
THE FACTORIZATION OF ABELIAN GROUPS

KHALID AMIN

Abstract. If G is a �nite abelian group and n > 1 is an integer,
we say that G is n-good, if from each factorizationG = A1A2 � � �An

of G into direct product of subsets, it follows that at least one of
the subsets Ai is periodic, in the sense that there exists x 2 G�feg
such that xAi = Ai. In this paper, we shall study some 3-groups
with respect to this property.
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0. Notations and definitions

Throughout this paper, G will denote a �nite abelian group, e its
identity element, and if a is an element of G, then jaj denotes its order.
Furthermore, for a subset A of G, jAj will denote the number of the
elements in A. G is said to be of type (p�11 ; p�22 ; p�33 ; : : : ; p�S1 ) if it
is the direct product of cyclic groups of orders p�11 ; p�22 ; p�33 ; : : : ; p�S1 ,
where pi are primes. G = A1 � � �An is said to be a factorization of
G if every element a of G has a unique representation of the form
a = a1 � � �an, where ai 2 Ai. If in addition each Ai also contains e, then
the factorization G = A1 � � �An is said to be a normalized factorization.
A subset A of G is said to be periodic if there is a non-identity element
x in G such that xA = A. Such an element x when it exists is called
a period for A. A subset A of G of the form A = fe; a; a2; : : : ; akg
is called cyclic; here k is an integer with k < jaj. A subset A of G
is called simulated if A = fe; a; a2; : : : ; ajaj�1dg. We observe that if
d = e, then A = < a > the subgroup generated by a. Otherwise, A
di�ers from the subgroup < a > generated by a in the element ajaj�1d.
The subgroup < a > is referred to as a corresponding subgroup of
A. If A and A0 are subsets of G such that for every subset B of G,
whenever AB = G is a factorization of G, then so is A0B, then we say
that A is replaceable by A0. A group G is said to be n-good if from
each factorization G = A1 � � �An it follows that at least one of the Ai

is periodic. Otherwise G is said to be n-bad. Furthermore, we will say
G is totally-good if it is n-good for all possible values of n.

1991 Mathematics Subject Classi�cation. 20K01, 05E99.
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1. Introduction

A famous theorem of Haj�os [4] is the following: If G = A1 : : : An is
a factorization of a group G, where each of the subsets Ai is cyclic,
then one of the Ai is a subgroup of G. In [5], R�edei generalized this
theorem to: If G = A1 � � �An is a normalized factorization of G, where
each of the Ai contains a prime number of elements, then one of the Ai

is a subgroup of G. This gave rise to the following question: Suppose
G = A1 � � �An is a factorization of G, does it follow that one of Ai is
periodic? Or, in our terminology, is every group n-good? The literature
is abundant with results for the case n = 2. Indeed, in this case all
good-bad groups have been classi�ed. In [1] it is shown that p- groups
are n-bad for all n > 1, if p � 5, except when G is cyclic. It is peculiar
that the cases of 2-groups and 3-groups are more di�cult to handle as
we shall see in this paper. This is probably due to the fact that the
techniques used there, do not generalize. In this paper, we shall study
some 3-groups. We will show that the groups (32; 3); (3; 3; 3) are totally-
good, while the groups (33; 3); (32; 32); (32; 3; 3) and (3; 3; 3; 3) are 3-
good but 2-bad. For 3-groups of order 35, I am only able to show that
if G is elementary, then G is 2-bad, and 3-bad but 4-good. At present, I
cannot contribute anything to the case n = 4, for the rest of the groups
of order 35; namely the groups (34; 3); (33; 3; 3); (32; 3; 3; 3); (32; 32; 3),
and (33; 32).

2. Preliminaries

We shall use the following results:

Theorem 2.1. [3] Suppose G has a proper subgroup H of type (3; 3).
If jG=Hj is composite, then G is 2-bad.

Theorem 2.2. [8] Suppose jGj = p4, where p is any prime. Then in
any factorization G = ABC of G where jAj = p2 and B and C are
either cyclic or simulated, then one of A, B or C is periodic.

