . �

Proposition 2.16. Let S be a Hausdorff topological space which is a k-space and
admits a cover (Ki)i∈I of compact, locally connected subsets Ki such that each
compact subset K ⊆ S is contained in

⋃
i∈ΦKi for some finite subset Φ ⊆ I. Let X,

Y , and Z be Hausdorff topological spaces, α : X → Y be a local homeomorphism and
β : X → Z be a continuous map such that (α, β) : X → Y ×Z is a proper map. We
assume that the topological space X is regular. Consider the local homeomorphism

α∗ := C(S, α) : C(S,X)→ C(S, Y ), γ 7→ α ◦ γ

and the continuous map β∗ := C(S, β) : C(S,X) → C(S,Z), γ 7→ β ◦ γ. Then
g := (α∗, β∗) : C(S,X)→ C(S, Y )× C(S,Z), γ 7→ (α ◦ γ, β ◦ γ) is proper.

Remark 2.17. (a) If S is any finite-dimensional manifold (possibly with rough
boundary) which is locally compact (which is automatic if S has no boundary),
then S admits a cover (Ki)i∈I as described in Proposition 2.16.
(b) Consider an ascending sequence S1 ⊆ S2 ⊆ · · · of finite-dimensional manifolds
(possibly with rough boundary) which are locally compact, such that each inclusion
map Sn → Sn+1 is a topological embedding. Endow S :=

⋃
n∈N Sn with the direct

limit topology. Then S admits a cover (Ki)i∈I as in Proposition 2.16 (composed of
those of the Sn, as in (a)). For example, this applies to S :=

⊕
n∈N R = lim

−→
Rn

with Kn := [−n, n]n for n ∈ N.

Proof of Proposition 2.16. We start with the special case that K := S is
compact. Let L ⊆ C(K,Y )×C(K,Z) ∼ C(K,Y ×Z) be a compact set; we have to
show that g−1(L) is compact. As the evaluation map ε : C(K,Y ×Z)×K → Y ×Z
is continuous,

{γ(x) : γ ∈ L, x ∈ K} = ε(L×K)
is a compact subset of Y ×Z. Let C be a compact subset of Y ×Z which contains
ε(L×K). Since (α, β) is proper, B := (α, β)−1(C) is a compact subset of X. Then

g−1(L) ⊆ C(K,B);
in fact, for θ ∈ g−1(L) and x ∈ K we have g(θ) = (α ◦ θ, β ◦ θ) ∈ L, whence
(α, β)(θ(x)) = g(θ)(x) ∈ C and thus θ(x) ∈ B. Note that C ′ := (α, β)(B) is a
compact subset of C and B = (α, β)−1(C ′). Also, g−1(L) = g−1(L′) using the
compact set L′ := {γ ∈ L : (∀x ∈ K) γ(x) ∈ C ′}. Finally, ε(L′ ×K) ⊆ C ′.
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In view of Ascoli’s Theorem, g−1(L) will be compact if we can show that
g−1(L) ⊆ C(K,B) is equicontinuous (with respect to the unique uniform structure
on the compact Hausdorff space B which is compatible with its topology). Let W be
a neighborhood of ∆B in B×B. For each b ∈ B, we find an open b-neighborhood Ub
in X such that (Ub×Ub)∩ (B×B) ⊆W holds, α(Ub) is open in Y , and α|Ub : Ub →
α(Ub) is a homeomorphism. For b ∈ B, let Ab be a compact neighborhood of b
in B such that Ab ⊆ Ub. By compactness of B, there exists a finite subset I ⊆ B
such that B =

⋃
b∈I Ab.

Let pr1 : Y × Z → Y , (y, z) 7→ y be the projection onto the first component.
Then D := pr1(C ′) = pr1((α, β)(B)) = α(B) is a compact subset of Y , and
(D∩α(Ub))b∈I is a finite open cover of the compact topological space D. Moreover,
the compact sets Lb := α(Ab) cover D for b ∈ I and Lb ⊆ D ∩ α(Ub) holds for all
b ∈ I.

By Lemma 2.15, there exists a neighborhood V of ∆D in D × D such that
V [z] ⊆ α(Ub) ∩ D for each z ∈ D and each b ∈ I such that z ∈ Lb. Since
{pr1 ◦ γ : γ ∈ L′} = C(K, pr1)(L′) ⊆ C(K,D) is compact and hence equicontinuous,
each x ∈ K has a neighborhood Q ⊆ K such that

γ1(Q) ⊆ V [γ1(x)]

for each γ = (γ1, γ2) ∈ L′. After shrinking Q, we may assume that Q is connected.
If η ∈ g−1(L) = g−1(L′), then γ := g(η) ∈ L′ with γ1 := pr1 ◦ γ = α ◦ η. We
have η(x) ∈ B and thus η(x) ∈ Ab for some b ∈ I. Then γ1(x) = α(η(x)) ∈
α(Ab) = Lb, whence V [γ1(x)] ⊆ α(Ub) ∩D. Now ζ := (α|Ub)−1 ◦ γ1|Q and η|Q are
continuous maps Q → X such that α ◦ ζ = γ1|Q = α ◦ η|Q and ζ(x) = η|Q(x)
as η(x), ζ(x) ∈ Ub and α|Ub is injective. Hence η|Q = ζ, by Lemma 2.14. Thus
η(Q) = (α|Ub)−1(γ1(Q)) ⊆ Ub and hence {η(x)} × η(Q) ⊆ Ab × Ub. As η(K) ⊆ B,
we deduce that {η(x)}×η(Q) ⊆ (Ub∩B)×(Ub∩B) ⊆W and thus η(Q) ⊆W [η(x)].
Hence g−1(L) is equicontinuous.

The general case: Assume now that S is a k-space admitting a family (Ki)i∈I
as specified in the proposition. Since S is a k-space, we have

C(S,X) = lim
←− K∈K(S)

C(K,X)

as a topological space, where K(S) is the set of compact subsets of S (directed
under inclusion). The limit maps are the restriction maps

ρK : C(S,X)→ C(K,X), γ 7→ γ|k.

Let L := {
⋃
i∈ΦKi : Φ ⊆ I, Φ finite}. Then L is cofinal in K(S), whence

C(S,X) = lim
←− K∈L

C(K,X).

As a consequence,

ρ := (ρK)K∈L : C(S,X)→
∏
K∈L

C(K,X), γ 7→ (γ|K)K∈L
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is a topological embedding onto a closed subset. Given K ∈ L, there is a finite
subset ΦK ⊆ I such that K =

⋃
i∈ΦK Ki. The map

σK : C(K,X)→
∏
i∈ΦK

C(Ki, X), γ 7→ (γ|Ki)i∈ΦK

is continuous, injective, and its image is the set
{(γi)i∈ΦK : (∀i, j ∈ ΦK) γi|Ki∩Kj = γj |Ki∩Kj}

(by the Glueing Lemma), which is closed in
∏
i∈ΦK C(Ki, X). If H ⊆ K is compact

and O ⊆ X an open set, then γ ∈ C(K,X) satisfies γ(H) ⊆ O if and only if γ|Ki
satisfies γ|Ki(Ki ∩H) ⊆ O for all i ∈ ΦK . As a consequence, σK is a topological
embedding. Thus( ∏

K∈L
σK

)
◦ ρ : C(S,X)→

∏
K∈L

∏
i∈ΦK

C(Ki, X)

is a topological embedding with closed image. Let L ⊆ C(S, Y × Z) be a compact
set. Then g−1(L) is closed in C(S,X). By the preceding, g−1(L) will be compact if
we can show that ρKi(g−1(L)) is relatively compact in C(Ki, X) for each i ∈ I. We
now use that Ri : C(X,Y × Z)→ C(Ki, Y × Z), γ 7→ γ|Ki is continuous, whence
Ri(L) is compact. From the above special case, we know that the map

gi : C(Ki, X)→ C(Ki, Y × Z), γ 7→ (α ◦ γ, β ◦ γ)
is proper, whence g−1

i (Ri(L)) is compact in C(Ki, X). Now gi ◦ρKi = Ri ◦g. To see
that ρKi(g−1(L)) is relatively compact, it only remains to note that ρKi(g−1(L)) ⊆
g−1
i (Ri(L)) as gi(ρKi(g−1(L))) = Ri(g(g−1(L))) ⊆ Ri(L). �

After these preparations, we are now in a position to prove Theorem E (d),
which we repeat here for the reader’s convenience.

2.18 (Theorem E (d)). If f : M → N is a proper Ck+`-map, M is a regular
topological space and N = N1×N2 with smooth manifolds N1 and N2 such that N1
admits a local addition and pr1 ◦ f : M → N1 is a local Ck+`-diffeomorphism, then
C`(K, f) is proper.

Proof of Theorem E (d). Abbreviate g := C`(K, f). Let L ⊆ C`(K,N) be a
compact subset; we have to verify that g−1(L) ⊆ C`(K,M) is compact. We show
that each net (γj)j∈J in g−1(L) has a convergent subnet in g−1(L). Since g(γj) ∈ L
and L is compact, after passage to a subnet we may assume that g(γj) → η in
C`(K,N) for some η ∈ L. Write η = (η1, η2) with ηi ∈ C`(K,Ni) for i ∈ {1, 2}.
The map

h : C(K,M)→ C(K,N), γ 7→ (α ◦ γ, β ◦ γ)
is proper, by Proposition 2.16. Since L also is a compact subset of C(K,N),

C := h−1(L) = {γ ∈ C(K,M) : (α ◦ γ, β ◦ γ) ∈ L}
is compact in C(K,M). Hence, after passage to a subnet we may assume that γj
converges to some γ ∈ C with respect to the compact-open topology on C(K,M).
As h is continuous, we must have h(γj)→ h(γ) in C(K,N). But h(γj) = g(γj)→ η
in C`(K,N) and hence also in C(K,N). Hence h(γ) = η ∈ L ⊆ C`(K,N1) ×
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C`(K,N2), whence α ◦ γ = pr1 ◦h(γ) = pr1 ◦ η ∈ C`(K,N1). Using Lemma 2.13,
we deduce that γ ∈ C`(K,M).

We show that γj → γ in C`(K,M): Given x ∈ K, let W ⊆ M be an open
γ(x)-neighborhood such that α(W ) ⊆ N1 is open and α|W : W → α(W ) is a
C`-diffeomorphism. Let φ : Uφ → Vφ ⊆ E be a chart of K around x and Kx :=
φ−1(Cx), where Cx is a compact convex φ(x)-neighborhood in Vφ; choosing Cx
small enough, we may assume that γ(Kx) ⊆W and thus η1(Kx) ⊆ α(W ). Let Ux
be the interior of Kx in K. We then get a continuous restriction map

ρKx : C`(K,N1)→ C`(Kx, N1), θ 7→ θ|Kx .

There exists an index jx such that γj(Kx) ⊆W for all j ≥ jx. Then

γj |Kx = (α|W )−1 ◦ (α ◦ γj)|Kx = C`(Kx, (α|W )−1)(ρKx(α ◦ γj)),

which converges to C`(Kx, (α|W )−1)(ρKx(η1)) = (α|W )−1 ◦ η1|Kx in C`(Kx,M)
as α1 ◦ γj converges to η1 in C`(K,N1). In particular, γj |Kx → (α|W )−1 ◦ η1|Kx
in C(Kx,M). Since also γj |Kx → γ|Kx in C(Kx,M), we deduce that γ|Kx =
(α|W )−1 ◦ η1|Kx . Hence

γj |Kx → γ|Kx in C`(Kx,M),

whence γj |Ux → γ|Ux in C`(Ux,M) a fortiori. As (Ux)x∈K is an open cover of K,
we deduce with Lemma 1.13 that γj → γ in C`(K,M). The proof is complete. �

3. Current groupoids

In this section, we deal with the Lie groupoids of mappings on a manifold with
values in a (possibly infinite-dimensional) manifold. These were defined in the
introduction and we briefly recall the construction and prove Theorems A–C.

