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1. Introduction

Let G be a finite group, and R be a commutative ring. This note proposes a generalization to
any Green functor for G over R of the construction of the Hochschild cohomology ring HH*(G, R)
from the ordinary cohomology functor H*(—, R). Another special case is the construction of the
crossed Burnside ring of G from the ordinary Burnside functor.

The general abstract setting is the following : let A be a Green functor for the group G. Let G¢
denote the group G, on which G acts by conjugation. Suppose I' is a crossed G-monoid, i.e. that
I" is a G-monoid over the G-group G¢. Then the Mackey functor Ar obtained from A by the Dress
construction has a natural structure of Green functor. In particular Ar(G) is a ring.

In the case where I is the crossed G-monoid G¢, and A is the cohomology functor (with trivial
coefficients R), the ring Ar(G) is the Hochschild cohomology ring of G over R. If A is the Burnside
functor for G over R, then the ring Ap(G) is the crossed Burnside ring of G over R.

This note presents some properties of those Green functors Ar, and the functorial relations
between the corresponding categories of modules. In particular, it states a general formula for the
product in the ring Ar(G), shedding a new light on a result of S. Siegel and S. Witherspoon ([6]),
which was conjectured by C. Cibils ([3]) and C. Cibils and A. Solotar ([4]).

2. Green functors and G-sets

For the various definitions of Mackey and Green functors for a finite group G over a commutative
ring R, the reader is referred to [2]. The definition in use here is the one in terms of G-sets : a Mackey
functor for G over R is a bivariant functor from the category of finite G-sets to the category of
R-modules, which transforms disjoint unions into direct sums, and has some compatibility property
with cartesian squares (see [2] 1.1.2 for details).

A Green functor A for G over R is a Mackey functor for G over R, together with product maps
AX)®r A(Y) — A(X x Y), for any finite G-sets X and Y, which are denoted by (a,b) — a x b.
Those maps have to be bivariant, associative, and unital in some suitable sense (see [2] 2.2 for
details).

Mackey and Green functors for G over R are naturally the objects of categories, denoted re-
spectively by Mackg(G) and Greeng(G). The category Mackg(G) is an abelian category, whereas
Greeng(G) should be viewed as a generalization of the category of R-algebras.
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Remark 2.1 : One can recover the usual definition of Mackey and Green functors by setting
A(H) = A(G/H), for a subgroup H of G. The ordinary product on A(H) can be recovered by
setting

a.b= A*(0q/m)(a x b)
for a,b € A(H), where g, is the diagonal inclusion from G/H to (G/H) x (G/H), and A*(é¢/x)

is the image of dg/ g by the contravariant part of the bivariant functor A.

Example 2.2 : Let X and Y be finite G-sets, and set
H®(G,RX) =@ H"(G,RX)
n=0

Then the cup-product on cohomology give maps
H®(G,RX) x H®(G,RY) — H®(G,RX ®p RY)
and identifying RX ®z RY with R(X x Y'), this gives cross product maps
H®(G,RX) x H®(G,RY) — H®?(G,R(X x Y))

This gives HY(G, —) a Green functor structure, and if K is a subgroup of G, the induced ring
structure on

H®(G,R(G/K)) = H®(K,R)

coincides with the ordinary ring structure of H®(K, R) for cup-products.

Example 2.3 : Let B denote the Burnside functor. If X is a finite G-set, then B(X) is the
Grothendieck group of the category of G-sets over X. The obvious product

Z T ZxT
Ly b=
X Y X xY

extends linearly to a cross product B(X) x B(Y) — B(X x Y'), which gives B its structure of
Green functor ([2] 2.4).

3. The Dress construction and crossed GG-monoids

The Dress construction is a fundamental endo-functor of the category Mackr(G), defined as
follows. Let I' be a fixed finite G-set. If M is a Mackey functor for G over R, then the Mackey
functor Mr is the bivariant functor defined on the finite G-set Y by Mp(Y) = M(Y x I'). If
f Y — Zis a map of G-sets, then (Mr).(f) = M.(f x Idr) and (Mp)*(f) = M*(f x Idr). One
checks easily ([2] 1.2) that Mt is a Mackey functor for G over R.

It follows from this definition that the evaluation of Mr at the trivial G-set ¢ = G/G is equal
to Mp(G) = Mr(e) = M(T).

When A is a Green functor for G over R, and when the G-set I' has some additional structure
(see below), then Ar is another Green functor for G over R.



Definition 3.1 : Let G be a finite group. A crossed G-monoid (T, p) is a pair consisting of a finite
monoid I' with a left action of G by monoid automorphisms (denoted by (g,7) — g7y or (g,7) — 97,
forg € G and~y €T), and a map of G-monoids ¢ from T' to G (i.e. a map ¢ which is both a map
of monoids and a map of G-sets). A morphism of crossed G-monoids from (T, ) to (I, ¢') is a
map of G-monoids 0 : T — T such that ¢’ 0§ = .