Lemma 2.3. [7] Let G = AB be a normalized factorization of G, with
B simulated, say, B = fe; b1; b2; : : : ; bk�1; bkdg, where d 6= e, and k �
3, and let H = fe; b1; b2; : : : ; bsg be the subgroup of G. Then B is
periodic with period d.

Lemma 2.4. [7] Let G = AB be a factorization of G, where B =
fe; b1; b2; : : : ; bk�1; bkdg is simulated. Then B can be replaced by the
subgroup H = fe; b1; b2; : : : ; bsg.

Lemma 2.5. [9] If a simulated subset is periodic, then it can be re-
placed by a corresponding subgroup.
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Lemma 2.6. [2] If G has a proper subgroup H which is n-bad, then G
is both n and (n + 1)-bad.

3. The results

3.1. 3-groups of order 33. In this section we will show that 3-groups
of order 33 are totally- good. We observe that we need only detail the
case n = 2. This is a consequence of the following lemma.

Lemma 3.1.1. Suppose G = AB is a factorization of G, where jAj =
3, then either A or B is periodic.

Proof. Let A = fe; a; bg, where a 6= e, b 6= e. Now

G = AB = B [ aB [ bB(1)

Multiplying (1) by a, gives

G = aB [ a2B [ abB(2)

Comparing (1) and (2) gives

B [ bB = a2B [ abB(3)

Using (3) and the fact that G = AB is a factorization, we get that
B = abB and bB = a2B. This implies that either B is periodic or A is
periodic.

3.2. 3-groups of order 34.

3.2.1. 3-groups of order 34 are 2-bad. Observe that in this case the
group types are (33; 3; 3); (3; 3; 3; 3); (33; 3); (32; 32). The fact that these
groups are 2-bad follows from Theorem 2.1.

3.2.2. 3-groups of order 34 are 3-good. In this case, we see that in any
factorization G = ABC, one of the factors, say A is of order 9 while
the factors B and C must be of order 3. Hence B and C are either
cyclic or simulated and the result follows from Theorem 2.3.

3.3. 3-groups of order 35. In this section we will show that an el-
ementary 3-group of order 35 is 4-good. We start with the following
lemmas, whose proof are clear.

Lemma 3.3.1. Suppose G = AB is a factorization of G, K a subgroup
of G, and B � K. Then K = (A \K)B is a factorization of K.

Lemma 3.3.2. Let G = ABH be a factorization of G, where A;B �
G, and H is a subgroup of G. Then G=H = (AH=H):(BH=H) is a
factorization of the quotient group G=H.

Theorem 3.3.1. If G is of type (3; 3; 3; 3; 3), then G is 4-good.



12 KHALID AMIN

Proof. Observe that G is 2-bad and 3-bad by the results in 3.2.1 and
Lemma 2.6. We will show that G is 4-good. This will take several
steps:
(*) Let G = < x; y; u; v; w >, where jxj = jyj = juj = jvj = jwj = 3

and suppose G = ABCD is a factorization of G, where, jAj = 32

and jBj = jCj = jDj = 3. Clearly B;C and D are simulated. Say
B = fe; b; b2rg, C = fe; c; c2sg and D = fe; d; d2tg. It is clear that if
one of r; s, or t is the identity element e of G, then there is nothing to
do. Therefore, we assume that none of r; s, and t is e.
(**) Since B;C, and D are simulated, we can use Lemma 2.6 to get

the factorization G = A < b > < c > < d > = A < b; c; d >. Hence,
33 � j < b; c; d; r; s; t > j � 35. If j < b; c; d; r; s; t > j = 33. That is, if
r; s; t 2 < b; c; d > = H, the subgroup generated by b; c and d, then
H = BCD is a factorization of H and so by R�edei's Theorem, one of
the subsets B;C; or D is a subgroup of H. So we are done. There
remain two cases that we have to distinguish.

j < b; c; d; r; s; t > j = 34; s; t 2 < b; c; d; r > :(I)

j < b; c; d; r; s; t > j = 35; t 2 < b; c; d; r; s > :(II)