3.1 (Current groupoids). We let G = (G ⇒ M) be a Lie groupoid, K be a compact
manifold and ` ∈ N0 ∪ {∞}. Define now the current groupoid C`(K,G) as the
groupoid given by the following data

– C`(K,G) (space of arrows), C`(K,M) (space of units)
– pointwise groupoid operations, i.e. the pushforwards of the groupoid maps α∗,
β∗, m∗, ι∗ and 1∗ are the source, target, multiplication, inversion and unit
maps.

Clearly a current groupoid is a groupoid. The following theorem, which encom-
passes Theorem A of the introduction, will now establish that current groupoids
are Lie groupoids.

Theorem 3.2. Let G = (G ⇒ M) be a Lie groupoid, where M is a Banach
manifold. Fix a compact manifold K (possibly with rough boundary), and ` ∈
N0∪{∞}. If ` = 0, assume that all modelling spaces of M are finite-dimensional and
if ` =∞ we assume in addition that all modelling spaces of G are finite-dimensional.
If G and M admit a local addition, then the current groupoid C`(K,G) is a Lie
groupoid.
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Proof. As we assume that G and M admit a local addition, C`(K,G) and
C`(K,M) admit canonical smooth manifold structures. By Theorem E (a) (or for
` =∞ by the Stacey-Roberts Lemma [4, Lemma 2.4]), the mappings

α∗ := C`(K,α) : C`(K,G)→ C`(K,M)

and β∗ := C`(K,β) are submersions. As a consequence, the fiber product

C`(K,G)(2) := {(γ1, γ2) ∈ C`(K,G)× C`(K,G) : α∗(γ1) = β∗(γ2)}

is a submanifold of C`(K,G)× C`(K,G) (see [18, Theorem B]). Now C`(K,G)(2)

= C`(K,G(2)) as a set, which enables a groupoid multiplication on C`(K,G) to be
defined via

µ∗ : C`(K,G)(2) → C`(K,G), (γ1, γ2) 7→ µ ◦ (γ1, γ2),

where µ : G(2) → G is the smooth multiplication in the groupoid G. By Lemma 1.22,
µ∗ is smooth. Since G is a Lie groupoid, the map 1 : M → G, x 7→ ex ∈ Gx is
smooth. Then eγ := 1 ◦ γ is the neutral element in C`(K,G)γ for γ ∈ C`(K,M),
and the map C`(K,1) : C`(K,M)→ C`(K,G), γ 7→ eγ = 1 ◦ γ is smooth. As the
inversion map ι : G→ G is smooth, also ι∗ : C`(K,G)→ C`(K,G) is smooth. Thus
C`(K,G) is a Lie groupoid. �

Example 3.3. Recall that a locally convex Lie group G can be made into a Lie
groupoid G ⇒ {?} over the one-point manifold {?} (which is trivially a Banach
manifold). Note that C`(K, {?}) = {?}. Moreover, G admits a local addition [25,
42.4] whence Theorem A yields a current groupoid C`(K,G) ⇒ {?} which can
be canonically identified with the current group C`(K,G) from [36]. Thus for the
circle K = S our construction recovers the loop groups from [40].

Example 3.4. Let M be a smooth manifold with local addition. Recall the
following groupoids associated to M :

– the unit groupoid u(M) = (M ⇒ M) where all structure maps are the identity.
– the pair groupoid P(M) = (M ×M ⇒ M) where the groupoid multiplication

is given by (a, b) · (b, c) := (a, c) (and the other structure maps are obvious).
For K compact and ` ∈ N0 ∪ {∞} (with M finite dimensional if ` = ∞) our
construction yields C`(K, u(M)) = u(C`(K,M)). Collapsing the groupoid structure
in this (trivial) example, the current groupoid encodes only the manifold of C`-maps
K → M , [31, 48]. In view of Lemma 1.19 (d) we further have C`(K,P(M)) ∼=
P(C`(K, (M))) as Lie groupoids.

Remark 3.5. Note that in the situation of Theorem 3.2, the current groupoid
C`(K,G) of a Banach-Lie groupoid G, is a Banach-Lie groupoid if ` < ∞ and
a Fréchet-Lie groupoid if ` = ∞. Basic Lie theory and differential geometry for
Banach-Lie groupoids have recently been studied in [6] (also see [30] for a discussion
in a categorical framework).

If Ω ⊆ M is open, the restriction G|Ω := (G|Ω := α−1(Ω) ∩ β−1(Ω) ⇒ Ω)
becomes a Lie groupoid called restriction of G to Ω [28, p. 14].
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Example 3.6. In the situation of Theorem 3.2 consider Ω ⊆ M open. Then we
define bK,Ωc` := {f ∈ C`(K,M) | f(K) ⊆ Ω} and note that it is an open subset of
C`(K,M) due to Proposition 1.20. One immediately computes that the restriction
of the current groupoid to bK,Ωc` satisfies

C`(K,G)|bK,Ωc` = C`(K,G|Ω) (as Lie groupoids).

Thus C`(K,G|Ω) is an open subgroupoid of the current groupoid C`(K,G).

Example 3.7. Consider a left Lie group action12 Λ: G×M →M, (g,m) 7→ g.m.
Then the action groupoid GnM := (G×M ⇒ M) is the Lie groupoid defined by
the structure maps α(g,m) := m, β(g,m) := g.m, µ((g, h.m), (h,m))) := (gh,m)
and ι(g,m) := (g−1, g.m). If M admits a local addition, so does G×M13, whence
we can consider the current groupoid C`(K,GnM).

As the manifolds of mappings are canonical, Lemma 1.19 shows that
Λ∗ : C`(K,G×M) ∼= C`(K,G)× C`(K,M)→ C`(K,M)

is a Lie group action of the current Lie group C`(K,G) on C`(K,M) and moreover,
the associated action groupoid satisfies

C`(K,G) n C`(K,M) ∼= C`(K,GnM)
as Lie groupoids.

We will now study some specific classes of current groupoids in the next sections.
There Theorems B and C from the introduction will be established as immediate
consequences of Theorem E in Section 2.

Transitivity and local transitivity of current groupoids. In this section, we
investigate whether the current groupoid inherits the transitivity of the target
groupoid (resp., local transitivity). To this end recall the following definitions.

Definition 3.8. Let G = (G ⇒ M) be a Lie groupoid. Then we call the map
(α, β) : G→M ×M, g 7→ (α(g), β(g))

the anchor of G. We call the Lie groupoid G
– transitive if the anchor is a surjective submersion, and totally intransitive if

the image of the anchor is the diagonal in M ×M ;
– locally transitive if the anchor is a submersion.

The next example shows that transitivity is not inherited by current groupoids:

Example 3.9. Consider the left action of R on S via t.z := eitz and the corres-
ponding action groupoid G := R n S over M := S with α : G → S, (t, z) 7→ z
and β : G → S, (t, z) 7→ eitz. Then α, β, and (α, β) are submersions and G is a
transitive groupoid as the R-action on S is transitive. Taking K := S and ` ∈ N0, we
obtain a current groupoid C`(S, G). Let c1 : S→ S be the constant map taking each
element to 1 ∈ S. Then (α∗, β∗) : C`(S, G)→ C`(S,S)× C`(S,S) is not surjective

12Thus Λ is a left G-action on a smooth manifold M and Λ is smooth
13G admits a local addition as a Lie group and the product G×M inherits a local addition

by the product of the local additions on G and M .
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(whence C`(S, G) is not a transitive Lie groupoid), as (idS, c1) is not contained
in its image. In fact, if there was γ = (γ1, γ2) ∈ C`(S, G) = C`(S,R × S) with
(α∗, β∗)(γ) = (idS, c1), then

γ2 = α ◦ γ = idS .

Hence 1 = β(γ(z)) = eiγ1(z)z for all z ∈ S and thus z = e−iγ1(z), contradicting the
fact that idS does not admit a continuous lift for the covering map R→ S, t 7→ eit.

Theorem 3.10 (Theorem B). If G is locally transitive in the situation of Theorem
3.2, then also C`(K,G) is locally transitive.

Proof. Identifying the manifold C`(K,M)×C`(K,M) with C`(K,M×M) (Lemma
1.19), the map (C`(K,α), C`(K,β)) can be identified with C`(K, (α, β)) : C`(K,G)
→ C`(K,M ×M), γ 7→ (α, β) ◦ γ. As (α, β) is a submersion, also C`(K, (α, β))
is a submersion (by Theorem E (a)) and hence also (C`(K,α), C`(K,β)). Thus
C`(K,G) is locally transitive. �

Current groupoids of proper and étale Lie groupoids. In this section, we
study proper and étale Lie groupoids. These Lie groupoids are closely connected to
orbifolds and we review this connection in Appendix B together with a discussion
of how the groupoids we construct are connected to morphisms of orbifolds (see
e.g. [44]). Recall that a Lie groupoid is proper if the anchor is a proper map and
étale if the source map is a local diffeomorphism. As the following example shows,
current groupoids of proper groupoids need not be proper.

Example 3.11. Consider G := S × S as a Lie groupoid over M := S with α =
β := pr1 : S× S → S, (z, w) 7→ z and (z, w1)(z, w2) := (z, w1w2) for z, w1, w2 ∈ S
(using the multiplication in the circle group). Thus the Lie groupoid we obtain is a
Lie group bundle, which is a totally intransitive.

Then (α, β) : G → M ×M is a proper map (as G is compact). Hence G is
a proper Lie groupoid. However, the Lie groupoid C(K,G) is not proper for
any compact smooth manifold K of positive dimension. To see this, note that
(α∗, β∗) : C(K,G)→ C(K,M)×C(K,M) is the map taking (γ1, γ2) to (γ1, γ1). If
we fix η ∈ C(K,M), then

(α∗, β∗)−1({η}) = {η} × C(K, S)

in the topological space C(K, S) × C(K, S) ∼ C(K, S × S) = C(K,G). As the
singleton {η} is compact but C(K,S) is an infinite-dimensional manifold and hence
not compact, we deduce that (α∗, β∗) is not a proper map.

Though properness is not preserved in general, there are special situations,
outlined in Theorem C, in which properness is preserved.

3.12 (Theorem C). Let G be an étale Lie groupoid such that G and M admit a
local addition. Let K be a compact smooth manifold (possibly with rough boundary),
and ` ∈ N0 ∪ {∞}. If the topological space underlying G is regular, then C`(K,G)
is an étale Lie groupoid. If, moreover, G is proper, then also C`(K,G) is proper.
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Proof. Since G is an étale Lie groupoid, α and β are local C∞-diffeomorphisms.
Using Theorem E (c), we deduce that C`(K,α) and C`(K,β) are local C∞-diffeo-
morphisms and hence submersions. We now find as in the proof of Theorem A that
C`(K,G) is a Lie groupoid. As C`(K,α) is a local C∞-diffeomorphism, C`(K,G)
is étale. If G is étale and proper, then α is a local C∞-diffeomorphism and (α, β)
is proper, whence C`(K, (α, β)) (and hence also (C`(K,α), C`(K,β))) is a proper
map, by Theorem E (d). Thus C`(K,G) is a proper Lie groupoid in this case. �

Finite-dimensional proper and étale Lie groupoids are locally isomorphic to
action groupoids, see [27, Proposition 2.23]. We establish a suitable version in our
setting.
Proposition 3.13. Let G = (G ⇒ M) be a proper étale Lie groupoid such that
M ×M is a k-space. Then G is locally isomorphic to an action groupoid, i.e. every
x ∈ M has an open neighborhood Ux ⊆ M with an action of the isotropy group
Gx := α−1(x) ∩ β−1(x) such that there is an isomorphism of étale Lie groupoids

G|Ux ∼= Gx n Ux.