A crossed G-group (I', @) is a crossed G-monoid for which T is a group.

Remark 3.2 : Generally the map ¢ : I' — G° will be clear from context, and will be understood
in the notation.

Example 3.3 :
1. Let H be a normal subgroup of G, and ¢ be the inclusion homomorphism from H to G. Then
H¢ = (H, ) is a crossed G-group.

2. Let I" be any G-monoid (i.e. any monoid with a left action of G by monoid automorphisms).
Let u be the trivial monoid homomorphism from I' to G. Then I'* = (I",u) is a crossed
G-monoid.

3. Let (T, ) be a crossed G-monoid. Then ¢(T') is a normal subgroup of G, and p~!(1) is a
G-submonoid of T'. There is a natural inclusion of crossed G-monoids from ¢~1(1)% to (T, ¢),
and a natural surjection from (I, ) to o(I")¢.

4. Let E be a group of cardinality 1, with trivial G-action. Let u : [E — G° be the map sending
the unique element of E to the identity of G. Then (E,u) is an initial object in the category
of crossed G-monoids. On the other hand the crossed G-monoid G¢ = (G, Idg) is a final
object in the category of crossed G-monoids.

Notation 3.4 : Let (I',¢) be a crossed G-monoid. If X is any G-set, there is a natural monoid
action of ' on X, denoted by (y,2) €T x X — v.x € X and defined by v.x = p(y)x

4. The Green functor structure on Ar

Let R be a commutative ring, and I be a crossed G-monoid. If A is a Green functor for G
over R, then the Dress construction gives a Mackey functor Ar, whose evaluation at the G-set X
is Ap(X) = A(X xT'). If X and Y are finite G-sets, define maps

T,71,Y,72
!

AF(X)®RAF(Y)—>AF(X><Y):a®b»—>a><pb:A*< )(axb)

T,1-Y,7172

T,71,Y,72 Z,71,Y,72

The notation A, ( ) means A, (f), where f = < ) is the map from X xI'xY xT°
1Y 12 1Y M2

to X x Y x I" sending (z,71,y,72) to (x,71.y,7172), and A, is the covariant part of A.

This definition makes sense, since the map f is a map of G-sets if I' is a crossed G-monoid.
Moreover if a € A(X xT') and b € A(YY xT'), then a x b € A(X xI' x Y xT'), hence a xp b €
AX xY xT)=Ap(X xY).

Let moreover €4, denote the element A, (1l> (€a) of A(T') = Ar(e), where (1l) is the map

r r
sending the unique element of e to the identity of I', and €4 € A(e) is the unit element of A.



Theorem 4.1 : The functor Ar is a Green functor for G over R, with unit €4,.. Moreover the
correspondence A — Ar is an endo-functor of the category Greeng(QG).

Proof : The proof is a series of straightforward verifications. O

Remark 4.2 : The evaluation at the trivial G-set of the Green functor Ar is Ar(e) = A(T"), and
with this identification the product on A(T") is given by

V1,72

(a,b) € A(D) x A(D) — A, ( ) (a x b)

An explicit version of this product formula will be given in theorem 5.1.

!
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Proposition 4.3 : Let f: (I',¢') — (I, ) be a morphism of crossed G-monoids.
1. For any G-set X, denote by As x the map A.(Idx x f) from Ar/(X) to Ar(X). Then these
maps Ay x define a morphism of Green functors Ay from Aps to Ar.
2. Moreover, if f in injective, then Ay is a split injection of Mackey functors.

3. In particular, the inclusion (E,u) — (I, ) induces a morphism of Green functors v : A —
Ar, which is a split injection of Mackey functors.

Proof : Here again, the proof is straightforward, except maybe for the last assertion : if f is
injective, then the maps Ag( = A*(Idx x f) define a morphism of Mackey functors A/ from Ar to
Ars ([2] 1.2), which is a section to Ay. ]

5. The product formula

The following product formula for the ring Ar(G) is is just a reformulation of the definition,
using the translation between the different definitions of Green functors.

Theorem 5.1 : Let A be a Green functor for G over R, and I" be a crossed G-monoid. Then
G

Ar(G) = AN) = | (D AG)

vyel

and for v € T', the vy-component of the product of the elements a and b of A(T") is given by

(a xrb)y = Z tha,ﬁ> (rg?aﬂ>aa.rgfaﬂ) bg)
(a,8)€G\(I'XT)
af=y
Remark 5.2 : One can write this formula after taking sets of representatives for the action of G
on I'. In this form, when A is the ordinary cohomology functor, and I' = G¢, it was the conjecture
of Cibils and Solotar mentioned in the introduction. Theorem 5.1 shows that in the proof of this
conjecture by Siegel and Witherspoon ([6] Theorem 5.1), the essential point is that cup products for
Hochschild cohomology and for ordinary cohomology are the same. The rest of the proof appears
as a formal consequence of the underlying Green functor structure.