Case (I)
(1) In this case, we may choose b; c; d, and r to be u; v; w, and x re-

spectively. Now, B = fe; u; u2xg; C = fe; v; v2sg and D = fe; w; w2tg.
From (**), we have G = A < u > < v > < w > = < u; v; w >. It
follows that A is a complete set of representatives modulo < u; v; w >.
Thus A consists of the following elements:

eu�00v�00w
00 yu�01v�01w
01 y2u�02v�02w
02

xu�10v�10w
10 xyu�11v�11w
11 xy2u�12v�12w
12

x2u�20v�20w
20 x2yu�21v�21w
21 x2y2u�22v�22w
22

Here �00 = �00 = 
00 = 0, since A is normalized.
(2) Using Lemma 3.3.1, we obtain the factorization K = (A \

K)BCD. Note that A \ K now consists of the following elements:
A \ K = fe; xu�10v�10w
10; x2u�20v�20w
20g. By R�edei's Theorem, one
of A\K;B;C or D is a subgroup of K. If this is B or C or D, we are
done. So assume that A \K is a subgroup of K. Now, we can rewrite
the elements of A \K as:

fe; xu�0+�
0

0v�0+�
0

0w
0+

0

0 ; x2u2�0+�
0

0v2�0+�
0

0w2
0+

0

0g

Restricting the factorization G = [( yu�01v�01w
01)�1A]BCD to K =
< x; u; v; w > and arguing as above gives that [( yu�01v�01w
01)�1A]\K
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will be the subgroup [( yu�01v�01w
01)�1A] \ K = < xu�1v�1w
1 > of
K. Thus, A \K consists of the following elements:

A \K = fyu�
0

1v�
0

1w

0

1 ; xyu�1+�
0

1v�1+�
0

1w
1+

0

1 ; x2yu2�1+�
0

1v2�1+�
0

1w2
1+

0

1g

Finally, restricting the factorizationG = [( y2u�02v�02w
02)�1A]BCD;to
K = < x; u; v; w > and arguing similarly again as above gives that [(
y2u�02v�02w
02)�1A] \K will be the subgroup of K that consists of the
following elements:

A \K = fy2u�
0

2v�
0

2w

0

2; xy2u�2+�
0

2v�2+�
0

2w
2+

0

2 ; x2y2u2�2+�
0

2v2�2+�
0

2w2
2+

0

2g

Putting all this together, we get that A consists of the following ele-
ments:

eu�
0

0v�
0

0w

0

0 yu�
0

1v�
0

1w

0

1 y2u�
0

2v�
0

2w

0

2

xu�0+�
0

0v�0+�
0

0w
0+

0

0 xyu�1+�
0

1v�1+�
0

1w
1+

0

1 xy2u�2+�
0

1v�2+�
0

1w
2+

0

2

x2u2�0+�
0

0v2�0+�
0

0w2
0+

0

0 x2yu2�1+�
0

1v2�1+�
0

1w2
1+

0

1 x2y2u2�2+�
0

1v2�2+�
0

1w2
2+

0

2

Here, �
0

0 = �
0

0 = 

0

0 = 0, since A is normalized.
(3) Consider the factorization G = AB < v > < w > = AB <

v;w >. Forming the quotient group G = G= < v; w >, and using
Lemma 3.3.2, we get that G = A B is a factorization of G , where
A = A < v;w > = < v; w >, and B = B < v;w > = < v; w >. Now,
observe that G is of order 33. So by 3.1, either A or B is periodic. But
B = fH; uH; (uH)2(xH)g, where H = < v;w >. B cannot be periodic,
by Lemma 2.5. It follows that A is periodic. In fact, by Lemma 2.4, A
is periodic with period x = xH. Now, A looks like:

eu�
0

0H yu�
0

1H y2u�
0

2H

xu�0+�
0

0H xyu�1+�
0

1H xy2u�2+�
0

1H

x2u2�0+�
0

0H x2yu2�1+�
0

1H x2y2u2�2+�
0

1H

Since, xH = (xH)(eu�
0

0H) = (xu�0+�
0

0H) = (xu�
0

0H), this implies
that �0 = 0. Similarly, one shows that �1 = �2 = 0. Thus the elements
of A are the following:

