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A PRIORI BOUNDS FOR POSITIVE RADIAL SOLUTIONS
OF QUASILINEAR EQUATIONS OF LANE-EMDEN TYPE

SOOHYUN BAE

ABSTRACT. We consider the quasilinear equation Apu + K (|z|)u? = 0, and
present the proof of the local existence of positive radial solutions near 0 under
suitable conditions on K. Moreover, we provide a priori estimates of positive
radial solutions near co when r—¢K () for £ > —p is bounded near co.

1. INTRODUCTION

We consider the equation
(L.1) Apu+ K(|z))u? =0,

where Apu = div(|VulP™2Vu), n > p > 1 and ¢ > p— 1. Let r = |z| and

2 (r) = u,(r). Then, the radial version of (L.I)) is

(1.2) =, P2, + K (r)u? = 0.

For p = 2, the basic assumption of K for local solutions is (K):

(i) K(r)>0,#0; K(r) is continuous on (0, 00);

(i) J,7K(r)dr < oo, i.e., rK(r) is integrable near 0.
Under condition (K), with p = 2 and u(0) = « > 0, has a unique positive
solution u, € C%(0,¢) N C[0,¢) for small € > 0. In order to obtain local solutions
near 0, we assume (KP): (i) of (K), and for r > 0 small,

T t

/ t;j(/ snflK(s)ds)ﬁdt < 00.
0 0

For p = 2, this integrability is (i) of (K). If K(r) = !, then it is easy to see that

(KP) holds for I > —p. As a typical example, the equation

(1.3) Apu+ |z|'u? =0

possesses a local radial solution @, with %, (0) = « for each a > 0, and has the
scaling invariance:

(1.4) TUo(r) = oty (a7r)
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with m = (I_IE%. Moreover, has a singular solution which is invariant under
the scaling in , the so-called self-similar solution. That is,
U(x) = Llx[™™,
where L is defined by
(1.5) L=L(n,p,q,0) = [m"(n—1— (m+1)(p—1))]701 .
(pfylL)_(nJrl)

n—1—(m+1)(p—1) > 0. Then, we observe the asymptotic self-similar behavior.

This singular solution can be defined for [ > —p and ¢ > because

Theorem 1.1. Letn > p > 1 and q¢ > with 1 > —p. If r ' K(r) — 1
as r — oo, then any positive solution u of (1.2) near co satisfies one of the two
asymptotic behavior: either

(1.6) liminf r™u(r) < L < limsupr™u(r) < co
r—00

with L = L(n,p, q,1) given by ([L.5) or r(»=P)/®=Dy(r) - C > 0 as r — oo.
Moreover, (1.6) can be the asymptotic self-similarity

lim r™u(r) = L.

r—00

In a forthcoming paper, we study entire solutions of ([1.2|) with this asymptotic
behavior in a supercritical range.

1.1. Lower bound. The p-Laplace equation has the radial form

—1
(1.7) (s [P~ )+ g [P0, = 0,

where n > p > 1. Then, (1.7) possesses a solution |z|~% with § = 2=2. Let u be a
positive radial solution satisfying the quasilinear inequality
n—1

(1.8) 7’17"(7’"71|ur|p72u,«)r = (|ur|p72u,«)r + |ur\p72ur <0.

If w,.(ro) < 0 for some 19 > 0, then u,(r) < 0 for r > rg. Hence, u is monotone

near co. Assume u, < 0 for r > ry with some ry > 1. Setting V(t) = r%u(r)

for t = logr > to = logro, we see that g(t) = OV (t) — V'(t) = v+ (—u,.(r)) =

n—1

r»=1 (—u,(r)) satisfies

%(9”*1(15)) = (n—1)g" 7' (t) +r"[(~u,)" "], 2 0

for t > to. Hence, g is increasing for ¢ > to. Then, V satisfies that for ¢t > T > ¢,
V'(t) =0V (t) <V(T)—0V(T).
Suppose V/(T)) < 0. Setting ¢ = 0V (T') — V'(T), we have (e~%*V (t))’ < —ce % and
c c

- c V(T
V() < PTNWV(T) — 5) + 5 = e T>%+§.

