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Abstract

Let G be a finite group and let R be a complete discrete valuation domain of characteristic
0 with residue field k of characteristic p and let S be R or k. The cohomology rings H∗(K,S)
for subgroups K of G together with restriction to subgroups of G, transfer from subgroups of G
and conjugation by elements of G gives H∗(−, S) the structure of a Mackey functor. Moreover,
the group HSplenS(K) of splendid auto-equivalences of the bounded derived category of finitely
generated SG-modules fixing the trivial module acts S-linearly on H∗(K,S). In this note we
study the compatibility of these structures and get some consequences when G has an abelian
Sylow p subgroup. In particular we see that in case G has an abelian Sylow p subgroup, then
HSplenR(G) acts by automorphisms of the Sylow subgroup on the cohomology.
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Let G be a finite group and let R be a commutative ring, considered as a trivial RG-module. The
bounded derived category Db(RG) of finitely generated RG-modules is used in modular representation
theory of finite groups to provide a geometric framework for the classical conjectures like Dade’s
conjecture or Alperin’s conjecture [3, 4]. These two are consequences of Broué’s conjecture [1, 4]
which states that in case R = k is a field of characteristic p and G is a finite group with abelian
Sylow p subgroup P , the derived categories of the principal block B0(kG) of kG and the principal
block B0(kNG(P )) of kNG(P ) are equivalent. Besides the above conjectures of Alperin and Dade
a positive answer to Broué’s conjecture implies for example that the K-theory, the cyclic and the
Hochschild (co-)homology of the principal blocks of kG and of kNG(P ) coincide. For an account of
other consequences and most known results see [4].

If there is an equivalence between two derived categories, an immediate question is, how many
equivalences there are. This way, one is lead to the definition of the group TrP icR(B0(RG)) of auto-
equivalences of the derived category Db(B0(RG)) (see [8]). This group comes into the play from a
very different approach as well. The Mirror symmetry conjecture of Kontsevitch imply that symplectic
automorphisms of a symplectic manifold with vanishing first Chern class induce auto-equivalences of
the derived category of sheaves of the mirror Calabi-Yau manifold. From there as well one is lead to
the group of auto-equivalences of the derived category (see [9]).

Studying a group is done most naturally by studying its modules. So, one should look for a natural
module on which these groups act on. From many points of view the derived category is the right
object to consider homology. Since the derived categories, we are interested in, are derived categories
of group rings, in the context of auto-equivalences of group rings the natural module we asked for is
the cohomology of groups.

In the present note we construct a module structure on H∗(G,R) coming from interpreting this
object in the derived category. Let A be an R-algebra. Bernhard Keller proved [2] that Db(B0(RG)) '
Db(A) as triangulated categories if and only if there is an X ∈ Db(A⊗RB0(RG)op) so that X⊗LB0(RG)−
is an equivalence. Such an X is called a two-sided tilting complex. In [11] it is proved that if R is
hereditary, then A is R-projective again and by [2] the inverse equivalence is again a derived tensor
product by a complex of bimodules. For a complex X note by [X] its isomorphism class in the derived
category. Set [8]

TrP icR(B0(RG)) := {[X]| X ∈ Db(B0(RG)⊗B0(RG)op) is a 2-sided tilting complex}

and HDR(G) := {[X] ∈ TrP icR(B0(RG))| X ⊗B0(RG) R ' R} . It is shown (cf. [12]) that the group
cohomology H∗(G,R) is an R HDR(G)-module by composing the following morphisms: Take X with
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[X] ∈ HDR(G). Then X acts on H∗(G,R) by the composition FX of the following maps

Hn(G,R) Hn(G,R)
‖ ‖

HomDb(RG)(R,R[n]) −→ HomDb(RG)(X ⊗RG R,X ⊗RG R[n]) ' HomDb(RG)(R,R[n])
.

In [12] it is shown that FX does not depend on the isomorphisms chosen.

1 Splendid Equivalences

Let now R be a complete discrete valuation ring with field of fractions K of characteristic 0 and
residue field k of characteristic p. Let P be a p-Sylow subgroup of G and let ∆ : G −→ G×G be the
codiagonal ∆(g) = (g, g−1).

(1.1) A two-sided tilting complex X with isomorphism class in TrP icR(RG) is called splendid
[5] provided all homogeneous components of X are ∆P -projective p-permutation modules, projec-
tive as B0(RG)-modules from the left and from the right, and provided HomB0(RG)op(X,X) '
B0(RG) ' HomB0(RG)(X,X) in the homotopy category of complexes of B0(RG)-bimodules. Let
SplenPicR(G) be the group (!) of homotopy equivalence classes (X) of splendid tilting complexes of
B0(RG)⊗RB0(RG)op-modules. Then, there is a natural group homomorphism ϕ : SplenPicR(G) −→
TrP icR(B0(RG) by taking isomorphism classes of the objects in the derived category instead of in
the homotopy category. Let HSplenR(RG) := ϕ−1(HDR(G)) ∩ SplenPicR(RG). We use similar
notations for k as base ring.