ev�
0

0w

0

0 yu�
0

1v�
0

1w

0

1 y2u�
0

2v�
0

2w

0

2

xv�0+�
0

0w
0+

0

0 xyu�
0

1v�1+�
0

1w
1+

0

1 xy2u�
0

1v�2+�
0

1w
2+

0

2

x2v2�0+�
0

0w2
0+

0

0 x2yu�
0

1v2�1+�
0

1w2
1+

0

1 x2y2u�
0

1v2�2+�
0

1w2
2+

0

2
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Here as before, �
0

0 = 

0

0 = 0, since A is normalized.
(4) Restrict the factorization G = ABCD to K = < x; u; v; w >

again to get the factorization K = (A \K)BCD, so that one of (A \
K)B; (A \ K)C; (A \ K)D, is a subgroup of K. Now observe the
following: B � (A \ K)B, which implies that < u; x > = < B >
� (A \ K)B. However, j(A \ K)Bj = 9 = j < u; x > j. Therefore
(A\K)B = < u; x >. Similarly, (A\K)C = < v; s > and (A\K)D =
< w; t >. But, we also note that xv�0w
0 belongs to A \ K. This
gives that xv�0w
0 belongs to one of < u; x >;< v; s > or < w; t >.

Similarly, restricting the factorizations G = [(yu�
0

1v�
0

1w

0

1)�1A]BCD,

and G = [( y2u�
0

2v�
0

2w

0

2 )�1A]BCD to K = < x; u; v; w > gives that
xv�iw
i belongs to one of < u; x >;< v; s >or < w; t >, for each i,
where 0 � i � 2.
(5) From the factorization G = ABC < w > , we get the factoriza-

tion G = A B C of the quotient group G , where G = G= < w >,
A = A < w > = < w >, B = B < w > = < w >, and C = C <
w > = < w >. So one of A, B or C is periodic. Since B cannot be
periodic, it follows that either A or C is periodic. If C is periodic, then
C is a subgroup of G. Thus C = fe < w >; v < w >; v2 < w >g
which implies that s 2 W = < w >. Hence, C = fe; v; v2w
g, where
0 � 
 � 2. If A is periodic, then its period is either x = x < w > or
s0 = s0 < w >, where s0 2 < u; v; x >. Now A looks as follows :

ev�
0

0W yu�
0

1v�
0

1W y2u�
0

2v�
0

2W

xv�0+�
0

0W xyu�
0

1v�1+�
0

1W xy2u�
0

1v�2+�
0

1W

x2v2�0+�
0

0W x2yu�
0

1v2�1+�
0

1W x2y2u�
0

1v2�2+�
0

1W

where W = < w >.
| Firstly, assume that A is periodic with period s0 < w > = s0W .

Say s0 = x�u�v� , where 0 � �; �; � � 2. Now x�u�v�W = xv�0W . This

gives �0 = �. Similarly, xyu�
0

1v�1+�
0

1W = (x�u�v�W )( yu�
0

1v�
0

1W ). This

gives �1 = �. Finally, xy2u�
0

1v�2+�
0

1W = (x�u�v�W )( y2u�
0

2v�
0

2W ). This
gives �2 = �. Therefore, we conclude that �0 = �1 = �2.
| Secondly, assume that A is periodic with period x = x < w >

= xW . Then we must have (xW ) = (xv�0+�
0

0W ), which gives �0 = �.
Similarly, we get that �1 = �2 = 0. Summing up all the above, we
conclude that if A is periodic, then �0 = �1 = �2.
(6) Consider the case when C = fe; v; v2w
g, where 0 � 
 � 2. If


