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Abstract

We review known examples of finite-dimensional Nichols algebras associated to racks. We
discuss pointed Hopf algebras whose infinitesimal Yetter-Drinfeld module is a realization of the
rack of transpositions in Sn with constant cocycle −1.
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1 Introduction

A general method for the classification of Hopf algebras whose coradical is a Hopf subalgebra was
proposed in [AS1], see also [AS3]. In the case of pointed Hopf algebras of finite dimension, by [G1,
Lemma 3.8] (see also [AG, Thm. 4.14]), we are first faced to the following question.

Question 1.1. For any finite rack X and for any 2-cocycle q : X×X → C×, determine if the Nichols
algebra of the braided vector space (CX, cq) has finite dimension.

Recall that the Nichols algebra of a braided vector space (V, c) is given by B(V ) = T (V )/J where
J = ⊕n≥2Jn, and where Jn ⊂ Tn(V ) is the kernel of the quantum symmetrizer; see e. g. [AS3]. Let
r ≥ 2; the rth. partial Nichols algebra of (V, c) is B̂r(V ) = T (V )/〈⊕2≤n≤rJn〉, see [AG, 6.3].
Recall also that a rack is a non-empty set endowed with an operation . : X × X → X such that
φi := i . is a bijection for all i ∈ X, and the self-distributivity axiom holds: i . (j .k) = (i . j). (i .k),
for all i, j, k ∈ X. The braiding cq : CX ⊗ CX → CX ⊗ CX, on the vector space CX with a basis
(xi)i∈X , is given by c(xi ⊗ xj) = qij xi.j ⊗ xi, for all i, j ∈ X; it is a solution of the braid equation by
the cocycle condition qi.j,i.kqi,k = qi,j.kqj,k ∀i, j, k ∈ X. See [AG, Ch. 1] for a survey on racks focused
on our needs for classification of pointed Hopf algebras. Nichols algebras corresponding to a trivial
rack (φi = id ∀i ∈ X) were considered in several

articles, see [AS3]. The examples of racks we consider below are:

• Subsets of a group stable under conjugation; then a . b = aba−1.

• Particularly, affine (or Alexander) racks; these are pairs (A, g) where A is a finite abelian group
and g ∈ AutA; then a . b = g(b) + (id−g)(a) defines a rack structure on A. If A is a finite ring
and g is multiplication by an invertible N ∈ A, we shall denote (A,N) := (A, g).

We collect the main examples of Nichols algebras which are known to be finite-dimensional; we exclude
the diagonal case (= the rack is trivial). Other examples are in [AG, Prop. 6.8]; they are not of diagonal
type but they arise from Nichols algebras of diagonal type by a kind of Fourier transform.

∗This work was partially supported by CONICET, Agencia Córdoba Ciencia, ANPCyT and Secyt (UNC). N. A.
thanks the kind invitation of R. Berger and LARAL to the University of St. Etienne, where his work was done. M. G.
thanks the warm hospitality of IRMA and ULP, Strasbourg, where his work was done.
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Theorem 1.2. In all the examples below we take qij = −1 for all i, j.
(i). Let X be the set of transpositions in Sn, n = 3, resp. 4, 5. Then the Nichols algebra of

the corresponding braided vector space (V, c) = (CX, cq) is quadratic and has dimension 12, resp.
576, 8294400. Its Hilbert polynomial has degree 4, resp. 12, 40. The space J2 of relations in degree 2
has a basis

x2
σ ∀σ ∈ X,

xσxτ + xτxσ ∀σ 6= τ ∈ X s.t. στ = τσ,

xσxτ + xνxσ + xτxν ∀σ 6= τ 6= ν ∈ X s.t. στ = νσ,

(consider only one vector for each pair σ, τ or triple σ, τ, ν).
(ii). Let (A, g) = (Fp, N) where p = 3, 4, 5, 7, N = 2, ω, 2, 3 respectively (here ω2 +ω +1 = 0 ∈ F4).

Then:

• The Nichols algebra of the corresponding braided vector space (V, c) = (CX, cq) has dimension
pϕ(p)(p− 1)p−2 (here ϕ is the Euler function).