Hence, V has a finite zero. Therefore, in order for u to be positive near oo, V' must
be increasing and (r%u(r)), > 0 near oc. This is true obviously in the other case
that u,, > 0 near oo.
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Lemma 1.2. Letn > p > 1. If u is a positive radial solution satisfying (L.8]) near
00, then r%u(r) is increasing.
Now, we classify positive solutions of (1.8 near oo into two groups according to

their behaviors. If 77Ty converges to a positive constant at oo, then we call u a

fast decaying solution. Otherwise, u is a slowly decaying solution if = u(r) — oo
as r — oo.

1.2. Known results. One of Liouville’s theorems related to p-Laplace equation is
the nonexistence of nontrivial nonnegative solutions in WI%)’CP(R") NC(R™) to the
following quasilinear inequality

—Apu > clz|tul
with ¢ > 0 and [ > —p, when n > p > 1 and

L o= Dmt)
n—p
See |1, Theorem 3.3 (iii)]. For the existence of nontrivial solutions to
Apu+ul =0,

on R" withn > p > 1 and ¢ > p—1, it is necessary and sufficient that ¢ >

[6]. On the other hand, (1.3]) with g = ¢, := %‘:}pﬂ’l admits the one-parameter
family of positive solutions given by

n(p—1)+p
n—p

o

(1+&(@m7|a])

o (x) =

B it
withé=¢,, = W and U, (0) = o > 0. A radial solution u(x) = u(|z|)
of (|1.3) satisfies the equation

n—1

(1.9) (Jur [P0y, + | [P 2, +rlu? = 0.

For | > —p, with u(0) = a > 0, has a unique positive solution u € C1(0,¢€) N
C[0,¢) for small € > 0 such that |u,|P~?u, € C*[0,¢). If ¢ < g5, then every local
solution of has a finite zero [2/5]. In the opposite case ¢ > ¢s, every local
solution of is to be a slowly decaying solution [2}[3[[5].

2. LOCAL EXISTENCE

Let n>p>1,1> —pand q > p — 1. First, in order to prove the local existence
of positive radial solutions of (|1.3), we consider the integral equation

T t
u(r) =« —/ = (/ s"‘“luq(s)ds)ﬁ dt
0

0

with o > 0.
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2.1. Integral representation. On a space
S={uel0,e]|0<u<a}
we study a nonlinear operator T from S to C[0, ¢] by
T(w)(r) = a — Ti(w)(r),
where N .
Ty (u)(r) = /0 t%(/o ‘9”_1'~'lu’1(<9)cls)Plf1 dt .

For € > 0 small enough, 77 satisfies that

T n t q — J
0§T1§aﬁ/ t?ﬁ(/ Sy g < (- P e
0 0 n+l p+l

Hence, T'(S) C S. Minkowski’s inequality for p > 2 shows that for ui,us € S,
T t q a
T (uz) = T(w)| < / e / S g - TP ds) e
0 0

—(p—1) T n t
< 4 55 / tim(/ sV G8) T dt [|ug — ui |
p—1 0 0

q a=-v, 1 1 p—1 p+t
= Lo ()P LBy — ).
p—1 n+1 p+1
For 1 < p < 2, we observe that for uy,us € .S,
r aCGop) oy t
1-n (¢ P— P
IT0) = Tan)| < [ 6578 ([ a2 [t ds)
0 p— 0 0
q o=@y [T a7 —141 1
< ——a 1 te=1 ([ s"71ds) T dt |lug — uy|
p—1 0 0
g a=e=v, 1 1 p—1 p+t
=1 G e el
Now, we assume that
-1 q —@-n , 1
%max{(no;l)ﬁ,pzlaq T (nJrl)ﬁ}gz%ll < min{e, 1}.