 = 0, then C is a subgroup of G. So we assume that 
 6= 0. In
this case, we may take 
 = 1. The factorization G = A < u > CD
gives that one of A, C , or D is a periodic subset of the quotient
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group G = G= < u > = G=U , say. Again, it is clear that C cannot
periodic. Hence, either A or D is periodic. If D is periodic, then D
= f< u >;w < u >;w2 < u >g, which implies that t 2< u >. Hence,
D = fe; w; w2u�g, where 0 � � � 2. If A is periodic, then its period

must be either w = x < u > = xU or t0 = t0 < u >= t0U , where t0 2
< x; v; w >. Clearly A cannot be periodic with period w = x < u >
= xU . Therefore it must be periodic with period t0 = t0 < u >= t0U .
Now t0 2 < x; v; w >, say t0 = x�v�w
, where 0 � �; �; 
 � 2. From
this, it follows that �0 = �1 = �2 and 
0 = 
1 = 
2. Thus the elements
of A are the following:

e yu�
0

1v�
0

1w

0

1 y2u�
0

2v�
0

2w

0

2

xv�0w
0 xyu�
0

1v�1+�
0

1w
1+

0

1 xy2u�
0

1v�2+�
0

1w
2+

0

2

x2v2�0w2
0 x2yu�
0

1v2�1+�
0

1w2
1+

0

1 x2y2u�
0

1v2�2+�
0

1w2
2+

0

2

Hence A is periodic with period xv�0w
0 .
Suppose D = fe; w; w2u�g, where 0 � � � 2. Now if � = 0, then D is

a subgroup of G and hence periodic. Otherwise, we may assume � = 1.
But then t = u, and s = w. Now xv�iw
i =2 < v; s >, and xv�iw
i =2
< w; t >, and so xv�iw
i 2 < u; x >, for each i, 0 � i � 2. Therefore
�0 = �1 = �2 = 
0 = 
1 = 
2. Hence A is periodic with period x.
(7) The factorization G = AB < v > D gives that one of A, B, or

D is a periodic subset of the quotient group G = G= < v > = G=V ,
say. Again, B cannot be periodic. Therefore, either A or D is periodic.
If D is periodic, then D = fe; w; w2v�g, where 0 � � � 2. If A is
periodic, then it is periodic with period either x = x < v >= xV or
t0 = t0 < v >= t0V , where t0 2 < x; u; w >.
| Firstly, assume that A is periodic with period t0 . Now t0 2 <

x; u; w >. It follows that 
0 = 
1 = 
2.
| Secondly, assume that A is periodic with period x. Then it follows

that 
0 = 
1 = 
2 = 0. Summing up our considerations so far, we see
that if A is periodic, then 
0 = 
1 = 
2.
(8) Consider the case, when D = fe; w; w2v�g, where 0 � � � 2. If

� = 0, then D is a subgroup. Otherwise, we may assume � = 1. From
the factorization G = A < u > CD, we get that one of A , C , D is a
periodic subset of the quotient group G = G= < u >= G=U , say. But
D cannot be periodic. Hence either A or C is periodic. If C is periodic,
then C = fe; v; v2u�g, where 0 � � � 2. If A is periodic, then it is

periodic with period v = v < u > = vU or s0 = s0 < u > = s0U , where
s0 2 < x; v; w >. However, A cannot be periodic with period v . So
it must be periodic with period s0. It follows that �0 = �1 = �2 and
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0 = 
1 = 
2. Therefore, we conclude that A is periodic with period
xv�0w
0 . Now, C = fe; v; v2u�g, where 0 � � � 2. If � = 0, then C is
a subgroup of G, and hence periodic. Otherwise, we may assume that
� = 1. But, then s = u, and t = v. Now xv�iw
i =2 < v; s >, and
xv�iw
i =2 < w; t >, and so xv�iw
i 2 < u; x >, for each i; 0 � i � 2.
Therefore �0 = �1 = �2 = 
0 = 
1 = 
2 = 0. Hence A is periodic with
period x. Summing up (7) and (9) , we may assume 
0 = 
1 = 
2.
(10) The case when �0 = �1 = �2 and 
0 = 
1 = 
2 are left uncovered

yet. But in this case A is periodic with period xv�0w
0 .