Remark 3.14. The proof of Proposition 3.13 follows closely the classical proof in
[34, Theorem 4] with some added detail (see proof of claim below). In addition,
loc.cit. assumes that the Lie groupoids are effective and finite dimensional. Both
assumptions are not necessary for this part of the proof of [34, Theorem 4, (4) ⇒
(1)]. To highlight this, we chose to provide full details.
Proof of Proposition 3.13. Let us show that for a fixed x ∈M there exists an
open neighborhood on which the groupoid G restricts to an action groupoid.

Note first that since (α, β) : G→M ×M is a proper local diffeomorphism, the
group Gx := (α, β)−1{x} is finite. For all g ∈ Gx we choose an open g-neighborhood
Ωg in G such that α|Ωg and β|Ωg are diffeomorphisms onto their (open) image in
M . Shrinking the Ωg we may assume that they are pairwise disjoint.

Claim: There are open g-neighborhoods Wg ⊆ Ωg such that
(3) ∀g, h ∈ Gx and (x, y) ∈Wg ×Wh with α(x) = β(y), we have xy ∈ Ωgh.
If this is true, then the proof can be concluded as follows: Consider the open
x-neighborhood Ux :=

⋂
g∈Gx α(Wg). Since (α, β) is proper and M ×M a k-space,

(α, β) is a perfect map, whence closed (cf. remarks after Definition 2.11). Thus
we can apply [14, 3.2.10. Wallace Theorem] to obtain an open x-neighborhood
Vx ⊆ Ux with

(4)
Vx × Vx ∩ (α, β) (G \ ∪g∈GxWg) = ∅, i.e. h ∈ G with α(h), β(h) ∈ Nx

⇒ h ∈Wg for some g ∈ Gx.
As Wg ⊆ Ωg and α, β restrict to diffeomorphisms on Ωg, we can now define for
g ∈ Gx the diffeomorphism

δg : α(Wg)→ β(Wg), δg := β ◦ (α|Wg )−1.

As every δg is defined on Vx ⊆ Ux, we can define an open x-neighborhood via

Nx := {y ∈ Vx | δg(y) ∈ Vx, ∀g ∈ Gx} = Vx ∩
⋂
g∈Gx

δ−1
g (Vx).
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We claim that δg(Nx) ⊆ Nx for all g ∈ Gx. To see this, note that since y and δg1(y)
are contained in Vx, both δg2 ◦ δg1(y) and δg1g2(y) are defined. By construction of
δg, δg(z) is the target of the unique arrow in Wg starting at z. Thus δg2 ◦ δg1(z)
is the target of a product of arrows in Wg2 ×Wg1 and by (3) this arrow is the
unique arrow in Ωg2g1 starting at z. Now δg1g2(z) is the target of an arrow in
Wg2g1 ⊆ Ωg2g1 starting at z and by uniqueness δg2 ◦ δg1(z) = δg2g1(z) ∈ Vx holds.
Hence we obtain a group action

(5) δ : Gx ×Nx → Nx, (g, y) 7→ δg(y).

Now we define for g ∈ Gx the open g-neighborhood

Og := Wg ∩ α−1(Nx) = Wg ∩ (α, β)−1(Nx ×Nx),

where the last identity follows from (5) as δg(y) ∈ Nx for all y ∈ Nx, g ∈ Gx. From
(4) we deduce that (α, β)−1(Nx×Nx) = tg∈GxOg is the disjoint union of the open
sets Og. We can thus consider the open Lie subgroupoid G|Nx = tg∈GxOg ⇒ Nx.
Using that α restricts to a diffeomorphism on every Og, we obtain a diffeomorphism

Φ: tg∈Gx Og → Gx ×Nx, γ 7→ (g, α(γ)), if γ ∈ Og.

From the definition of the δ-action of Gx on Nx it is then clear, that Φ induces
a Lie groupoid isomorphism G|Nx ∼= (Gx n Nx ⇒ Nx) onto the action groupoid
associated to (5).
Proof of the claim: As G is a Lie groupoid, the multiplication m : G×α,β G→ G
is continuous. By [18, Theorem B], the domain G ×α,β G is a split submanifold
of G × G such that the projections pri : G ×α,β G → G, i ∈ {1, 2} onto the ith
component are submersions, whence open mappings. For every choice g, h ∈ Gx we
thus obtain open subsets

Lg,h := pr1
(
Ωg × Ωh ∩m−1(Ωgh)

)
, Rg,h := pr2

(
Ωg × Ωh ∩m−1(Ωgh)

)
.

By construction g ∈ Lg,h ⊆ Ωg, h ∈ Rg,h ⊆ Ωh. Let now (x, y) ∈ Lg,h ×Rg,h such
that α(x) = β(y). As α, β restrict to bijections on Ωg for every g ∈ Gx, (x, y) is
the unique pair in Ωg × Ωh with α(x) = β(y). Now by construction of Lg,h, there
must be (at least) one pair in (x, z) ∈ Ωg × Ωh ∩m−1(Ωgh). By definition of this
set, (x, z) ∈ Ωg × Ωh with α(x) = β(z), whence z = y. This entails m(x, y) ∈ Ωgh
whenever a pair of arrows in Lg,h×Rg,h is composable. Since Gx is finite we obtain
open g-neighborhoods Wg :=

⋂
h∈Gx Lg,h ∩Rh,g. By construction the Wg satisfy

(3). �

In the situation of Theorem C, the current groupoid of a proper étale Lie
groupoid is again proper étale such that its base, C`(K,M), is a Fréchet manifold.
Thus C`(K,M)×C`(K,M) is a Fréchet manifold, hence a k-space and we obtain:

Corollary 3.15. In the situation of Theorem C, the proper étale Lie groupoid
C`(K,G) is locally isomorphic to an action groupoid.
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Analogues to Theorem C for topological groupoids. Let G be a (Hausdorff) topologi-
cal groupoid over the Hausdorff topological space M , with initial point map α : G→
and terminal point map β : G→ M . Given a Hausdorff topological space K, we
endow C(K,G) and C(K,M) with the compact-open topology. Then C(K,G) is a
topological groupoid over the base C(K,M), with initial point map C(K,α) and
terminal point map C(K,β) (as the latter maps, the groupoid multiplication and
the map taking a base point to its corresponding identity element are continuous by
standard results concerning the compact-open topology, like [19, Lemma A.5.3]).

3.16. A topological groupoid G is called étale if α : G→M is a local homeomor-
phism. If (α, β) : G→M ×M is a proper map, then G is called proper.

The following is immediate from Propositions 2.9 and 2.16.

Corollary 3.17. Let K be a compact Hausdorff topological space and G be a
topological groupoid over a Hausdorff topological space M . Assume that the topolo-
gical space underlying G is regular. If G is étale, then also the mapping groupoid
C(K,G) is étale. If G is étale and proper and K is locally connected, then C(K,G)
is proper. �

The results obtained in this section on proper étale topological/Lie groupoids
are used in Appendix B to discuss (infinite-dimensional) orbifolds.

Subgroupoids and groupoid actions. In this section we explore subgroupoids
and groupoid actions of current groupoids. To this end, let us observe first that
the construction of current groupoids is functorial.

Remark 3.18 (Functoriality of the current groupoid construction). Let F : G →
H be a morphism14 of Lie groupoids between Lie groupoids which satisfy the
assumptions of Theorem 3.2. Then the push-forward induces a groupoid morphism

C`(K,F ) : C`(K,G)→ C`(K,H)

which is smooth due to Corollary 1.22. Similarly, one can prove that the construction
takes natural transformations between morphisms of Lie groupoids to natural
transformations (cf. [30, 3.5]). In conclusion, we obtain for every compact manifold
K and ` ∈ N0 ∪ {∞} a (2-)functor between suitable (2-)categories of groupoids. In
the present paper we will not investigate this further.

Definition 3.19. Let F : H → G be a morphism of Lie groupoids. We call H an
– immersed subgroupoid of G if F and the induced map on the base are injective

immersions.
– embedded subgroupoid of G if F and the induced map on the base are embed-

dings.

14That is a smooth map F : H → G (where H and G are the arrow manifolds) which is
compatible with the groupoid multiplication and inversion in the obvious way and maps units to
units. Since F maps units to units, it descends to a smooth map f between the bases.
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We have already seen in Example 3.6 that the restriction of a Lie groupoid to
an open set gives rise to a corresponding restriction of the current groupoids. More
generally, one immediately concludes from Theorem E (b) and Proposition 2.10
the following.

Corollary 3.20. Let H be an immersed Banach subgroupoid of the Banach groupoid
G and ` ∈ N. Then C`(K,H) is an immersed Banach subgroupoid of C`(K,G). If
in addition H is an embedded subgroupoid of G, then C`(K,H) is an embedded
Banach subgroupoid of C`(K,G).

Another way to construct subgroupoids of current groupoids from open subsets
of the manifold base will be discussed now.

3.21. For Ω ⊆M open we define the set

IK(Ω) := {f ∈ C`(K,M) | f(K) ∩ Ω 6= ∅} =
⋃
x∈K

ε(·, x)−1(Ω)

As the evaluation is continuous by Lemma 1.19, IK(Ω) is an open subset of
the base of the current groupoid C`(K,G) and we can consider the restriction
C`(K,G)|IK(Ω).

For the next result we restrict ourselves to ` =∞. Though the authors believe
that the statement is also true for ` ∈ N0, the proof uses a result which, to our
knowledge, has so far only been established in the ` =∞ case.

Proposition 3.22. In the situation of Theorem 3.2, consider an open subset
E ⊆ C∞(K,M). Then the restriction C∞(K,G)|E is an (open) embedded Lie
subgroupoid of C∞(K,G|ε(E×K)).

Proof. Observe first that ε : C∞(K,M)×K →M is a smooth, surjective submer-
sion by [46, Corollary 2.9]. Hence ε is open and so is Ω := ε(E×K). Thus it makes
sense to consider the restriction C∞(K,G|ε(E×K)) as an open Lie subgroupoid of
C∞(K,G).

By the definition of the restriction, f ∈ C∞(K,G)|E satisfies α∗(f), β∗(f) ∈ E,
whence f ∈ C∞(K,G|ε(K×E)). We conclude that C∞(K,G)|E ⊆ C∞(K,G|ε(E×K))
as open sets, hence as open Lie subgroupoids. �

In the rest of this section we study current groupoids related to groupoid actions.
This generalises Example 3.7 of the current groupoid of an action groupoid. We
recall first the definition of a Lie groupoid action.

Definition 3.23. An action of a Lie groupoid G = (G ⇒ M) on a smooth map
q : X →M is given by a smooth action map

A : G×α,q X → X, g.x := A(g, x)

whereGnX := {(g, x) ∈ G×X | α(g) = q(x)} is the fiber product. We callX a (left)
G-manifold if the action map satisfies q(g.x) = β(g), as well as (g1g2).x = g1.(g2.x)
and 1m.x = x for all gi ∈ G, x ∈ X,m ∈ M , and whenever the composition is
defined. The map q is called the moment map of the action.
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We define the action groupoid G nX := (GnX ⇒ X) as the Lie groupoid with
αn(g, x) := x, βn(g, x) := g.x and multiplication, inversion and unit map induced
by the corresponding mappings in G [28, 1.6].