• Its Hilbert polynomial has degree (p− 1)2.

• The defining ideal J is generated by J2 + Jv(p)(p−1) (here v(p) = 2 for p = 4 and v(p) = 1
otherwise).

Furthermore, J2 has a basis (we write subindices in Fp)

x2
i , always (1)

xixj + x−i+2jxi + xjx−i+2j for p = 3, (2)
xixj + x(ω+1)i+ωjxi + xjx(ω+1)i+ωj for p = 4, (3)

xixj + x−i+2jxi + x3i−2jx−i+2j + xjx3i−2j for p = 5, (4)
xixj + x−2i+3jxi + xjx−2i+3j for p = 7, (5)

(consider only one of repeated vectors). The relations in Jv(p)(p−1) are generated by J2 and the inde-
pendent relation

xωx1x0xωx1x0 + x1x0xωx1x0xω + x0xωx1x0xωx1 for p = 4, (6)
x1x0x1x0 + x0x1x0x1 for p = 5, (7)
x2x1x0x2x1x0 + x1x0x2x1x0x2 + x0x2x1x0x2x1 for p = 7. (8)

(iii). The Nichols algebra of the rack defined by the faces of the cube is quadratic and has the same
dimension and Hilbert series as the Nichols algebra corresponding to the transpositions in S4 (see [AG,
Thm. 6.12]).

Proof. The case of the transpositions in S3 (which is equal to (F3, 2)) and the transpositions in S4 are
in [MS]. In the case of the transpositions in S5, the quadratic approximation B̂2(V ) was computed
with the help of the computer program bergman. The equality B̂2(V ) = B(V ) was established in [G2]
with a program in C there called Deriva, using [AG, Th. 6.4]. An algebra over the same rack but with
a different cocycle appeared in [FK]. Both algebras have the same Hilbert polynomial, a coincidence
also found in [MS] for S3 and S4. The case of (F4, ω) is treated in [G1]. The cases of (F5, 2) and the
faces of the cube appear in [AG]. The Nichols algebra corresponding to (F7, 3) was computed with
bergman and Deriva, see [G2].

Remark 1.3. The cases X = (Fp, N) with N = 3, 5 for p = 5, 7 respectively are analogous to those
stated here. In fact, these are the duals to those in the theorem. The other Nichols algebras in the
theorem are self-dual.

In the rest of this Note, we consider the next steps of the Lifting method in the context of the Nichols
algebras in 1.2.
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2 Generation in degree one

Theorem 2.1. Any finite dimensional complex pointed Hopf algebra such that its infinitesimal braiding
(see [AS3, Def. 1.15]) is one of those in 1.2 is generated as an algebra by its group-like and skew-
primitive elements.

This result is in agreement with the Conjecture [AS2, Conj. 1.4].

Proof. We follow the lines of proof of an analogous statement in [AS4, Thm. 7.6]. It is equivalent to
prove that a finite dimensional connected graded braided Hopf algebra R = ⊕n≥0R(n) with braiding
c which is generated in degree 1, and such that (R(1), c|R(1)⊗R(1)) is dual to one of the braided vector
spaces in 1.2, must be a Nichols algebra. Thus, let R be such an algebra with R(1) = V . We must prove
that all the relations of B(V ) hold in R. It is straightforward to see that in all the examples under
consideration the elements in J2 are primitive, and if r ∈ J2 is one of the relations in the statement of
1.2 then c(r ⊗ r) = r ⊗ r. This implies that r = 0, or otherwise R would be infinite dimensional. We
have to deal then with the relations in J4 and J6. But those relations are primitive elements in the
algebra T (V )/〈J2〉, and then it is enough to prove that in T (V )/〈J2〉 we have c(r⊗ r) = r⊗ r, r in J4

or J6. Again, this is straightforward.