Case (II)
(1) In this case, we may choose b; c; d; r; s to be u; v; w; x; y respec-

tively. Now B = fe; u; u2xg, C = fe; v; v2yg and D = fe; w; w2tg. As
in case (I), A is a complete set of representatives modulo < u; v; w >.
Thus, here again A consists of the following elements:

eu�00v�00w
00 yu�01v�01w
01 y2u�02v�02w
02

xu�10v�10w
10 xyu�11v�11w
11 xy2u�12v�12w
12

x2u�20v�20w
20 x2yu�21v�21w
21 x2y2u�22v�22w
22

(2) From the factorization G = AB < v >< w >, we get that either
A or B is periodic with period x = xH, where H = < v;w >. As
before, B cannot be periodic and so A is periodic with period x = xH.
From this it follows that:

�00 = �10 = �20 = �0 = 0
�01 = �11 = �21 = �1 = 0
�02 = �12 = �22 = �2 = 0

(3) Similarly from the factorization G = A < u > C < w >, we
get that either A or C is periodic with period y = yH, where H =
< u;w >. As before, C cannot be periodic, and so A is periodic with
period y = yH. From this it follows that:

�00 = �10 = �20 = �0 = 0
�01 = �11 = �21 = �1 = 0
�02 = �12 = �22 = �2 = 0

Therefore, the elements of A are the following:

eu�0w
00 yu�1w
01 y2u�2w
02

xu�0w
10 x yu�1w
11 xy2u�2w
12

x2u�0w
20 x2y2u�1w
21 x2y2u�2w
22

Here �0 = �0 = 
0 = 0, since A is normalized.
(4) Consider the factorization G = ABC < w >. This gives that

one of A , B or D is periodic with period x = x < w > = xW or
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y = y < w > = yW . If D is periodic with period x , then �0 = �1 = �2
= 0, and so v is missing from A. If A is periodic with period y , then
�0 = �1 = �2 = 0, and so u is missing from A.
(5) Assume v is missing from A. Consider the factorization G =

AB < v > D. This gives that one of A , B or D is periodic. Now,
B cannot be periodic. This leaves the possibilities that either A is
periodic with period x = x < v > = xV or t0 = t0 < v >= t0V ,
where t0 2 < x; u; w > or that D is periodic which in turn implies
that D = fe; w; w2v�g, where 0 � � � 2. If A is periodic, then A is
periodic since v is missing from A. For the case D = fe; w; w2v�g, we
may assume as in the previous cases that D = fe; w; w2vg. Consider
the factorization G = A < u > CD. From this, we get that one of A ,
C or D is periodic. Only A can be periodic. Now the only candidates
for a period of A are y and v. However, it is clear that v cannot be a
period for A . Hence A is periodic with period y . From this, it follows
that �0 = �1 = �2 = 0, and


00 = 
10 = 
20 = 
0 = 0

01 = 
11 = �21 = 
1 = 0

02 = 
12 = 
22 = 
2 = 0

Therefore, in this case A is periodic with period y.
(6) Assuming u is missing from A, the factorization G = A < u >

CD gives that one of one of A , C , or D is periodic. It is clear that
C cannot be periodic. So either A is periodic with period y = y < u >
= yU or t0 = t0 < u >= t0U where t0 2 < x; v; w > or that D is
periodic, which gives that D = fe; w; w2u�g, where 0 � � � 2. If A
is periodic, then A is periodic since u is missing from A. For the case
D = fe; w; w2u�g, we may assume that D = fe; w; w2ug. Consider the
factorization G = AB < v > D. From this, we get that one of A , B ,
or D is is periodic. Only A can be periodic. The only candidates for a
period of A are x and u. However, it is clear that u cannot be a period
for A . Hence A is periodic with period x. From this, it follows that
�0 = �1 = �2 = 0 and


00 = 
10 = 
20 = 
0 = 0

01 = 
11 = �21 = 
1 = 0

02 = 
12 = 
22 = 
2 = 0

Therefore in this case, A is periodic with period x.
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