Note that if the Lie groupoid G is a Lie group, then a Lie groupoid action
coincides with a Lie group action and the action groupoid just defined is the one
discussed in Example 3.7.

Proposition 3.24. Let G be a finite dimensional Lie groupoid and X be a finite
dimensional manifold. If X is a G-manifold, then C`(K,X) is a C`(K,G)-manifold
and we obtain an isomorphism of Lie groupoids

C`(K,G) n C`(K,X) ∼= C`(K,G nX).

Proof. Let q be the moment map and A : G n X → X be the action map of
the groupoid action. By Theorem E, the fiber product C`(K,G) n C`(K,X) =
(α∗, q∗)−1({(f, f) | f ∈ C`(K,M)} is a splitting submanifold of C`(K,G) ×
C`(K,X) [18, Theorem B]. Further, we deduce from Proposition 2.10 that C`(K,Gn
X) is a splitting submanifold of C`(K,G×X). It is easy to see that the isomorphism
C`(K,G) × C`(K,X) ∼= C`(K,G × X) and its inverse factors through the split
submanifolds. Thus C`(K,G n X) ∼= C`(K,G) n C`(K,X) as sets and also as
manifolds, since smoothness is inherited by the (co-)restriction of the smooth maps
to the split submanifolds. In particular, the push-forward of the action map A
induces a smooth action

C`(K,G) n C`(K,X)→ C`(K,X) , (g, f) 7→ A ◦ (g, f) . �

A finite dimensional proper étale Lie groupoid is locally around x ∈M isomorphic
to an action groupoid G|Ux ∼= (Gx n Ux ⇒ Ux) [27, Theorem 2.23] (cf. Proposition
3.13). Hence combining Example 3.6 and Proposition 3.24 immediately yields:

Corollary 3.25. Let G be a finite dimensional proper étale Lie groupoid locally iso-
morphic to an action groupoid GxnUx ⇒ Ux. Then C`(K,G)|bK,Uxc` is isomorphic
to an embedded Lie subgroupoid of the action groupoid C`(K,Gx) n C`(K,Ux).

4. Current algebroids

In this section, we study the Lie algebroid associated to a current groupoid.
Lie algebroids are infinitesimal counterparts of Lie groupoids akin to the role
Lie algebras play to Lie groups. Let us first recall from [6] the definition of an
(infinite-dimensional) Lie algebroid:

Definition 4.1. Fix a locally convex vector bundle A →M over a locally convex
manifold together with a vector bundle morphism a : A → TM covering the identity
(a is called anchor, (A,M, a) anchored bundle). Note that the anchor induces a
map a : Γ(A)→ Γ(TM) by post-composition.

(1) A Lie bracket on the anchored bundle is a skew-symmetric R-linear map
[·, ·]A : Γ(A)× Γ(A)→ Γ(A) satisfying the following conditions
(a) [X, fY ]A = f + Tfa(X)X for all f ∈ C∞(M) and X,Y ∈ Γ(A).
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(b) [X, [Y, Z]A]A+[Z, [X,Y ]A]A+[Y, [Z,X]A]A = 0 for all X,Y, Z ∈ Γ(A).
A Lie bracket is localisable if for every non-empty open set U ⊆M there
is a Lie bracket [·, ·]U on the restriction of the anchored bundle A|U such
that for U = M we have [·, ·]U = [·, ·]A and [X|V , Y |V ]V = [X,Y ]U |V for
all open subsets V ⊆ U ⊆M and X,Y ∈ Γ(A|U ).

(2) An anchored bundle with a Lie bracket is called a Lie algebroid if the
Lie bracket is localisable and the map a : Γ(A)→ Γ(TM) is a Lie algebra
morphism.

Remark 4.2. Localisability of the Lie bracket is a new feature which is automatic
for finite-dimensional algebroids. The Lie brackets associated to a Lie groupoid
(see 4.4 below) are automatically localisable (this was proved in [6, Theorem 4.17]
for Banach Lie algebroids, however the proof carries over to our more general
situation). Hence we chose to include it in the definition. Up to now no example of
a non-localisable Lie bracket is known.
4.3. Let K be a compact manifold, ` ∈ N0∪{∞} and (A, a, [ · , · ]) be a Lie algebroid
over M . Assume that M and A admit local additions. Then the push-forward of the
bundle projection turns C`(K,A) into a vector bundle over C`(K,M). Using the ca-
nonical manifold structure, we see that the pointwise application of the Lie bracket of
the Lie algebroid yields a Lie bracket on the section algebra Γ(C`(K,M), C`(K,A))
which is compatible with the push-forward of the anchor of A. We obtain an
anchored bundle which becomes a Lie algebroid (C`(K,A), a∗, [·, ·]pw) if the Lie
bracket is localisable. A Lie algebroid of this form is called a current algebroid.

Note that for a Lie algebroid L(G) associated to a Lie groupoid G (to be
recalled in 4.4 below) the anchored bundle in 4.3 will always have a localisable Lie
bracket. This follows a posteriori from Theorem 4.6 and Remark 4.2. As we are
only interested in the Lie algebroid associated to current groupoids, we shall not
investigate the localisability further. However, it is well known that there are Lie
algebroids which do not integrate to Lie groupoids [11] (i.e. are not of the form
L(G)) and for these we do not know whether the anchored bundle is localisable.15

Let us now recall how to associate such a Lie algebroid to a Lie groupoid
G = (G ⇒ M), e.g. [28, Section 3.5] or [6, 45].
4.4. Consider the subset TαG =

⋃
g∈G Tgα

−1(α(g)) of TG. For all x ∈ Tαg G the
definition implies Tα(x) = 0α(g) ∈ Tα(g)M , i.e. fiber-wise we have Tαg G = kerTgα.
Since α is a submersion, the same is true for Tα. Computing in submersion charts,
the kernel of Tgα is a direct summand of the model space of TG. Furthermore, the
submersion charts of Tα yield submanifold charts for TαG whence TαG becomes
a split submanifold of TG. Restricting the projection of TG, we thus obtain a
subbundle πα : TαG→ G of the tangent bundle TG.

An element in Γ(TαG) is called vertical vector field. A vertical vector field Y is
called right-invariant if for all (h, g) ∈ G×α,βG the equation Y (hg) = Th(Rg)(Y (h))

15Note that to establish localisability of general algebroids [6] requires smooth bump functions
on the base. However, for ` <∞ the mapping spaces C`(K,M) do not admit such bump functions,
see [25, Section 14].
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holds. Due to [28, Lemma 3.5.5] the set of all right invariant vector fields ΓR(TαG)
is a Lie subalgebra of Γ(TG).

4.5 (The Lie algebroid associated to a Lie groupoid). Define L(G) to be the
pullback bundle 1∗TαG where 1: M → G is the unit embedding (we will think of
the pullback 1∗ as restriction). The anchor aL(G) : L(G) → TM is defined as the
composite

L(G)→ TαG
⊆−→ TG

Tβ−−→ TM.

Let g be an element of G. We define the smooth map Rg : α−1(β(g))→ G, h 7→ hg.
Then [28, Corollary 3.5.4] (or [6, Propositions 4.13 (i) and 4.14 (ii)]) shows

(6) Γ(L(G))→ ΓR(G), X 7→
−→
X, with −→

X (g) = T (Rg)(X(β(g)))
is an isomorphism of C∞(G)-modules. Its inverse is ΓR(G)→ Γ(L(G)), X 7→ X ◦ 1.
Now define the Lie bracket on Γ(L(G)) via

(7) [X,Y ] := [−→X,−→Y ] ◦ 1.
Then (L(G),M, aL(G), [·, ·]) is the Lie algebroid [6, Theorem 4.17] associated to G.

We can now identify the Lie algebroid associated to a current groupoid.

Theorem 4.6 (The Lie algebroid associated to a current groupoid). In the situation
of Theorem 3.2 consider the current groupoid C`(K,G). Then the Lie algebroid
associated to the current groupoid is canonically isomorphic to a current algebroid,(

L(C`(K,G), aL(C`(K,G), [ · , · ]
) ∼= (C`(K,L(G), (aL(G)∗, [·, ·]pw

)
,

where the Lie bracket is given by the pointwise application of the bracket on L(G).

Proof. By Theorem A.12 TC`(K,G) ∼= C`(K,TG) holds. Then (1) lets us
conclude that Tα∗C`(K,G) =

⋃
f∈Cr(K,G) Ker (Tfα∗) ∼= C`(K,TαG). Thus

(8) L
(
C`(K,G)

) ∼= (1∗)∗Tα∗C`(K,G) ∼= C`
(
K, 1∗(TαG)

)
= C`

(
K,L(G)

)
.

Analogously (1) yields aL(C`(K,G)) = (aL(G))∗ : C`(K,L(G))→ C`(K,TM). Finally,
we observe that the Lie groupoid operations of the current groupoid are given
by pointwise application of the groupoid operations of G. Thus a section of the
bundle C`(K,TαG) → C`(K,G) is right invariant if and only if it satisfies the
right invariance property pointwise. We conclude from (8) together with (6) and
(7) that the Lie bracket on C`(K,L(G) induced from the Lie algebroid L(C`(K,G)
is given by the pointwise application bracket [·, ·]L(G . Summing up, we can identify
L(C`(K,G)) with the Lie algebroid (C`(K,L(G), (aL(G)∗ , [·, ·]pw) where [·, ·]pw is
the pointwise Lie bracket. Thus the Lie algebroid associated to a current groupoid
is a current algebroid. �

The construction of the current algebroid in Theorem 4.6 recovers the construc-
tion of current algebras.

Remark 4.7. A locally convex topological Lie algebra of the form C`(K, h) with
pointwise Lie bracket, where h is a locally convex topological Lie algebra, is called
a current algebra.



LIE GROUPOIDS OF MAPPINGS TAKING VALUES IN A LIE GROUPOID 339

As was noted in [45, Warning after 1.7], a Lie group H with Lie algebra
L(H) gives rise to a Lie groupoid H ⇒ {?} over the one point manifold, but
L(H ⇒ {?}) 6= L(H) ⇒ {?}. The reason for this is that due to conventions the Lie
bracket of one of these Lie algebras is the negative of the other. Thus the current
algebra C`(K,L(H) ⇒ {?}) of [36] is only anti-isomorphic to C`(K,L(H ⇒ {?})).

We have restricted ourselves to compact K in this section. For ` =∞ and K
without rough boundary (but possibly with smooth boundary and non compact)
one can obtain a similar identification of the current algebroid if G is a Banach Lie
groupoid.

To see this, note that the identification becomes TC∞(K,G) ∼= D(K,TG) (where
D denotes smooth mappings constant outside some compact set, [31, Section 10]).
Then the above proof carries over using the results contained in [31, Sections 10
and 11]. We chose to suppress this more complicated case.
Acknowledgement. The authors wish to thank D.M. Roberts (Adelaide) for
useful comments which helped improve this article. H.A. was supported by a travel
grant of the University of Zanjan. Further funding was provided by DFG grant
GL 357/9-1. H.A. and A.S. wish to thank H.G. and the mathematical institute in
Paderborn for their hospitality during their stay in summer 2018.

Appendix A. Manifold structure on C`(K,M)

In this appendix, we present a construction of the canonical manifold structure
on the spaces C`(K,M) for K a compact manifold (possibly with rough boundary),
` ∈ N0 ∪ {∞}, and M a (possibly infinite-dimensional) smooth manifold which
admits a local addition (in the sense recalled in Definition A.7). Constructions of
the manifold structure are well known in special cases; see [13, 21, 25, 31] (for ` =∞
and K a manifold with corners), [41] (for ` =∞ and K with rough boundary), and
[48] (for K without boundary, finite ` and M of finite dimension). In all approaches
mentioned (with the exception of [41]), the construction hinges on a version of
the so-called Ω-Lemma. This result is not currently available for manifolds with
rough boundary16. However, as suggested by the work of Michor and carried out
in [41, Section 5], one can circumvent this problem for compact source manifolds
by using exponential laws for Ck,`-functions (as provided in [1]). We work out this
approach here and mention that the authors are not aware of a published source
for the results if ` <∞, in the current generality.