(1.2) A second major ingredient in what follows is the Brauer construction. For any p-subgroup
Q of G and any kG-module M set M(Q) := MQ/

∑
R<Q,R 6=Q Tr

Q
RM

R where MQ denotes Q-fixed
points and Tr is the transfer map [10]. The mapping M 7→M(Q) is functorial.

We shall use the Brauer functor in the following way: Results of Rickard [5] imply that −(∆Q) :
SplenPick(G) −→ SplenPick(CG(Q)) is a homomorphism of groups.

We come to the main theorem.

Theorem 1 Let G be a finite group, let k be a field of characteristic p and let Q be a p-subgroup of
G. For any (X) ∈ HSplenR(G) with (X(∆Q)) ∈ HSplenR(CG(Q)) we have

FX(∆Q) ◦ resGCG(Q) = resGCG(Q) ◦ FX and FX ◦ trGCG(Q) = trGCG(Q) ◦ FX(∆Q).

The proof of the theorem is based essentially on the isomorphism X(∆Q)⊗kCG(Q) k ' XG(Q) for
elements (X) ∈ SplenPick(G). In order to show that the action of X commutes with the transfer one
uses in addition an abstract variant of Frobenius reciprocity. Showing that the action of X commutes
with restriction is more straightforward.

We shall be concerned with functorial properties of the above constructions.

(1.3) Let P(P,G) be a set of p-subgroups of G, partially ordered by inclusion and let SubG be
the set of subgroups of G partially ordered by inclusion. Then, C(P,G) := {CG(Q)| Q ∈ P(P,G)}
is a partially ordered set as well, and CG(−) is an inclusion reversing mapping P(P,G) −→ SubG
with image C(P,G). A partially ordered set (S,≤) may be seen as category with objects being the
elements of the set and the set of morphisms from one element x to another y of S is a singleton if
x ≤ y and empty otherwise. A group sheaf is then a contravariant functor of (S,≤) to the category
of groups. Suppose that each element of Pp,G is abelian. Then the functor given by SplenPicR(−)
on objects and the Brauer functor on morphisms is a group sheaf over the partially ordered set
C(P,G). In fact, Q1 ⊆ Q2 ⇒ CG(Q1) ⊇ CG(Q2) and this inclusion is mapped to the homomorphism
SplenPicR(CG(Q1)) −→ SplenPicR(CG(Q2)) given by (X) 7→ (X(∆Q2)).

(1.4) The cohomology of groups H∗(−, R) together with restriction res on morphisms is a con-
travariant functor SubG −→ R −mod and H∗(−, R) together with transfer tr is a covariant functor
SubG −→ R − mod. Moreover, for any g ∈ G and any K < G there is an R-linear mapping
cg : H∗(K,R) −→ H∗( gK,R). This mapping is a natural transformation for (H∗(−, R), res) as well
as for (H∗(−, R), tr). Each cg acts as the identity on H∗(K,R) if g ∈ K and cgch = cgh. Furthermore,
one has the Mackey formula resHL tr

H
K =

∑
x∈L\H/K tr

L
L∩ xKcxres

K
xL∩K for subgroups L,K ≤ H ≤ G.
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All these properties may be subsumed by saying that (H∗(−, R), res, tr, c) is a Mackey functor
(see [10, section 53]). A natural transformation η : H∗(−, R) −→ H∗(−, R) with respect to both res
and tr is called a morphism of Mackey functors.

(1.5) Let S be a partially ordered set and F be a group sheaf on S. Let M be a sheaf of R-modules
on S. Then, we say that F acts on M if there is a natural transformation F ×M −→ M satisfying
the usual properties of a group action locally for any fixed x ∈ S. This means that we demand for
this action in addition to the usual axioms of a group action to be natural with respect to the order
relation: More precisely, if x < y, then the natural diagram

F (x)×M(x) −→ M(x)
↑ ↑

F (y)×M(y) −→ M(y)

is commutative. We say that F acts on a covariant functor N : S −→ R−mod if F acts in the above
sense on the sheaf N : S −→ (R − mod)op. We define an action of a group sheaf F on a Mackey
functor (M, res, tr, c) as an action of F on (M, res) and on (M, tr). Remark that for technical reasons
we consider (M, tr) : X −→ (R−mod)op being valued in the opposite category. Note that a particular
case is the constant sheaf where F (x) equals a fixed group Γ for any x ∈ S.