An easy corollary of the product formula is the following :

Corollary 5.3 : Let H be a normal subgroup of G. Suppose that A is a (graded) commutative
Green functor. If for any subgroup K of G, the group H N Cq(K) acts trivially on A(K), then the
ring A(H®) is (graded) commutative.

Remark 5.4 : Corollary 5.3 shows in particular that the crossed Burnside ring of G is commutative.
Similarly, the Hochschild cohomology ring of G is graded commutative. This was first proved by
Gerstenhaber ([5]).

6. Semi-direct products of crossed G-monoids

Theorem 4.1 shows that the correspondence A — Ar is an endo-functor of Greeng(G). It is
natural to compose those endo-functors, and this leads to the notion of semi-direct product of
crossed G-monoids. All the following results are straightforward :

Proposition 6.1 : Let (I', ¢) and (I",¢’) be crossed G-monoids. Let I denote the direct product
I" x ', with diagonal G-action. Define the following multiplication on I :

(Y1, 71) (Vs 12) = (71(71-75),%72) V1,72 €T, V1,7 € T

Define ¢” : T” — G° by ¢"(v',7) = ¢'(7v')e(y) for ally €T and ' € T".
Then (I, ¢") is a crossed G-monoid, with identity (1, 1p).
Definition 6.2 : The crossed G-monoid (I'”, ¢”) of proposition 6.1 is called the semi-direct product

of the crossed G-monoids (I, ¢") and (T, ), and it is denoted by (I',¢') x (T, ), or I" x T for
short.

Proposition 6.3 : Let A be a Green functor for G over R. IfT' and I are crossed G-monoids,
then the Green functor (Ap)r is naturally isomorphic to Apsyr.

7. From A-modules to Ar-modules

There is a natural notion of module over a Green functor (see [2] 2.2), and it follows in particular
from proposition 4.3 that there is a functor of restriction rr along the Green functor homomorphism
t : A — Ap, from the category Ar-Mod of Ap-modules to the category A-Mod. This section
describes a functor ir from A-Mod to Ap-Mod.

Notation 7.1 : Let A be a Green functor for G over R, and M be an A-module. If X and Y are
finite G-sets, if a € Ap(X) and m € M(Y), denote by a xp m the element of M(X xY') defined by

7,y
a xXprm = M, (w#?) (axm)e M(X xY).

Theorem 7.2 : Let I" be a crossed G-monoid, and let A be a Green functor for G over R.

1. If M is an A-module, then the product (a,m) € Ap(X) x M(Y) — a xrm € M(X xY)
endows M with a structure of Ar-module, denoted by ir(M).

2. If f : M — N is a morphism of A-modules, then the maps fx : M(X) — N(X) define a
morphism ir(f) of Ap-modules from ip(M) to ir(N).

3. This defines a functor ip from A-Mod into Ap-Mod, which is is a full embedding.



8. Centres and centralizers

Let A be a Green functor for G over R. If M is a Mackey subfunctor of A, one can define the
commutant C4(M) of M in A. It is is a Green subfunctor of A ([2] 6.5.3).

If X is a finite G-set, define (4(X) as the set of natural transformations from the identity
functor Z of A-Mod to the endo-functor Zx of A-Mod given by the Dress construction associated to
X. In section 12.2 of [2], it is shown that (4 has a natural structure of Green functor. Its evaluation
at the trivial G-set is the center of the category A-Mod, i.e. the set of natural transformations from
the identity functor of A-Mod to itself.

Theorem 8.1 : Let T be a crossed G-monoid, and A be a Green functor. Let C(A,T) denote
the commutant of t(A) in Ar. If X and Y are finite G-sets, if M is an A-module, and if o €

C(A,T)(X), define a map zx(a)pry : M(Y) — M(Y x X) by zx () m,y (m) = M, (;ii) (a xpm).
Then :
1. For given X, a and M, the maps zx(a)py define a morphism of A-modules zx (a)nr from
M to Mx.
2. For given X and «, these morphisms zx(a)n define an element zx (o) of Ca(X).

3. The maps zx define a morphism of Green functors z from C(A,T') to (4.

Remark 8.2 : Theorem 8.1 provides in particular a natural ring homomorphism from C(A,T")(e)
to the center of the category A-Mod. If A is the Burnside functor B, and I' = G¢, then actually
C(A,T) = Ap, and the previous ring homomorphism is the natural morphism from the crossed
Burnside ring of G over R to the center of the Mackey algebra of G over R. This morphism leads
in particular to a description of the block idempotents of the Mackey algebra ([1]).
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