Pullbacks of vector bundles and their spaces of sections. The smooth
manifold structure on C`(K,M) we strive to construct is modelled on spaces of
C`-sections of certain pullback bundles f∗(TM). We therefore give some explana-
tions concerning such pullbacks and their sections, before turning to C`(K,M).

A.1. Let M be a smooth manifold, ` ∈ N0 ∪ {∞} and K be a C`-manifold
(possibly with rough boundary). If π : E →M is a smooth vector bundle over M

16But will be contained in [19].
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and f : K →M is a C`-map, then

f∗(E) :=
⋃
x∈K
{x} × Ef(x)

is a submanifold of the C`-manifold K × E (as it locally looks like graph(f)× Ex
insideK×M×Ex around points in {x}×Ex). We endow f∗(E) with the submanifold
structure. Together with the natural vector space structure on {x}×Ef(x) ∼= Ef(x)
and the map πf : f∗(E) → K, (x, y) 7→ x, we obtain a C`-vector bundle f∗(E)
over K, the so-called pullback of E along f . For each local trivialization θ =
(π|E|U , θ2) : E|U → U × F of E and W := f−1(U), the map

f∗(E)|W →W × F , (x, y) 7→
(
x, θ2(y)

)
is a local trivialization of f∗(E). We endow

Γf := {τ ∈ C`(K,E) : π ◦ τ = f}

with the topology induced by C`(K,E). With pointwise operations, Γf is a vector
space and the map

Ψ: ΓC`(f∗(E))→ Γf , σ 7→ pr2 ◦σ

is a bijection with inverse τ 7→ (idK , τ). As C`(K,pr2) : C`(K,K ×E)→ C`(K,E)
is a continuous map and also τ 7→ (idK , τ) ∈ C`(K,K)×C`(K,E) ∼= C`(K,K×E)
is continuous, we deduce that Γf is a locally convex topological vector space and
Ψ is an isomorphism of topological vector spaces. If we wish to emphasize the
dependence on E, we also write Γf (E) instead of Γf .

The following Exponential Law is essential for us, in the preceding situation.

Lemma A.2. Let k ∈ N0 ∪ {∞} and g : N → Γf be a map, where N is a
Ck-manifold (possibly with rough boundary). If K is locally compact, then g is Ck
if and only if

g∧ : N ×K → E , (x, y) 7→ g(x)(y)
is a Ck,`-map.

Proof. Let (Kj)j∈J be a cover of K by open sets Kj such that f(Kj) ⊆ Uj for an
open subset Uj ⊆M such that E|Uj is trivializable; let θj : E|Uj → Uj × Fj be a
local trivialization. Write θj = (π, θj,2) with a smooth map θj,2 : E|Uj → Fj . By
Lemma 1.13, the topology on Γf is initial with respect to the maps

ρj : Γj → C`(Kj , E) , τ 7→ τ |Kj
for j ∈ J . We may regard these as maps to C`(Kj , E|Uj ) as τ(Kj) ⊆ E|Uj for each
τ ∈ Γf (cf. Lemma 1.14). As the map C`(Kj , θj) : C`(Kj , E|Uj ) → C`(Kj , Uj ×
Ej) ∼= C`(Kj , Uj) × C`(Kj , Fj) is a homeomorphism, the topology on Γf is also
initial with respect to the maps C`(Kj , θj) ◦ ρj : Γf → C`(Kj , Uj) × C`(Kj , Fj)
sending τ ∈ Γf to

(9) (f |Kj , θj,2 ◦ τ |Kj ) .
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As the first component in (9) is independent of τ , the topology on Γf is also initial
with respect to the mappings

ψj : Γf → C`(Kj , Fj) , τ 7→ θj,2 ◦ τ |Kj
for j ∈ J , which are linear maps. As a consequence, the map

ψ := (ψj)j∈J : Γf →
∏
j∈J

C`(Kj , Fj)

is linear and a topological embedding. The vector subspace

{(γj)j∈J ∈
∏
j∈J

C`(Kj , Fj) :

(∀i, j ∈ J)(∀x ∈ Ki ∩Kj) γi(x) = θi,2(θ−1
j (f(x), γj(x)))}

of
∏
j∈J C

`(Kj , Fj) is closed and coincides with the image of ψ. [It clearly contains
the image and given (γj)j∈J , we have (γj)j∈J =ψ(τ) if we set τ(x) := θ−1

j (f(x), γj(x))
for j ∈ J and x ∈ Kj .]

As a consequence, a map g : N → Γf as in the lemma is Ck if and only if
ψj ◦ g : N → C`(Kj , Fj) is Ck for all j ∈ J (see [19, Lemmas 1.4.5 and 1.4.15]; cf.
1.7). By the Exponential Law [1, Theorem 4.6], the latter holds if and only if

(ψj ◦ g)∧ : N ×Kj → Fj , (x, y) 7→ θj,2
(
g(x)(y)

)
is Ck,` for each j ∈ J . The latter holds if and only if

N ×Kj → Uj × Fj , (x, y) 7→
(
f(y), θj,2(g(x)(y))

)
= θj

(
g∧(x, y)

)
is Ck,` for all j ∈ J . This in turn holds if and only if g∧|N×Kj : N×Kj → E|Uj ⊆ E
is Ck,` for all j ∈ J , which holds if and only if g∧ is Ck,`. �

Remark A.3. (a) Note that Ck,`-maps to f∗(E) (which is only a C`-manifold)
do not make sense, whence an exponential law for ΓC`(f∗(E)) would not make
sense in naïve form. Because we do have an exponential law for Γf , it is essential
for us to work with Γf rather than ΓC`(f∗(E)).

(b) Dropping the hypothesis of local compactness, we might assume instead,
e.g., that N ×K is metrizable in Lemma A.2, as the Exponential Law [1, Theorem
4.6] also applies in this situation (further variants involve k-spaces, see loc.cit.).

(c) If all fibers of E are Fréchet spaces and K is σ-compact and locally compact,
then Γf is a Fréchet space; if all fibers of E are Banach spaces, K is compact and
` <∞, then Γf is a Banach space. To see this, take a countable (resp., finite) family
(Kj)j∈J of compact subsets Kj ⊆ K (instead of open ones) whose interiors cover K
with f(Kj) ⊆ Uj as in the proof of Lemma A.2, such that Kj admits a smooth
manifold structure with rough boundary making the inclusion map Kj → K a
smooth map and such that Kj and K induce the same smooth manifold structure
on the interior K0

j relative K (e.g., the Kj can be chosen as preimages of compact
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convex sets with non-empty interior under charts of K). Then

ψ : Γf →
∏
j∈J

C`(Kj , Fj) , τ 7→ (θj,2 ◦ τ |Kj )j∈J

is linear and a topological embedding with closed image. If all Fj are Fréchet spaces,
so is each C`(Kj , Fj) (see, e.g., [19]) and hence also Γf . If all Fj are Banach spaces
and ` as well as J is finite, then each C`(Kj , Fj) is a Banach space (loc. cit.) and
hence also Γf .

Lemma A.4. If K is locally compact in the preceding situation, then the evaluation
map

ε : Γf ×K → E , (τ, x) 7→ τ(x)

is C∞,`.

Proof. Since id: Γf → Γf , τ 7→ τ is a C∞-map, id∧ : Γf × K → E, (τ, x) 7→
id(τ)(x) = τ(x) = ε(τ, x) is C∞,`, by Lemma A.2. �

Remark A.5. The conclusions of Lemmas A.2 and A.4 remain valid if K is only
a C`-manifold (possibly with rough boundary) and N as well as the vector bundle
π : E →M are only Ck+`; however, we shall not need the added generality.17

Lemma A.6. Let π1 : E1 →M and π2 : E2 →M be smooth vector bundles over
a smooth manifold M . Let ` ∈ N0 ∪ {∞} and f : K → M be a C`-map from a
C`-manifold K (possibly with rough boundary) to M . Then the following holds:

(a) If ψ : E1 → E2 is a mapping of smooth vector bundles over idM , then
ψ ◦ τ ∈ Γf (E2) for each τ ∈ Γf (E1) and

Γf (ψ) : Γf (E1)→ Γf (E2) , τ 7→ ψ ◦ τ

is a continuous linear map.
(b) Γf (E1 ⊕ E2) is canonically isomorphic to Γf (E1)× Γf (E2).

Proof. (a) If τ ∈ Γf (E1), then ψ ◦ τ : K → E2 is C` and π2 ◦ ψ ◦ τ = π1 ◦ τ = f ,
whence ψ ◦ τ ∈ Γf (E2). Evaluating at points we see that the map Γf (ψ) is linear;
being a restriction of the continuous map C`(K,ψ) : C`(K,E1)→ C`(K,E2), it is
continuous.

(b) If ρj : E1⊕E2 → Ej is the map taking (v1, v2) ∈ E1×E2 to vj for j ∈ {1, 2}
and ιj : Ej → E1⊕E2 is the map taking vj ∈ Ej to (v1, 0) and (0, v2), respectively,
then (

Γf (ρ1),Γf (ρ2)
)

: Γf (E1 ⊕ E2)→ Γf (E1)× Γf (E2)

is a continuous linear map which is a homeomorphism as it has the continuous
map (σ, τ) 7→ Γf (ι1)(σ) + Γf (ι2)(τ) as its inverse. �

17The evaluation ε will be Ck,` then and hence C∞,`, being linear in its first argument (cf. [1,
Lemma 3.14]).
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Construction of the canonical manifold structure. We now construct the
canonical manifold structure on C`(K,M), assuming that M admits a local addi-
tion.We recall the concept.

Definition A.7. Let M be a smooth manifold. A local addition is a smooth map

Σ: U →M ,

defined on an open neighborhood U ⊆ TM of the zero-section 0M := {0p ∈
TpM : p ∈M} such that Σ(0p) = p for all p ∈M ,

U ′ := {(πTM (v),Σ(v)) : v ∈ U}

is open in M ×M (where πTM : TM →M is the bundle projection) and the map

θ := (πTM ,Σ): U → U ′

is a C∞-diffeomorphism. If

(10) T0p(Σ|TpM ) = idTpM
we say that the local addition Σ is normalized.

Until Lemma A.10, we fix the following setting, which allows a canonical manifold
structure on C`(K,M) to be constructed.

A.8. We consider a compact smooth manifold K (possibly with rough boundary),
a smooth manifold M which admits a local addition Σ: TM ⊇ U → M , and
` ∈ N0 ∪ {∞}.

A.9 (Manifold structure on C`(K,M)). For f ∈ C`(K,M), the locally convex
space of C`-sections of the pullback-vector bundle f∗(TM) is isomorphic to

Γf := {τ ∈ C`(K,TM) : πTM ◦ τ = f} ,

as explained in A.1. Then

Of := Γf ∩ C`(K,U)

is an open subset of Γf ,

O′f := {g ∈ C`(K,M) : (f, g)(K) ⊆ U ′}

is an open subset of C`(K,M) and the map

(11) φf : Of → O′f , τ 7→ Σ ◦ τ

is a homeomorphism with inverse g 7→ θ−1 ◦ (f, g). By the preceding, if also
h ∈ C`(K,M), then ψ := φ−1

h ◦ φf has an open domain D ⊆ Γf and is a smooth
map D → Γh by Lemma A.2, as ψ∧ : D ×K → TM ,

(τ, x) 7→ (φ−1
h ◦ φf )(τ)(x) = θ−1(h(x),Σ(τ(x))

)
= θ−1(h(x),Σ(ε(τ, x))

)
is a C∞,`-map (exploiting that the evaluation map ε : Γf ×K → TM is C∞,`, by
Lemma A.4). Hence C`(K,M) has a smooth manifold structure for which each of
the maps φ−1

f is a local chart.
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We now prove that the manifold structure on C`(K,M) is canonical. Together
with Lemma 1.19 (b), this implies that the smooth manifold structure on C`(K,M)
constructed in A.9 is independent of the choice of local addition.

