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Abstract. In this paper we give a natural ordering relation between distances based
on 3D-neighbourhood sequences. We prove that this ordering induces a complete
compact distributive lattice over the set of 3D-neighbourhood sequences.

Keywords. Digital geometry, octagonal distance

AMS Subject Classi�cation. 68U10 Image Processing

1. INTRODUCTION

Rosenfeld and Pfaltz identi�ed in [3] two types of motions in two-dimensional digital geom-
etry. The cityblock motion restricts movements only to the horizontal or vertical directions,
while the second type { chessboard motion { allows diagonal movements only. These two
types of motion in 2D determine two distances namely the cityblock distance and the
chessboard distance. The alternate use of these motions results in the octagonal distance.

In case of cityblock movements there is a unit change in one coordinate at every step,
while in case of chessboard motion there is a unit change in both coordinates. Recently
Das and Chatterji [2] have extended the de�nition of ordinary octagonal distances to allow
arbitrary long cycle sequences of cityblock and chessboard motions called neighbourhood
sequences.

The neighbourhood sequence is a distance which is obtained by combining the city-
block and the chessboard motions.

P.P. Das in [1] shown that the distances, generated by the 2D-neighbourhood se-
quences, form a complete compact distributive lattice supplied with a naturally interpreted
relation order.

In 3D digital geometry we can de�ne three di�erent distances. The 3D-neighbourhood
sequences, obviously determine the combination of types of motions determined by these
three distances.

In this paper we investigate distances generated by 3D-neighbourhood sequences and
by using the results of P.P. Das [1] we prove that they form a complete compact distributive
lattice supplied with the same ordering relation.

2. BASIC DEFINITIONS

In order to reach the aims formulated in the introduction we would like to de�ne the basic
de�nitions and notations in this chapter.
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De�nition 2.1. Let p and q be any two points of the n-dimensional digital plane. The

ith coordinate of the point p is indicated by Pri(p). The points p and q are m-neighbours

(0 � m � n), if the following two conditions hold:

� 0 � jPri(p)� Pri(q)j � 1 (1 � i � n),
�
Pn

i=1 jPri(p)� Pri(q)j � m.

De�nition 2.2. The �nite sequence B = fb(i) j i = 1; 2; : : : ; l and b(i) 2 f1; 2; : : : ; ngg
with length l composed by the elements of the set f1; 2; : : : ; ng (n 2 N) is called an

nD-neighbourhood sequence with period l.

De�nition 2.3. Let p and q be any two points of the n-dimensional digital plane and B =
fb(1); b(2); : : : ; b(l)g be an nD-neighbourhood sequence. The point sequence �(p; q;B) {
which has the form p = p0; p1; : : : ; pm = q, where pi and pi�1 are r-neighbours (0 < i � m)
and r = b(((i � 1) mod l) + 1) { is called the path from p to q determined by B. The

length j�(p; q;B)j of the path �(p; q;B) is m.

De�nition 2.4. Let p and q be any two points of the n-dimensional digital plane and B

an n-dimensional neighbourhood sequence. The shortest path from p to q is denoted by

��(p; q;B). The length of the minimal path is de�ned as the distance between p and q is

written as

d(p; q;B) = j��(p; q;B)j:

Using the above distance we cannot obtain a metric on the n-dimensional digital
plane for every n-dimensional neighbourhood sequence. In order to prove this, consider
the following simple example. Let B = f2; 1g, n = 2, p = (0; 0), q = (1; 1) and r = (2; 2).
In this case d(p; q;B) = 1, d(q; r;B) = 1, but d(p; r;B) = 3.

The question is the following: knowing B, how can we decide whether the distance
related to B is a metric on the n-dimensional digital plane, or not? The answer can be
found in [2].

The following result of P.P. Das et al. (cf. [2]) provides an algorithm for the calculation
of the above de�ned distance d(p; q;B).