Define for any partially ordered set of abelian p-subgroups Pp,G of the finite group G the following:

HSplenk,Pp,G(CG(Q)) := {(X) ∈ HSplenk(CG(Q)) | Q ≤ Q′ ∈ Pp,G ⇒ (X(∆Q′)) ∈ HSplenk(CG(Q′))}

It is clear that G = CG(1). With this definition we have the

Theorem 2 Let Pp,G be a partially ordered set of p-subgroups of the finite group G and let Cp,G :=
{CG(Q)| Q ∈ Pp,G}.

If Cp,G is closed under intersection and conjugation, then the constant sheaf HSplenk,Pp,G
(G) acts

as morphisms of Mackey functors on H∗(−, k).
Suppose that each element of Pp,G is abelian. Let Res: Cp,G −→ k −Mod and Trans: Cp,G −→

(k−Mod)op be the two functors which are identical on objects: H∗(−, k) : Cp,G −→ k−Mod while on
morphisms Res(CG(Q1) ≤ CG(Q2)) := res

CG(Q2)
CG(Q1) and Trans(CG(Q1) ≤ CG(Q2)) := tr

CG(Q2)
CG(Q1) Then,

HSplenk,Pp,G
(−) : Cp,G −→ Group acts by natural transformations on Res and on Trans.

Observe that the second statement makes sense since we assume that the groups in Pp,G are
abelian. This implies that for Q2 > Q1 one has Q2 ≤ CG(Q1) for all Q1, Q2 ∈ Pp,G.

If Q2 is not abelian it is false in general that Q1 < Q2 imply that Q2 centralize Q1 and the Brauer
functor −(∆Q2) is not defined on SplenPicR(CG(Q1)).

Note however that we did not have to assume that the Sylow p subgroup of G is abelian.

2 Lifting to characteristic 0 and Abelian Sylow subgroups

In this section we shall give some consequences of Theorem 2 in case G is a finite group with abelian
Sylow p subgroup P . We keep the hypotheses on R and k at the beginning of section 1.

(2.1) It is easy to see that the group homomorphism − ⊗R k : TrP icR(B0(RG)) −→
TrP ick(B0(kG)) gives rise to a commutative diagram

TrP icR(RG) −→ TrP ick(kG)
↑ ↑

SplenPicR(RG) −̃→ SplenPick(kG)
∪ ∪

HSplenR(G) −→ HSplenk(G)

where the middle horizontal morphism is an isomorphism as a consequence of a result of Rickard [5,
Theorem 5.2]. This implies that the lower mapping is injective.

(2.2) The Künneth sequence

0 −→ Hi(X ⊗RG R)⊗R k −→ Hi(X ⊗RG k) −→ TorR1 (k,Hi+1(X ⊗RG R)) −→ 0



4 Alexander Zimmermann

implies that X ⊗RG R ' M ∈ RG −mod with M ⊗R k ' k. Since X is a two-sided tilting complex,
this is true for K ⊗R X as well and K ⊗R X ⊗RG R ' X ⊗RG K 6= 0. Hence, M is an RG-lattice
and since M ⊗R k ' k, we conclude that the module M is R-free of rank 1. There are only a finite
number of such RG-modules since theirG-structure is entirely fixed by their rational (one-dimensional)
character. Let M1, M2, . . ., Mn be representatives of the isomorphism classes of such modules. Then,
the mapping R −→ EndR(Mi) induced by scalar multiplication is an isomorphism of RG-modules.
Hence, the induced map Hm(G,R) −→ Hm(G,EndR(Mi)) ' ExtmRG(Mi,Mi) is an isomorphism. Set
Γ := {(X) ∈ SplenPicR(RG)| (X ⊗R k) ∈ HSplenR(G)} . Then,

−⊗R k :
n⊕
i=1

ExtmRG(Mi,Mi) −→
n⊕
i=1

Hm(G, k)

is a homomorphism of RΓ-modules. Any (X) ∈ Γ acts on the right hand side as (X ⊗R k) and
therefore diagonally. It is clear that (X) acts on the left hand side as monomial matrices with the
same induced permutation in each degree. For m = 0 each of the summands on the right hand side is
a copy of k and each of the summands on the left hand side is a copy of R. One concludes that (X)
acts diagonally on the left hand side as well. We proved the following

Lemma 2.1 −⊗R k : HSplenR(G) ' HSplenk(G) .

As a consequence we formulate

Theorem 3 Let G be a group with abelian Sylow p subgroup P and let R be a complete discrete
valuation domain of characteristic 0 and residue field k of characteristic p. Then, HSplenk,{P}(G)
acts on H∗(G, k) by outer automorphisms of P .