3 Liftings

3.1 The problem

Let X be a finite rack, q : X ×X → C× be a 2-cocycle and (V, c) = (CX, cq). A Y-D realization of
(V, c) over a group G is a structure of Yetter-Drinfeld module over the group algebra CG on V such
that c coincides with the braiding in k[G]

k[G]YD and the elements of X are G-homogeneous; i. e., there
exists a function g : X → G, i 7→ gi, such that δ(i) = gi ⊗ i, i ∈ X.
Let A be a pointed Hopf algebra, G = G(A). The infinitesimal Yetter-Drinfeld module of A is the
coinvariant part (A1/A0)co CG of the CG-Hopf bimodule A1/A0. Another fundamental step in the
lifting method is to address the following question.

Question 3.1. Assume that the Nichols algebra of the braided vector space (V, c) = (CX, cq) has finite
dimension. Then describe all finite-dimensional pointed Hopf algebras A such that the infinitesimal
Yetter-Drinfeld module of A is a Y-D realization of (V, c) over G = G(A).

See [AS3, AS4] for substantial partial answers in the case of trivial racks. Note that the related problem
of describing all Y-D realizations of (V, c) presents hard computational aspects. The projection π :
A1 → A1/A0 being a morphism of CG-Hopf bimodules, we can choose a section σ of Hopf bimodules;
set ai := σ(xi#1) ∈ A1. Then

ai is a (gi, 1)-primitive and giajg
−1
i = qijai.j , ∀i, j ∈ X. (9)

To answer 3.1 we need to find the relations between the ai’s, which are deformations of the relations
in the Nichols algebra.

3.2 Faithful Y-D realizations

Let X be a finite rack, q : X ×X → C× be a 2-cocycle and let (V, c) = (CX, cq) as above. We shall
say that a Y-D realization is faithful if g : X → G is injective.

The following definition, with a different notation, appears in [MS, S. 5].

Definition 3.2. A principal YD-realization for X, q over a finite group G is a collection (·, g : X →
G, (χi)i∈X), where · is an action of G on X, g is an equivariant function with respect to the conjugation
in G and χi : G → C×; such that the family (χi)i∈X is a 1-cocycle: χi(ht) = χi(t)χt.i(h), for all i ∈ X,
h, t ∈ G; gi.j = i . j and χi(gj) = qij for all i, j ∈ X.
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Lemma 3.3. (a). If the rack X is faithful (that is, φi = φj only for i = j) then any Y-D realization
is faithful.

(b). A principal Y-D realization over G defines a Y-D realization by

δ(xi) = gi ⊗ xi, h.xi = χi(h)xh.i, i ∈ X, h ∈ G.

(c). Any faithful Y-D realization arises from a unique principal Y-D realization as in (b); and G
acts by rack automorphisms on X.

(d). If X is faithful and indecomposable, and q is constant, then the 1-cocycle (χi)i∈X appearing
in an arbitrary principal Y-D realization is constant: χi = χ for all i ∈ X, and χ is a multiplicative
character of G.

Proof. Since gi.xj = qijxi.j in any realization, (a) follows. To prove (b), the cocycle condition insures
that the action is well-defined, whereas the equivariance of g insures the Yetter-Drinfeld compatibility.
We now prove (c). If i ∈ X, h ∈ G then δ(h.xi) = hgih

−1 ⊗ h.xi; thus there exists a unique j and
a scalar χi(h) such that h.xi = χi(h)xj ; set h.i := j. Since G acts well on V , this defines an action
of G on X and χi is a 1-cocycle; since hgih

−1 = gj , g is equivariant. Let now i, j ∈ X, h ∈ G.
Then gh.(i.j) = hgi.jh

−1 = hgigjg
−1
i h−1 = gh.igh.jg

−1
h.i = g(h.i).(h.j), hence h.(i . j) = (h.i) . (h.j) by

faithfulness. It is finally clear that χi(gj) = qij for all i, j ∈ X. We prove (d), say with qij = ω
i, j ∈ X. For h ∈ G, i, j ∈ X, we compute

ω = χi(gh.j) = χi(hgjh
−1)

= χi(h−1)χh−1.i(gj)χ(gjh−1).i(h) = χi(h−1)ωχj.(h−1.i)(h).