Theorem 2.5. (see [2]). Let p and q be any two points of the n-dimensional digital

plane, and B = fb(1); b(2); : : : ; b(l)g be an nD-neighbourhood sequence, and let

x = (x(1); x(2); : : : ; x(n));

where x is the nonascending ordering of jPri(p)�Pri(q)j that is x(i) � x(j), if i < j. Put

ai =
n�i+1X
j=1

x(j);

bi(j) =

�
b(j) , if b(j) < n� i+ 2,
n� i+ 1 , otherwise,

fi(j) =

�Pj

k=1 bi(k) , if 1 � j � l;

0 , if j = 0,

gi(j) =fi(l)� fi(j � 1)� 1; 1 � j � l:
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The length of the minimal path from p to q determined by B, denoted by d(p; q;B) =
j��(p; q;B)j, is given by the following formula:

d(p; q;B) =
n

max
i=1

di(p; q), where

di(p; q) =
lX

j=1

�
ai + gi(j)

fi(l)

�
:

3. NEIGHBOURHOOD SEQUENCES IN 3D

It is a natural question that what kind of relation exists between those distance functions
generated by B1 and B2 in case of two given, B1 and B2 neighbourhood sequences. The
complexity of the problem can be characterized by the following 2D example known from
[1]. Let B1 = f1; 1; 2g, B2 = f1; 1; 1; 2; 2; 2g. Choose the points p = (3; 1) and q = (6; 3).
In this case we obtain that d(0; p;B1) = 3 < 4 = d(0; p;B2), but d(0; q;B1) = 7 > 6 =
d(0; q;B2). So the distance generated by B1 and B2 cannot be compared.

In [1] the author has shown that in case of 2D the distance functions generated by the
neighbourhood sequences form a distributive lattice. In this chapter we show that that
the same feature is valid in 3D as well.

De�nition 3.1. The rth (r � 1) power Br of the neighbourhood sequence B can be

de�ned as follows:
Br =fb0(i) j 1 � i � rlg

b0(i) =b(((i� 1) mod l) + 1), 1 � i � rl:

It follows from the above De�nition and from the de�nition of the neighbourhood
sequence that in case of any points p and q, d(p; q;Br) = d(p; q;B) (r � 1) holds.

Theorem 3.2. Using the notation of Theorem 2.5, for any 3-dimensional neighbourhood

sequences B1 and B2

d(p; q;B1) � d(p; q;B2); for all p; q 2 Z3

if and only if

f
(1)�
k (i) � f

(2)�
k (i); for all 1 � i � l, 1 � k � 3;

where B�
1 = Br

1 , B
�
2 = Bs

2, r =
l

jB1j
, s = l

jB2j
and l is the least common multiple of jB1j,

jB2j.

Proof. We start with the special case when jB1j = jB2j = l. Clearly B�
1 = B1 and

B�
2 = B2.

First we prove that if d(p; q;B1) � d(p; q;B2) for any p; q, then f
(1)
k (i) � f

(2)
k (i) for

every 1 � i � l, 1 � k � 3. The proof is indirect. Assume that there are such 1 � i � l

and 1 � k � 2, for which f
(1)
k (i) < f

(2)
k (i) is true. If k = 3, then f

(1)
3 (j) = f

(2)
3 (j) trivially

holds for every 1 � j � l.
Let uj (1 � j � l) be the numbers of those b(2)(t), 1 � t � i, which equal to j.
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In case of k = 1 let p = (0; 0; 0) and q = (u1+u2+u3; u2+u3; u3). Using the de�nition
of d(p; q;B), it is clear that d(p; q;B2) is equal to i. On the other hand, by the assumption

f
(2)
1 (i) > f

(1)
1 (i), and by the de�nition of p and q, we have d(p; q;B1) > i, which is a

contradiction.
In case of k = 2 let p = (0; 0; 0) and q = (u1 + u2 + u3; u2 + u3; 0). Similary as

above, we obtain d(p; q;B2) = i. However, using again the de�nition of p and q and the

assumption f
(2)
2 (i) > f

(1)
2 (i), we get d(p; q;B1) > i, which is a contradiction, too.

Conversely, suppose that f
(1)
k (i) � f

(2)
k (i) for every 1 � i � l, 1 � k � 3. To derive

d(p; q;B1) � d(p; q;B2), by Theorem 2.5 it is su�cient to show that

d
(1)
k (p; q) =

lX
j=1

$
ak + g

(1)
k (j)

f
(1)
k (l)

%
�

lX
j=1

$
ak + g

(2)
k (j)

f
(2)
k (l)

%
= d

(2)
k (p; q)

holds. For this we prove that for any �xed k with 1 � k � 3$
ak + g

(1)
k (j)

f
(1)
k (l)

%
�

$
ak + g

(2)
k (j)

f
(2)
k (l)

%
for 1 � j � l:

Using the de�nition of gk(j), the above inequalities are equivalent to the following ones:$
ak + f

(1)
k (l)� f

(1)
k (j � 1)� 1

f
(1)
k (l)

%
�

$
ak + f

(2)
k (l)� f

(2)
k (j � 1)� 1

f
(2)
k (l)