Lemma A.10. The manifold structure on C`(K,M) constructed in A.9 is cano-
nical.

Proof. We first show that the evaluation map ev : C`(K,M)×K →M is C∞,`. It
suffices to show that ev(φf (τ), x) is C∞,` in (τ, x) ∈ Of ×K for all f ∈ C`(K,M).
This follows from

ev
(
φf (τ), x

)
= Σ

(
τ(x)

)
= Σ

(
ε(τ, x)

)
,

where ε : Γf × K → TM , (τ, x) 7→ τ(x) is C∞,` by Lemma A.4. Now let k ∈
N0 ∪ {∞} and h : N → C`(K,M) be a map, where N is a Ck-manifold modelled
on locally convex spaces (possibly with rough boundary). If h is Ck, then h∧ =
ev ◦(h × idK) is Ck,`. If, conversely, h∧ is Ck,`, then h is continuous as a map
to C(K,M) with the compact-open topology (see [19, Proposition A.5.17]) and
h(x) = h∧(x, ·) ∈ C`(K,M) for each x ∈ N . Given x ∈ N , let f := h(x). Then
ψf : C(K,M)→ C(K,M)×C(K,M) ∼ C(K,M ×M), g 7→ (f, g) is a continuous
map. Since ψf (g) is C` if and only if g is C`, we see that

W : = h−1(O′f ) = h−1(ψ−1
f (C`(K,U ′))

)
=
(
ψf ◦ h)−1(C`(K,U ′)

)
= (ψf ◦ h)−1(C(K,U ′)

)
is an open x-neighborhood in N . As the map (φ−1

f ◦ h|W )∧ : W ×K → TM ,

(y, z) 7→
(
(φf )−1 ◦ h|W

)∧(y, z) =
(
θ−1 ◦ (f, h(y))

)
(z) = θ−1(f(z), h∧(y, z)

)
is Ck,` by [1, Lemma 3.18], the map φ−1

f ◦ h|W : W → Γf (and hence also h|W )
is Ck, by Lemma A.2. �

The tangent bundle of C`(K,M). We now identify the tangent bundle of a
manifold of mappings, as well as the tangent maps of superposition operators
between such manifolds. We start with a description of the main steps and ideas;
three more technical proofs (of Lemma A.11, Lemma A.14, and Theorem A.12)
are relegated to the following subsection. An observation is crucial:

Lemma A.11 (cf. [45, Lemma 7.5] or [31, 10.11]). If a smooth manifold M admits
a local addition, then also its tangent manifold TM admits a local addition.

Since M admits a local addition in the setting of A.8, we deduce from Lem-
mas A.11 and A.10 that also C`(K,TM) admits a canonical smooth manifold
structure. By Proposition 1.20, the map

C`(K,πTM ) : C`(K,TM)→ C`(K,M) , τ 7→ πTM ◦ τ
is smooth. For each f ∈ C`(K,M), we have C`(K,πTM )−1({f}) = Γf , which we
endow with a vector space structure as in A.1. Given x ∈ K, let εx : C`(K,M)→M ,
f 7→ f(x) be the point evaluation at x. Then the tangent bundle of C`(K,M) can
be described as follows:
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Theorem A.12. In the situation of A.8,

C`(K,πTM ) : C`(K,TM)→ C`(K,M)

is a smooth vector bundle with fiber Γf over f ∈ C`(K,M). For each v ∈
T (C`(K,M)), we have Φ(v) := (Tεx(v))x∈K ∈ C`(K,TM) and the map

Φ: TC`(K,M)→ C`(K,TM) , v 7→ Φ(v)

is an isomorphism of smooth vector bundles (over the identity).

If we wish to emphasize the dependence on M , we write ΦM instead of Φ.

Remark A.13. (a) Assume that the local addition Σ: U →M is normalized in
the sense of (10). Then the proof of Theorem A.12 will show that

Φ ◦ Tφf (0, ·) : Γf → C`(K,TM)

is the inclusion map τ 7→ τ , for each f ∈ C`(K,M) (where φf is as in (11)).
(b) Compare [31, Theorem 10.13] for a special case of Theorem A.12 for

finite-dimensional M and ` = ∞ (and [45, Theorem 7.9] for additional expla-
nations concerning Michor’s discussion).

By the preceding, it is useful to work with normalized local additions. This is
no further restriction:

Lemma A.14. If a smooth manifold M admits a local addition, then M also
admits a normalized local addition.

Theorem A.12 allows us to identify the tangent maps of superposition operators.

Corollary A.15. Let K be a compact smooth manifold (possibly with rough
boundary) and g : M → N be a C`+1-map between smooth manifolds M and
N admitting local additions. Then the tangent map of the C1-map

C`(K, g) : C`(K,M)→ C`(K,N) , f 7→ g ◦ f

is given by T (C`(K, g)) = Φ−1
N ◦C`(K,Tg) ◦ΦM . For each f ∈ C`(K,M), we have

ΦM (Tf (C`(K,M))) = Γf (TM), ΦN (Tg◦f (C`(K,N))) = Γg◦f (TN) and C`(K,Tg)
restricts to the map

(12) Γf (TM)→ Γg◦f (TN) , τ 7→ Tg ◦ τ

which is continuous linear and corresponds to Tf (C`(K, g)).

Remark A.16. In the following proof and also in the following subsection, we find
it convenient to consider the tangent space TpM of a smooth manifold M at p ∈M
as a geometric tangent space. Thus, the elements of TpM are geometric tangent
vectors, i.e., equivalence classes [γ] of C1-curves γ : ]−ε, ε[→ M with γ(0) = p
(where two such curves are considered equivalent if their velocity at t = 0 coincides
in each chart). In the case of an open subset U of a vector space E, we shall also
identify TU with U × E (as usual).
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Proof of Corollary A.15. Let Σ be a normalized local addition on M (cf.
Lemma A.14). Given f ∈ C`(K,M), the map Tφf (0, ·) : Γf → Tf (C`(K,M))
is an isomorphism of vector spaces. The assertions follow from

ΦN
(
T (C`(K, g))Tφf (0, σ)

)
=
(
[t 7→ g(Σ(tσ(x)))]

)
x∈K

=
(
Tg ddt

∣∣
t=0Σ(tσ(x))

)
x∈K =

(
Tg(σ(x))

)
x∈K

= Tg ◦ σ = C`(K,Tg)(σ) = C`(K,Tg)ΦMTφf (0, σ) ,

where we used (10) for the third equality and Remark A.13 (a) for the last. �

We mention a further consequence.

Remark A.17. If M has the local addition Σ: U →M , then C`(K,U) is an open
subset of C`(K,TM), which we identify with T (C`(K,M)) by means of the map
Φ from Theorem A.12. Using this identification, the map C`(K,Σ): C`(K,U)→
C`(K,M), γ 7→ Σ ◦ γ is easily seen to be a local addition for C`(K,M). If N is a
compact smooth manifold (possibly with rough boundary) and k ∈ N0 ∪ {∞}, this
enables a canonical smooth manifold structure to be defined on Ck(N,C`(K,M)).
By a variant of the construction described in this appendix, it is possible to endow
also Ck,`(N ×K,M) with a suitable canonical smooth manifold structure, and to
obtain an exponential law of the form

Ck,`(N ×K,M) ∼= Ck
(
N,C`(K,M)

)
;

notably, Ck(N,C`(K,M)) ∼= C`(K,Ck(N,M)) (joint work in progress by the
second and third author).

Proof of Lemma A.14, Lemma A.11, and Theorem A.12. We now fill in
the three proofs which have been postponed in the preceding subsection.

The following notation is useful: If Uj is an open subset of a locally convex space
Ej for j ∈ {1, 2} and f : U1 ×U2 → F is a C1-map to a locally convex space F , we
abbreviate

d2f(x, y, z) := df
(
(x, y), (0, z)

)
for (x, y) ∈ U1 × U2 and z ∈ E2.
Proof of Lemma A.14. Given a local addition Σ: U →M , let us use the nota-
tion from A.7. The C∞-diffeomorphism θ := (πTM ,Σ): U → U ′ ⊆M ×M takes
the open set TpM ∩U ⊆ TpM to the submanifold ({p}×M)∩U ′ of M×M for each
p ∈M and restricts to a C∞-diffeomorphism between these sets. Hence Σ|TpM∩U
is a C∞-diffeomorphism onto an open subset of M , whence αp := T0p(Σ|TpM ) ∈
GL(TpM) for each p ∈M . Define

h : TM → TM , h(v) := α−1
πTM (v)(v) .

We claim that h is smooth. If this is true, then Σ ◦h : h−1(U)→M is a normalized
local addition. To prove the claim, let us show smoothness of Tφ ◦ h ◦ Tφ−1 for a
given chart φ : Uφ → Vφ ⊆ Eφ of M . Abbreviate

P := θ−1(Uφ × Uφ) ∩ TUφ
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and Q := Tφ(P ). Then 0p ∈ P for each p ∈ Uφ as θ(0p) = (p, p) ∈ Uφ × Uφ and
0p ∈ TUφ. As a consequence, Vφ × {0} ⊆ Q. Then

f := (φ× φ) ◦ θ|P ◦ Tφ−1|PQ : Q→ Eφ × Eφ
is a C∞-diffeomorphism onto the open subset (φ × φ)(θ(P )) of Eφ × Eφ and f
is of the form f(x, y) = (x, g(x, y)) with a smooth function g : Q → Eφ. By the
following lemma, βx := d2g(x, 0, ·) ∈ GL(Eφ) for all x ∈ Vφ and the map

Vφ × Eφ → Eφ , (x, z) 7→ β−1
x (z)

is smooth. Given (x, y) ∈ Vφ × Eφ, let w := Tφ−1(x, y), p := φ−1(x), v := α−1
p (w)

and z := dφ(v) (whence v = Tφ−1(x, z)). Since

g(x, u) = φ
(
Σ|TpMTφ−1(x, ·)|TpMEφ

(u)
)

for u ∈ Eφ close to 0, we deduce that
βx(z) = d2g(x, 0, z) = Tφ

(
αp(Tφ−1(x, z))

)
= Tφ

(
αp(v)

)
= Tφ(w) = (x, y) .

Thus, dφ(v) = z = β−1
x (x, y) and (Tφ ◦ h ◦ Tφ−1)(x, y) = Tφ(α−1

p (w)) = Tφ(v) =
(x, β−1

x (x, y)), which is a smooth Eφ ×Eφ-valued function of (x, y) ∈ Vφ ×Eφ. �

Lemma A.18. Let E be a locally convex space, W ⊆ E be an open subset and
Q ⊆ E × E be an open subset such that W × {0} ⊆ Q. Let g : Q→ E be a smooth
mapping such that

f : Q→ E × E , (x, y) 7→
(
x, g(x, y)

)
has open image and is a C∞-diffeomorphism onto its image. Then βx := d2g(x, 0, ·)
∈ GL(E) for each x ∈W and the map W × E → E, (x, z) 7→ β−1

x (z) is smooth.