Then, T is a contraction mapping in S and thus 7" has a unique fixed point .
Generally, we consider the integral equation under condition (KP),

w(r) = a— /O tH(/t LK (s)u (5)ds) 7T dt

0
Then, the integrability of (KP) shows in the same way the local existence of a
positive solution wu, with u,(0) = @ > 0 to (L.2)). Then, it is easy to see that there
exists a sequence {r;} going to 0 such that

(2.1) Jim, 77 () P2 (ry) = 0,

and u,(r) is decreasing as long as u remains positive. Moreover, u, is strictly
decreasing after K becomes positive.
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2.2. Fowler transform. Let n > p > 1 and ¢ > % with [ > —p. Set
m= q_lz;il). Fowler transform V(t) = r™u(r), t = logr, of a positive solution to

satisfies
(2.2) (p—1)(mV = VP2V —mV') —&(mV = V)P L+ k() VIi=0,

where £ = n—1—(m+1)(p—1) = L:;I:l) with L given by (L.5)), and k(t) = r 'K (r).
Furthermore, if —r™*u,(r) = mV — V' > 0, then (2.2)) can be rewritten as

k(t)Ve
" ’ no_
=DV = mV) =V V') =~
and
k(t)ve
" / _

(p—1)V"+aV' —EmV = (mV — V2’

where a =n—1—(2m+ 1)(p — 1). Setting b = &m = L:ﬁ;l) , we have
k(t)va-t
That is,
1

(2.3) (p— V" +aV — — LY 4 k() Vi=0,

mi— (mV — V/)p—2

which holds as long as the local solution remains positive.

3. A PRIORI ESTIMATES

In order to obtain upper bounds, we argue similarly as in Lemma 2.16, Lemma
2.20, Theorem 2.25 in [4].

3.1. Upper bound. Let n > p > —/¢. If u is a positive solution satisfying the
inequality

(3.1) (r”fl \ur|p*2ur)r < —epn Tty

near oo for some ¢ > 0, then

,
(3.2) r”_1|ur|p_2uT < r6171|uT(r0)|p_2uT(ro) — c/ s"_l'wuq(s) ds
0

for r > rq, if rg is sufficiently large. Then, we may assume that u,.(r9) < 0. Indeed,
if u,(r9) > 0, then

(,rnJrl n+€)

r”fl\ur|p72ur < 7“8_1|u,.(7"0)|p72u,.(r0) —cul(rg) -

n—+/
as long as u, is positive. Hence, u, is eventually negative. Therefore, (3.2)) gives

pnl |t |p_2ur < —cul(r)—

— ; (Tn-M _ rnJré)
n

0

and thus,
e —c r%ﬁ
L
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for some c¢; > 0. Hence, we obtain

__ptt .
u(r) < Cr a0 >p71 if £>—p,
C(logr) «=@=D if {=—

for some C' > 0. Combining the a priori estimates and Lemma we have the
following assertion.

Theorem 3.1. Letn >p > —¢ and g > %. Then, every positive solution
to (3.1)) near oo satisfies that
n—p

__p+e _
Cyir~ a=@=0 > y(r) > Cor™ »=1

for £ > —p and
4 (log r)_q—tih > u(r) > Cor™ ot
for £ = —p.

In Theorem [3.1]} we use the notation ¢ instead of I to consider the case of £ = —p.
It is interesting to study the existence of positive entire solutions of (|L.1]) with the
logarithmic asymptotic behavior at co.

Lemma 3.2. Let g > M Assume K(r) = O(r!) at oo for some | > —p. If
u is a positive solution to near oo and u(r) = O(r~™7¢) with some € > 0 at

oo, then u(r) = O(rg%) at co.

Proof. Integrating over [r,00), we obtain
u(r) = /Oo ti‘?(/ot K (s)ul(s)s"~ ' ds) 7T dt .
On the other hand, we ha\je
/Ot K(s)ul(s)s" tds < C+C /j gniHlmalmte) g

J ot otimamte) if p 4l #£g(m+e),
| C+Clogt it n+l=q(m+e).
If n4+1 < q(m+e¢), we are done. If n +1 > g(m + ¢), then

p—n p+[ _g(m+te)

C’r%—FCr%(logr)ﬁ if n+l=q(m+e),
u(r) <
Crv—t + Crr1— o1 if prli<gim+e)<n+l.