If k = h−1.i, this implies χj.k(h) = χh.k(h−1)−1 = χk(h). Hence χj.k = χk for all j, k ∈ X; since X is
indecomposable the 1-cocycle is constant, and a fortiori a multiplicative character of G.

3.3 Some liftings

Let X, q and (V, c) = (CX, cq) be as above. Let us fix a Y-D realization of (V, c) over a finite group
G. Let K be the subgroup of G generated by the image of X; K acts by rack automophisms on X.
Let R be the set of equivalence classes in X ×X for the relation generated by (i, j) ∼ (i . j, i); that
is, the orbits of the set-theoretical solution of the braid equation associated to the rack. Then Aut. X
also acts on R. If C ∈ R, then gC := gigj is well-defined, i. e. it does not depend on the choice of
(i, j) ∈ C; and γgCγ−1 = gγ·C for any γ ∈ K; same for γ ∈ G if the realization is faithful, by 3.3.
Assume that qij = −1, i, j ∈ X. Then the set of relations

∑
(i,j)∈C xixj = 0, C ∈ R, is a basis of the

space J2 of degree-2 relations in B(V ). The lifting of these relations is given by the following result.

Lemma 3.4. Let A be a finite dimensional pointed Hopf algebra, G = G(A), whose infinitesimal
Yetter-Drinfeld module is a realization of (V, c). Let (ai) be as in (9). Then there exists λC ∈ C, for
all C ∈ R, normalized by

λC = 0 if gC = 1, (10)
λC = λγ·C , ∀γ ∈ K (or ∀γ ∈ Int. X), (11)

such that the following relations hold in A:∑
(i,j)∈C

aiaj = λC(1− gC), C ∈ R. (12)

If X is faithful and indecomposable and χ is as in 3.3 (d), then

χ2(h)λC = λh·C , ∀h ∈ G. (13)
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Proof. Let C ∈ R. It is straightforward to see that bC :=
∑

(i,j)∈C aiaj is a (gC , 1)-primitive. Thus
bC = λC(gC − 1) +

∑
i∈X s.t. gi=gC

λiai. But for all i ∈ X, gi acts on V in the basis X by −1 times a
permutation matrix, while gC acts as a permutation matrix in the same basis. Thus, gi 6= gC∀i ∈ X
and we get (12). The relations (11), resp. (13), follow by applying ad γ, resp. adh, to both sides of
(12).

Example 3.5. Let X be the rack of transpositions in Sn, n ≥ 3. The classes in R have either 1, 2 or 3
elements; Int. X permutes the classes with the same cardinality, so we have only scalars λ1, λ2, λ3, the
index corresponding to the cardinality; no λ2 for S3. This notation is used in (16), (17), (18) below.

Example 3.6. Let X = (F3, 2), qij = −1, i, j ∈ X, and G = F3 oΓ, where Γ is a cyclic group of order
2P , denoted multiplicatively with a generator u; and u acts on F3 by −1. Let t be odd, 1 ≤ t ≤ P and
set gi := (i, ut), i ∈ F3; let ξ ∈ C be such that ξt = −1 and let χ : G → C× be given by χ(i, us) = ξs,
0 ≤ i ≤ 2, 0 ≤ s < 2P . Then G acts on X and we have a principal YD-realization for X, q. Since
gigj is never 1, if i 6= j, no conclusion on λ3 arises from (10) (we use here the notation from 3.5), but:

• g2
i = 1 only if t = P ; in this case necessarily λ1 = 0.

• If h = (0, u) then (13) implies λ1 = ξ2λ1 and λ3 = ξ2λ3. Thus λ1 = λ3 = 0 if ξ 6= −1.