Proof. Given x ∈W , the hypotheses imply that the map
gx := g(x, ·) : {y ∈ E : (x, y) ∈ Q} → E , y 7→ g(x, y)

is a C∞-diffeomorphism onto {z ∈ E : (x, z) ∈ f(Q)}. Hence βx := d2g(x, 0, ·) =
d(gx)(0, ·) ∈ GL(E). Write h for the second component of f−1. Given x ∈ W ,
we have h(x, g(x, y)) = y for all y ∈ E such that (x, y) ∈ Q (notably for y = 0),
whence d2h(x, g(x, 0), d2g(x, 0, v)) = v for all v ∈ E and thus

d2h(x, g(x, 0), ·) ◦ βx = idE .
Hence β−1

x (z) = d2h(x, g(x, 0), z), which is smooth in (x, z) ∈W × E. �

As a tool for the proofs of Lemma A.11 and Theorem A.12, we recall the
definition of the canonical flip on T 2M := T (TM), and some of its properties.

A.19. Consider a smooth manifold M and the bundle projection πTM : TM →M .
Then T 2M is a smooth vector bundle over TM ; we write πT 2M : T 2M → TM for
its bundle projection. Given a chart φ : Uφ → Vφ ⊆ Eφ of M and (x, y, z, w) ∈
Vφ × Eφ × Eφ × Eφ, we define

κ
(
T 2(φ−1)(x, y, z, w)

)
:= T 2(φ−1)(x, z, y, w) .

It is easy to check that a well-defined smooth map
κ : T 2M → T 2M
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is obtained in this way (the canonical flip), such that κ ◦ κ = idT 2M .
[In fact, if T 2(φ−1)(x, y, z, w) = T 2(ψ−1)(x′, y′, z′, w′), then

(x′, y′, z′, w′) = T 2(f)(x, y, z, w)

=
(
f(x), df(x, y), df(x, z), df(x,w) + d(2)f(x, y, z)

)
with f := ψ ◦ φ−1 and thus

T 2(ψ−1)(x′, z′, y′, w′) = T 2(ψ−1)
(
f(x), df(x, z), df(x, y), df(x,w) + d(2)f(x, y, z)

)
,

which coincides with

T 2(φ−1)(x, z, y, w) = T 2(ψ−1)T 2(f)(x, z, y, w)

= T 2(ψ−1)
(
f(x), df(x, z), df(x, y), df(x,w) + d(2)f(x, z, y)

)
.]

Using a local chart, one readily verifies that

(13) πT 2M = (TπTM ) ◦ κ.

[As (φ ◦ πTM ◦ T (φ−1))(x, y) = x, we have T (φ ◦ πTM ◦ T (φ−1))(x, y, z, w) = (x, z)
and thus (T (φ)◦T (πTM )◦κ◦T 2(φ−1))(x, y, z, w) = T (φ◦πTM◦T (φ−1))(x, z, y, w) =
(x, y) = (Tφ ◦ πT 2M ◦ T 2(φ−1))(x, y, z, w).]

Proof of Lemma A.11. If Σ: U → M is a local addition for M and θ =
(πTM ,Σ): U → U ′ ⊆ M × M (as above) the associated C∞-diffeomorphism,
then TU is open in T 2M , the set T (U ′) is open in T (M ×M) (which we identify
with TM × TM via (T pr1, T pr2)) and

Tθ : TU → TU ′

is a C∞-diffeomorphism. Then also

(Tθ) ◦ κ : κ(TU)→ TU ′ ⊆ TM × TM

is a C∞-diffeomorphism and (Tθ) ◦ κ = (πT 2M ,ΣTM ) with

ΣTM := (TΣ) ◦ κ : κ(TU)→ TM .

We shall readily check that 0v ∈ κ(TU) for all v ∈ TM and ΣTM (0v) = v, whence
ΣTM is a local addition for TM . [Given p ∈M , let φ : Uφ → Vφ ⊆ Eφ be a chart
for M such that p ∈ Uφ and φ(p) = 0. Set P := U ∩ TUφ and Q := (Tφ)(P ). Since
0p ∈ U , we have (0, 0) ∈ Q, whence {0} × {0} × Eφ × Eφ ⊆ TQ = (T 2φ)(P ) and
thus T 2φ−1({0} × Eφ × {0} × Eφ) = κ(T 2φ−1({0} × {0} × Eφ × Eφ)) ⊆ κ(TU),
entailing that 0v ∈ κ(TU) for all v ∈ TpM .

To see that ΣTM (0v) = v for all v ∈ TpM , note that T 2φ(κ(0v)) = (0, 0, y, 0) for
some y ∈ Eφ. Now

v = πT 2M (0v) = T (πTM )(κ(0v)) = T (πTM )T 2φ−1(0, 0, y, 0)
= T (πTM ◦ Tφ−1)(0, 0, y, 0) = Tφ−1(0, y)
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since πTM ◦ Tφ−1(z, 0) = φ−1(z) for all z ∈ Vφ and thus T (πTM ◦ Tφ−1)(0, 0, y, 0)
= Tφ−1(0, y). As a consequence,

ΣTM (0v) = TΣ(κ(0v)) = T (Σ ◦ Tφ−1)(0, 0, y, 0)
= d

dt

∣∣
t=0ΣTφ−1(ty, 0) = d

dt

∣∣
t=0Σ(0φ−1(ty))

= d
dt

∣∣
t=0φ

−1(ty) = Tφ−1(0, y) = v ,

which completes the proof. �

The following considerations prepare the proof of Theorem A.12. Let M be a
smooth manifold modelled on locally convex spaces. In the following proofs, given
p ∈ M we write λp : TpM → TM , v 7→ v for the inclusion map. We abbreviate
T 2M := T (TM) and let κ : T 2M → T 2M be the canonical flip. The zero-section
0M := {0p ∈ TpM : p ∈M} is a split submanifold of TM . As the bundle projection
πT 2M : T 2(M) → TM is a smooth submersion, [18, Theorem C] shows that the
preimage

π−1
T 2M (0M )

is a split submanifold of T 2M . We can also see this by hand: If φ : Uφ → Vφ ⊆ Eφ
is a chart for M , then T 2φ : T 2Uφ → T 2Vφ = Vφ × Eφ × Eφ × Eφ is a chart for
T 2M and
(14)
T 2φ(T 2(Uφ)∩π−1

T 2M (0M )) = Vφ×{0}×Eφ×Eφ = T 2(Vφ)∩(Eφ×{0}×Eφ×Eφ) ,

where Eφ × {0} × Eφ × Eφ is a complemented topological vector subspace of
Eφ × Eφ × Eφ × Eφ. Define

π : π−1
T 2M (0M )→M , v 7→ πTM

(
πT 2M (v)

)
.

For p ∈ M , we give π−1({p}) = T0p(TM) the vector space structure as the
tangent space of the smooth manfold TM at 0p. Then d(Tφ) restricts to a linear
isomorphism π−1({p}) = T0p(TM)→ Eφ×Eφ for each chart φ as before and p ∈ Uφ.
As a consequence, each of the the C∞-diffeomorphisms (π, d(Tφ)) : π−1(Uφ) →
Uφ × Eφ × Eφ is a local trivialization and π−1

T 2M (0M ) is a smooth vector bundle.

Lemma A.20. In the preceding situation, the following holds:
(a) Θ(v, w) := κ(Tλp(v, w)) ∈ T0p(TM) for all p ∈M and v, w ∈ TpM ;
(b) The map Θ: TM ⊕ TM → π−1

T 2M (0M ) is an isomorphism of C∞-vector
bundles over idM ;

(c) If U ⊆ TM is an open subset and U ×M TM :=
⋃
p∈M (U ∩TpM)×TpM ⊆

TM ⊕ TM , then Θ(U ×M TM) = κ(TU) ∩ π−1
T 2M (0M ).

Now let K be a compact smooth manifold (possibly with rough boundary) and
` ∈ N0 ∪ {∞}. Let Γf := {τ ∈ C`(K,TM) : (∀x ∈ K) τ(x) ∈ Tf(x)M},

Γ0◦f := {τ ∈ C`(K,T 2M) : (∀x ∈ K) τ(x) ∈ T0f(x)TM} ,

Of := {τ ∈ Γf : τ(K) ⊆ U} and O0◦f := {τ ∈ Γ0◦f : τ(K) ⊆ κ(TU)}. Then the
following holds:
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(d) Θ ◦ (σ, τ) ∈ Γ0◦f for all σ, τ ∈ Γf and the map
(15) Γf × Γf → Γ0◦f , (σ, τ) 7→ Θ ◦ (σ, τ)

is an isomorphism of topological vector spaces.
(e) The isomorphism from (d) restricts to a C∞-diffeomorphism Ψf : Of×Γf →
O0◦f .

Proof. (a) and (b): Let φ : Uφ → Vφ ⊆ Eφ be a chart for M and x ∈ Vφ. Abbreviate
p := φ−1(x). The map α : Eφ → TpM , y 7→ (Tφ−1)(x, y) is an isomorphism of
topological vector spaces. Since

(Tφ ◦ λp ◦ α)(y) = (x, y)
for all y ∈ Eφ, we have (T 2φ ◦ Tλp)(Tφ−1(x, y), Tφ−1(x, z)) = (T 2φ ◦ Tλp ◦
Tα)(y, z) = (x, y, 0, z) for all y, z ∈ Eφ and hence
(16) (T 2φ ◦ κ ◦ Tλp)(Tφ−1(x, y), Tφ−1(x, z))) = (x, 0, y, z) .
Writing v := Tφ−1(x, y) and w := Tφ−1(x, z), we deduce that κ(Tλp(v, w)) =
T 2φ−1(x, 0, y, z) ∈ T0p(TM), establishing (a). It follows from (16) that the map
TpM × TpM → T0p(TM), (v, w) 7→ κ(Tλp(v, w)) is a bijection. As a consequence,
Θ is a bijection. Given a chart φ : Uφ → Vφ ⊆ Eφ of M , the map

Tφ⊕ Tφ : (TM ⊕ TM)|TUφ → Vφ × Eφ × Eφ , (v, w) 7→
(
Tφ(v), dφ(w)

)
is a chart for TM ⊕ TM . Using (16), we find that
(T 2φ ◦Θ ◦ (Tφ⊕Tφ)−1)(x, y, z) = (T 2φ ◦Θ)

(
Tφ−1(x, y), Tφ−1(x, z)

)
= (x, 0, y, z)

for (x, y, z) ∈ Vφ × Eφ × Eφ, which is a C∞-diffeomorphism from Vφ × Eφ × Eφ
onto Vφ × {0} × Eφ × Eφ = T 2Vφ ∩ (Eφ × {0} × Eφ × Eφ). As T 2φ restricts to
a chart of the submanifold π−1

T 2M (0M ) (cf. (14)), we deduce that Θ restricts to
a C∞-diffeomorphism (TM ⊕ TM)|TUφ → (T 2Uφ) ∩ π−1

T 2M (0M ). Now Θ((TM ⊕
TM)p) ⊆ π−1({p}) for each p ∈M , by (a). Since (d(Tφ)◦Θ◦(Tφ⊕Tφ)−1)(x, y, z) =
(y, z) is linear in (y, z), we deduce that the C∞-diffeomorphism Θ is an isomorphism
of smooth vector bundles over idM .

(c) Let p ∈M and v, w ∈ TpM . Pick a chart φ : Uφ → Vφ ⊆ Eφ with p ∈ Uφ and
set x := φ(p). Then v = Tφ−1(x, y) and w = Tφ−1(x, z) with suitable y, z ∈ Eφ
and

Θ(v, w) ∈ κ(TU) ∩ T0p(TM)
⇔Θ(v, w) ∈ κ(TU)⇔ Tλp(v, w) ∈ TU ∩ T 2Uφ = T (U ∩ TUφ)
⇔(x, y, 0, z) = T 2φTλp(v, w) ∈ T 2φ(TU ∩ T 2Uφ)
⇔(x, y) ∈ Tφ(U ∩ TUφ) ⇔ v ∈ U .