In case n + 1 = g(m + ¢), we replace ¢ by % —m — ¢ in the above arguments,

where ¢ > 0 is so small that § < % — m. Note that m < % iff g > e=LndD)

n—p
£),

g)<n+l.

Cro=t if n+l=qlm+
u(r) < 2+l aetl)  aP(mte)
Crot 4+ Crv 1 -0 02 if p41l<g(m+
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In case g(m +€) < n 4+, we iterate this process to obtain

LNl gl (m+
P+ (pzl)z_q (m+e)

u(r) < Crt 4 CprT Zui=o (»-1)7

= Ot 4 O

for any positive integer j. Since ¢ > p — 1, we reach the conclusion after a finite

number of iterations. O
(p=1)(n+1) — l

Lemma 3.3. Let ¢ > “*=27==. Assume K(r) = O(r') at oo for some | > —p. If

u(r) = o(r~™) at oo, then (r"u(r)), < 0 near co.

Proof. Let V(t) = r™u(r), t = logr. Then, V satisfies (2.3). Suppose V'(T') =0
for some T near oo and k(t)V2~P=1 () < mP=2b for t € [T, 00). Then, V"(T) > 0
and V(t) is strictly increasing near T but for ¢ > T'. Since V' — 0 at oo, there exists
Ty > T such that V'(Ty) = 0 and

1 1

Gy

V"(Ty) K(T)Ve =D (T))V(T1) <0,

a contradiction. O
Theorem 3.4. Let ¢ > %_(ZH). Assume K (r) = O(r!) at co for some | > —p.
If u(r) = o(r=™) at oo, then u(r) = O(rv=—r) at o.
Proof. Let p(r) = r™u(r). Then, ¢ satisfies

a |1 b k

- 1+ ——)—¢r — 1=0.
o O o T om0 T = Dmg —
For £ > 0, define the elliptic operator
- p—2.z- Vo La—(=1) @
,ngo—A(p—[Qm—&-(n—l)pil] |’I“2 -m mp—1 _EWa
where L:::l) =n—1—(m+1)(p—1). It follows from Lemma that for any

€ > 0, there exists R. > 0 such that

© ket kpt==1) o
L.o=me= — > - ) >0
P = MmE (p— 1)r2(mp — ro,)P=2 — (me (p—1)mp=2"72 =
in R"\Bpg_(0). For 0 <e <n—1—(m+1)(p—1), let n.(x) = |z|?s with o, being

q—(p—1)
L _6) = 07

the negative root of c(c — 1)+ (n—1—2m — (n — 1)2:—?)0 —m(
ie.,

mp—1

1 —9
= _(n_z_gm_(n_n;’j)_\/ﬁ :

where D = (n—1—2m— (n—1)2=2)2 4 dm( L2 —¢). Setting C. = ¢(R.)R- 7",

we see that £.(¢ — Cen:) > 0 in R"\Bg_(0) and ¢(R.) = C.ne(R:), ¢ — Cene — 0

as r — oo. Then, the maximum principle implies that ¢ — C.n. < 0 in R™\Bg_(0).

Hence, ¢(r) < Cene(r) at oo. Then, Lemma [3.2) implies the conclusion. O
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Proof of Theorem [I.1l When k(t) = r!K(r) — 1 as t = logr — +oo, it
follows from Theorem and ([2.3]) that slowly decaying solutions satisfy
liminf r™u(r) < L < limsup r™u(r) < co.

Indeed, at every local minimum (maximum) point of V' (t) = r™u(r), V satisfies

1 e k(t)

= ey > (<)— 2y,

mp—2 > (<) (mV)p—2

If V is monotonically increasing near +oo, then it is easy to see that V — L as
t — 400 by (2.3). If V' is monotonically decreasing and V' — 0, then it follows

from Lemma |1.2{and Theorem @ that r»=1 u(r) — C for some C > 0. O
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