Definition 3.7. Let X be the rack of transpositions in Sn, 3 ≤ n ≤ 5, qij = −1, i, j ∈ X. Let G be a
finite group admitting a principal Y-D realization (·, g : X → G, χ) for X, q. Let λ1, λ2, λ3 be scalars
satisfying (10), (13). Let A(G, ·, g, χ, λi) be the algebra presented by generators aσ, σ ∈ X and Ht,
t ∈ G; with relations

HtHs = Hts, He = 1; (14)
Htaσ = χ(t)at·σHt ∀t ∈ G, σ ∈ X; (15)

a2
σ = λ1(1− g2

σ) σ ∈ X; (16)
aσaτ + aτaσ = λ2(1− gσgτ ) for στ = τσ, σ 6= τ ; (17)

aσaτ + aτaν + aνaσ = λ3(1− gσgτ ) for στ = νσ, σ 6= τ 6= ν. (18)

Theorem 3.8. Assume that n = 3, 4. Then A = A(G, ·, g, χ, λi) is a pointed Hopf algebra, with
the comultiplication uniquely defined by declaring the elements Ht, t ∈ G to be group-like and aσ

to be (gσ, 1)-primitive, σ ∈ X. The graded Hopf algebra associated to the coradical filtration of A
is isomorphic to B(V )#CG; in particular, dim(A) = dim B(V )|G|. Conversely, any pointed Hopf
algebra whose infinitesimal YD-module is a realization of (CX, cq) is isomorphic to A(G, ·, g, χ, λi) for
some principal Y-D realization (·, g : X → G, χ) and scalars λ1, λ2, λ3 satisfying (10), (13).

Proof. A routinary computation shows that the comultiplication is well-defined and admits a counit
given by ε(Ht) = 1, ε(aσ) = 0. The antipode is the unique algebra map S : A → Aop such that
S(Ht) = Ht−1 , S(aσ) = −g−1

σ aσ. We next check that dim A is the desired one. With the help of a
computer program we found the Gröbner basis the of ideal generated by the relations when n = 4; the
case n = 3 is easier and we omit it. We write a > b > c > d > e > f for (01), (02), (03), (12), (13), (23)
and α, β, ε for λ2, λ3, λ1 respectively. With this order, the basis is given by the relations (15) together
with

bab− aba− βb + βa = 0, cac− aca− βc + βa = 0,

cbc− bcb− βc + βb = 0, ede− ded− βe + βd = 0,

cabc + bcab + abca + αcb− βca− βbc + αba + αac− βab + εβg2
f

− (β − α)βg3
fgd − (ε + α− β)β = 0,

cbac + bacb + acba− βcb + αca + αbc− βba− βac + αab + εβg2
f

− (β − α)βg3
fge − (ε + α− β)β = 0,
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cabaca + bcabac + ε2abg4
f − βcaba− βbcab− αbacb− βbaca− αacba

− βabca− βabac− (β − α)βcbg3
fgd − εαcag2

f − εαbcg2
f + εβacg2

f

− 2ε2abg2
f + (β2 − α2 + αε)ca− (α− ε)αbc + β2ba + (ε2 − α2 + β2)ab

+ (β − ε)βac + (β − α)β2g3
fgd + (β − α)αβg3

fge − ε2βg4
f

+ (2ε− β)εβg2
f − ((εβ) + (β − ε)2 − α2)β = 0,

cabacb + acabac− βcaba− αbcab− βbacb− βacba− βacab− αabca

− βabac− (β − α)βcag3
fge + ε2bag4

f − εαcbg2
f + εβcag2

f − 2ε2bag2
f

− εαacg2
f − (α− ε)αcb + (β − ε)βca + (ε2 − α2 + β2)ba

+ (β2 − α2 + αε)ac + β2ab + (β − α)αβg3
fgd + (β − α)β2g3

fge

− ε2βg4
f + (2ε− β)εβg2

f − ((εβ) + (β − ε)2 − α2)β = 0.

If ε = α = β = 0, the leading terms of the relations remain unchanged; thus dim A = dim(B(V )#CG).
One concludes that gr A ' B(V )#CG. The converse follows from 2.1, 3.3 (d) and the first part of the
Theorem.

The determination of isomorphisms between different Hopf algebras of this type can be easily
performed with available techniques, see e. g. [AS3]. Under suitable choices of YD-data, new infinite
families of non-isomorphic Hopf algebras of the same dimension are obtained.
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