Thus Θ−1(κ(TU) ∩ π−1
T 2M (0M )) ∩ (TpM × TpM) = (TpM ∩ U) × TpM and the

assertion follows.
(d) We have Γ0◦f := Γ0◦f (T 2M) = Γf (π−1

T 2M (0M )) as a set and as a topological
space, as a consequence of 1.7 and Lemma 1.14. Since π−1({p}) = T0p(TM) as
a vector space for each p ∈M , a pointwise calculation shows that Γ0◦f (T 2M) =
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Γf (π−1
T 2M (0M )) also as vector spaces, and hence as locally convex spaces. Identifying

Γf × Γf with Γf (TM ⊕ TM) as in Lemma A.6 (b), we have

Θ ◦ (σ, τ) = Γf (Θ)(σ, τ) ∈ Γf
(
π−1
T 2M (0M )

)
for all (σ, τ) ∈ Γf × Γf , by Lemma A.6 (a). The map (15) to Γf (π−1

T 2M (0M )) =
Γ0◦f (T 2M) therefore coincides with Γf (Θ), which is an isomorphism of locally
convex spaces (with inverse Γf (Θ−1)) by Lemma A.6 (a).

(e) Given σ, τ ∈ Γf , we have Θ ◦ (σ, τ) ∈ O0◦f if and only if Θ(σ(x), τ(x)) ∈
κ(TU) for all x ∈ K. By (c), this holds if and only if σ(x) ∈ U for all x ∈ K, i.e.,
if and only if σ ∈ Of . Thus {Θ ◦ (σ, τ) : (σ, τ) ∈ Of × Γf} = O0◦f . �

Proof of Theorem A.12. Given f ∈ C`(K,M), the map φf : Of → O′f ⊆
C`(K,M) is a C∞-diffeomorphism with φf (0) = f , whence Tφf (0, ·) : Γf →
Tf (C`(K,M)) is an isomorphism of topological vector spaces. For τ ∈ Γf , we have
for each x ∈ K

TεxTφf (0, τ) = Tεx
(
[t 7→ Σ ◦ (tτ)]

)
= [t 7→ Σ

(
tτ(x)

)
]

= [t 7→ Σ|Tf(x)M

(
tτ(x)

)
] = TΣ|Tf(x)M

(
τ(x)

)
= τ(x) ,

as Σ is assumed normalized. Thus Φ(Tφf (0, τ)) = τ ∈ Γf ⊆ C`(K,TM), whence
Φ(v) ∈ Γf ⊆ C`(K,TM) for each v ∈ Tf (C`(K,M)) and Φ takes Tf (C`(K,M))
bijectively and linearly onto Γf . As T (C`(K,M)) and C`(K,TM) is the disjoint
union of the sets Tf (C`(K,M)) and Γf = C`(K,πTM )−1({f}), respectively, we see
that Φ is a bijection. If we can show that Φ is a C∞-diffeomorphism, it will also
follow from the preceding that C`(K,πTM ) : C`(K,TM)→ C`(K,M) is a smooth
vector bundle over C`(K,M) (like T (C`(K,M))) and Φ an isomorphism of smooth
vector bundles over idM . The bijective map Φ will be a C∞-diffeomorphism if we

can show that18

Φ ◦ Tφf = φ0◦f ◦Ψf

for each f ∈ C`(K,M), where Ψf : Of × Γf → O0◦f is the C∞-diffeomorphism
from Lemma A.20 (e). Recall that λp : TpM → TM , z 7→ z is the inclusion for
p ∈M . Now

Tφf (σ, τ) = [t 7→ Σ ◦ (σ + tτ)]
for all (σ, τ) ∈ Of × Γf , and thus

Φ(Tφf (σ, τ)) = ([t 7→ Σ
(
σ(x) + tτ(x)

)
])x∈K =

(
[t 7→ (Σ ◦ λf(x))(σ(x) + tτ(x))]

)
x∈K

=
(
T (Σ◦λf(x))(σ(x), τ(x))

)
x∈K =

(
ΣTM ((κ◦Tλf(x))(σ(x), τ(x)))

)
x∈K

= ((ΣTM ◦Ψf )(σ, τ)(x))x∈K = (φ0◦f ◦Ψf )(σ, τ) .

�

18The sets Sf := Tφf (Of × Γf ) form an open cover of T (C`(K,M)) for f ∈ C`(K,M),
whence the sets Φ(Sf ) form a cover of C`(K,TM) by sets which are open as Φ(Sf ) = (φ0◦f ◦
Ψf )(Of × Γf ) = φ0◦f (O0◦f ).
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Appendix B. Current groupoids related to orbifold morphisms

In this section, the relation of current groupoids of proper étale Lie groupoids
with orbifolds and morphisms of orbifolds is discussed. An orbifold is a generalisation
of a manifold allowing mild singularities; we recall from [33, 34, 44]:

B.1 (Orbifolds in local charts). Let Q be a Hausdorff topological space. An
orbifold chart (V,G, π) is a triple, where V is a connected manifold, G ⊆ Diff(V ) a
finite subgroup and π : V → Q a continuous map with open image, which induces
a homeomorphism V/G ∼= π(V ). Two orbifold charts (V,G, π), (W,H,ψ) on Q
are compatible if for every π(x) = ψ(y) there exists a smooth diffeomorphism
ϕ : Vx → Vy, a change of charts between x- and y-neighborhoods, such that
ψ ◦ ϕ = π|Vx .19 An orbifold atlas is a family of pairwise compatible orbifold charts
whose images cover Q.

One usually assumes that the manifolds appearing in orbifold charts are para-
compact and finite dimensional, i.e. the orbifold atlas is finite dimensional. We
do not assume this per se. However, recall that every (finite-dimensional) orbifold
atlas gives rise to an atlas groupoid which is a proper étale Lie groupoid.

B.2 (Atlas groupoids). Consider an orbifold atlas V := {Vi, Gi, ϕi)}i∈I on a
topological space Q such that the manifolds Vi, i ∈ I are finite dimensional. Then
we construct a proper étale Lie groupoid Γ(V), called atlas groupoid, as follows. Its
space of arrows is given by the disjoint union ti∈IVi, while the arrows are germs
of change of chart morphisms (with the germ topology turning Γ(V) into a proper
étale groupoid). For details we refer to [34, Theorem 4 (4) ⇒ (1)] and [39].

Different (but equivalent) orbifold atlases give rise to different (but Morita
equivalent) atlas groupoids. This construction can be reversed, as [33, 34] showed
that the orbit space associated to the canonical right action of a (finite-dimensional)
proper étale Lie groupoid on its space of units gives rise to a topological space
with an orbifold atlas. Again, Morita equivalent groupoids give rise to equivalent
orbifold atlases. Hence at least in the finite-dimensional case, orbifolds correspond
to proper étale Lie groupoids. Currently, there seems to be no consensus on the
definition of an infinite-dimensional orbifold, however, the Lie groupoid picture
generalises with ease.

Definition B.3. We call a proper étale Lie groupoid G an orbifold groupoid.

It is currently unknown whether an orbifold groupoid modelled on an infinite-di-
mensional space corresponds to an orbifold in (infinite-dimensional) local charts.
The classical proof (see e.g. [34, Theorem 4]) requires a suitable version of a slice
theorem for infinite-dimensional Lie group actions. No such theorem is known in
general. As a special case, Theorem C entails that current groupoids of orbifold
groupoids are again orbifold groupoids which are locally isomorphic to action

19Contrary to manifolds, the change of charts is not given by ψ−1 ◦ π as ψ might not be
invertible.
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groupoids by Proposition 3.13. We conjecture that at least these orbifold groupoids
correspond to orbifolds in local charts.20 However, this is beyond the present paper.

It is known that spaces of orbifold maps are infinite-dimensional orbifolds
[9, 10, 43, 47]. Now, since a compact manifold K is a trivial orbifold, does the
current groupoid model the space of C`-orbifold morphisms C`Orb(K,Q)? In general,
this is not even the case if G represents a manifold.

Example B.4. Let Q = S = K and choose a manifold atlas V of Q to construct
Γ(V). Its space of units Γ(V)0 is the disjoint union of at least two smooth manifolds
(as every atlas of the unit sphere must contain at least two charts). Since K is
connected, the image of every smooth map K → Γ(V)0 is contained in exactly
one component of Γ(V)0, i.e. in one chart domain. In particular, the identity
id: S→ S is not contained in the current groupoid, but C`(S,S) = C`Orb(K,M) for
all ` ∈ N0 ∪ {∞}.

Note the contrast to Example 3.4 where we recovered the full space C`(S,S).
However, in a specialised case we can avoid atlas groupoids to obtain current
groupoids which encode orbifold morphisms.

B.5 (Curves into developable orbifolds). Recall that a (smooth) orbifold (Q,U)
is developable if there is a discrete subgroup Γ ⊆ Diff(M) such that Γ×M →M
is a proper action and as orbifolds Q ∼= M/Γ (see [8, Section III.G 1.3]). To every
developable (smooth) orbifold one can associate a proper étale (Lie) groupoid, by
defining the action groupoid Γ nM ⇒ M where Γ is endowed with the discrete
topology (i.e. is a 0-dimensional manifold).

Let now Q = M/Γ be developable. Then every C`-orbifold path I → (Q,U)
from a compact interval I ⊆ R induces a C`-map I → M .21 For ` = 0 this is
recorded in [8, III.G Example 3.9 (1)]. For ` > 0 every C`-orbifold path to Q admits
lifts in orbifold charts which embed as open sets of M (due to developability of
Q). Then [44, Lemma F.1] generalises to ` ∈ N and yields an open cover of I
by intervals together with C`-lifts such that every x ∈ I is contained at most in
two subintervals. Now gluing the lifts together using changes of charts (which are
induced by the Γ action!) yields the desired C`-map I →M . Of course, in general,
many different C`-curves lift the same C`-orbifold path. One now identifies the
C`-orbifold paths with the orbit space Orb`(I,Q) := C`(I,M)/C`(I,Γ nM):

(1) if ` = 0, the orbit space Orb`(I,Q) coincides with the space of continuous
orbifold paths as is explained in [8, III.G Example 3.9 (1)]. Thus (up to
homotopy of paths) the current groupoid encodes the so-called G-paths
and the fundamental group of a developable étale groupoid (cf. [8, Section
III.G 3.]).

20Since for Banach manifolds and tame Fréchet manifolds suitable slice theorems are known.
Chen proves a similar statement for orbispaces, see B.5 below.

21In local charts, a C`-path is a continuous map c : I → Q which lifts locally to C`-paths
ĉi : ]ti, ti+1[→ Vi in orbifold charts such that the lifts ci, cj are (locally) related via λ ◦ ci = cj by
suitable change of orbifold charts. See [44, Section 4.1 and Appendix E] for details.
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(2) For ∞ > ` ≥ 0 [9, Theorem 3.3.3 (ii)] shows that Orb`(I,Q) coincides
with the C`-orbifold paths. Thus we recover Chen’s orbispace structure
on Orb`(I,Q). In this case, the Lie groupoid structure of C`(K,Γ n
M) ⇒ C`(K,M) is new as in loc.cit. only the orbispace structure of
the quotient and a topological groupoid structure are discussed. However,
the setting of [9] is much more general as it allows spaces of orbifold maps
between orbifolds to be treated.
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