Proof. Let S be R or k. Let X be a splendid tilting complex with isomorphism class in
HSplenS(G). Then

H∗(G,S)
resGCG(P )−→ H∗(CG(P ), S)

↓ F ∗X ↓ F ∗X(∆P )

H∗(G,S)
resGCG(P )−→ H∗(CG(P ), S)

is a commutative diagram. The image of resGCG(P ) is the set of stable elements in H∗(CG(P ), S). By

definition, CG(P ) acts trivially on P and so every element of H(P, S) is CG(P )-stable. Hence resCG(P )
P

is an isomorphism. Since the index [G : CG(P )] is invertible in S, the homomorphism resGCG(P ) is
injective. Moreover, P is a normal subgroup of CG(P ) and the quotient CG(P )/P is a p′-group.
So, CG(P ) = P × CG(P )/P. It is clear that the principal block of kCG(P ) is isomorphic to kP . The
isomorphism is induced by the trivial representation of CG(P )/P . By [8], TrP icS(SP ) = PicS(SP )×
C∞ where C∞ is the group generated by the shift of degree. So, HSplenS,{P}(G) acts on H∗(G, k)
as HSplenS(CG(P )) acts on H∗(CG(P ), k) and HSplenS(CG(P )) = HSplenS(P ) ⊆ OutS(SP ) .

But, HSplenR(P ) ' HSplenk(P ) by Lemma 2.1. Roggenkamp and Scott prove (see [6]) that the
set of automorphisms of RP which preserve the augmentation equals Inn(RP ) · Aut(P ). A theorem
of Coleman and an improvement due to Leonard Scott (see [7, part I § 2.1, Lemma 2.1]) states that
Aut(P ) ∩ Inn(RP ) = Inn(P ). Hence OutR(RP ) ∩ HSplenR(RP ) ⊆ Out(P ). Since P is abelian,
Out(P ) = Aut(P ). This proves the theorem.

Example (2.3) : It is clear that the restriction resGP maps the action of an outer automorphism
α of G to the action of the restriction α|P to P , where one may modify if necessary α by an inner
automorphism so that α fixes P . From that description it is clear that there are automorphisms of
P which do not act as any automorphism of G on the image of the restriction map resGP . One might
ask if the action of any automorphism of P on the image of resGP can be realized as the action of
an element in the larger group HSplenR(G). This is not the case. Let Dp be the dihedral group
of order 2p for a prime number p. Then, for R = Ẑp, the p-adic integers, the group ring RDp is a
Brauer tree algebra with two edges and exceptional vertex in the middle vertex. By the arguments
used in [8] and [12], TrP icR(B0(RDp)) is a central extension by an infinite cyclic group of some
subgroup of PSL2(Z). In fact, it is not difficult to see that TrP icR(B0(RDp)) is generated by the
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preimage of the level two congruence subgroup Γ(2) of PSL2(Z) and the standard element φ of
order 2. Call s2 and t2 preimages of the standard generators of Γ(2). The stabilizer of the trivial
module equals the group < φts(φs)−3, t2 > remarking that (φs)3 is shift by 2 degrees. But, as the
action of HDR(G) on H∗(G,R) factors via the natural quotient of HDR(G) to the group of auto-
equivalences of the stable module category (see [12]) and as there are no stable auto-equivalences fixing
the trivial module (cf Linckelmann [4, chapter XI]), < φts(φs)−3, t2 > acts trivially on H∗(Dp,Fp).
Nevertheless, H∗(Dp,Fp) = H∗(Cp,Fp)C2 = Fp[X2] where X is a 2-cocycle in H∗(Cp,Fp). The action
of Aut(Cp) = Cp−1 is multiplication by a multiplicative generator in degree 2, hence by its square in
degree 4. As soon as p > 3, there exists α ∈ Fp with α2 6= 1.

(2.4) Let G be a finite group with abelian Sylow p subgroup P . By the above considerations the
action of HSplenR,{P,{1}}(G) on H(G,R) induces a group homomorphism HSplenR,{P,{1}}(G) −→
Aut(P ).

It might be an interesting question to determine the image of the Brauer functor −(∆P ). For an
abelian group P it is clear that Aut(P ) acts faithfully on H∗(P,R), but there is a difficult and open
question of S. Jackowski if for any p-group P the group Out(P ) acts faithfully on H∗(P,R). The
answer is negative if R is replaced by a field k of characteristic p; the cyclic group of order p2 gives
already a counterexample.
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[8] Raphaël Rouquier and Alexander Zimmermann, A Picard group for derived module categories, accepted
for Proceedings of the London Mathematical Society.

[9] Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, preprint
(2000), http://xxx.lanl.gov/abs/math.AG/0001043
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