%
; 1 � j � l;

from which

1 +

$
(ak � 1)� f

(1)
k (j � 1)

f
(1)
k (l)

%
� 1 +

$
(ak � 1)� f

(2)
k (j � 1)

f
(2)
k (l)

%
; 1 � j � l:

If (ak � 1)� f
(2)
k (j � 1) � 0, then we even have

(ak � 1)� f
(1)
k (j � 1)

f
(1)
k (l)

�
(ak � 1)� f

(2)
k (j � 1)

f
(2)
k (l)

:

Indeed, this inequality is equivalent to

f
(2)
k (l)(ak � 1� f

(1)
k (j � 1)) � f

(1)
k (l)(ak � 1� f

(2)
k (j � 1));

which clearly holds because of our assumption f
(2)
k (i) � f

(1)
k (i), 1 � i � l.

In case of (ak�1)�f
(2)
k (j�1) < 0, by the de�nitions of fk and ak, we obviously have$

(ak � 1)� f
(2)
k (j � 1)

f
(2)
k (l)

%
= �1:

However, using again f
(2)
k (i) � f

(1)
k (i), 1 � i � l, now the inequality$

(ak � 1)� f
(1)
k (j � 1)

f
(1)
k (l)

%
= �1

is also true, which completes the proof of the Theorem in the special case jB1j = jB2j.
If jB1j 6= jB2j then by the above argument and using the de�nition Br, we obtain the

statement of the Theorem.
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Notation 3.3. Let S(l) be the set of the all neighbourhood sequences of length l. We

de�ne the relation � in the following way:

B1 � B2 , f
(1)
k (i) � f

(2)
k (i)

for all 1 � i � l and 1 � k � 3.

By the previous Theorem it is evident that � is an ordering relation. Now we show
that � induces a distributive lattice over S(l).

Theorem 3.4. For all l � 1 (S(l);�) is a distributive lattice with minimal element

Smin = f1gl and maximal element Smax = f3gl.

Proof. From the de�nition of � it follows that this relation is re
exive, antisymmetric
and transitive on S(l). Thus (S(l);�) is a partially ordered set.
In case of any B1; B2 2 S(l) we de�ne the operations ^ and _ in the following way:

B = B1 ^ B2, where f(i) = min(f1(i); f2(i));

B = B1 _ B2, where f(i) = max(f1(i); f2(i)):

It is clear that B1 ^ B2 and B1 _ B2 are elements of S(l). Furthermore, B1 ^ B2 � B1,
B1^B2 � B2 and B1 � B1_B2; B2 � B1_B2. Thus (S(l);�) is a lattice with operations
^ and _.

Now we show that this lattice is a distributive one. Let B1; B2; B3 2 S(l) and B =
B1 ^ (B2 _ B3). It is evident that for any 1 � i � l the following equalities hold:

f(i) = min(f1(i);max(f2(i); f3(i))) = max(min(f1(i); f2(i));min(f1(i); f3(i))):

This means that B = (B1 ^B2)_ (B1 ^B3), that is ^ is distributive over _. Similarly, we
can prove that _ is distributive over ^.
It is trivial that Smin is the minimum and Smax is the maximum of S(l).

After this, we de�ne the set S�(l) =
lS

l0=1

S(l0) and the relation �� in the following way:

B1 �
� B2 , B�

1 � B�
2 ;

where B� is de�ned in Theorem 3.2.

Theorem 3.5. (S�(l);��) is a distributive lattice for all l � 1, with minimal element

Tmin = f1g and maximal element Tmax = f3g.

Proof. This Theorem can be proved similarly to Theorem 3.4.
However, there is an important di�erence between the lattices (S(l);�) and (S�(l);��).
Namely, because of the di�erent lengths of the neighbourhood sequences, there is an un-
pleasant feature in the second case, which can be illustrated by the following example.
Let B1 = f1; 2g 2 S�(4) and B2 = f1; 2; 1; 2g 2 S�(4). It is clear that B1 �

� B2 and
B2 �

� B1, but B1 6= B2. To exclude such cases we can use the following construction
found in [1]:
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� S�(1) S(1),
� S�(l)  S�(l � 1) [ fB jB 2 S(l) and :9l0; 1 � l0 < l such that Bl0

1 = B for
B1 2 S�(l� 1)g.

4. CONCLUSION

In this paper we have shown that the set of neighbourhood sequences and consequently the
set of d(p; q;B)'s forms a complete distributive lattice in 3D under the natural comparison
relation. This lattice has an important role in the approximation of the Euclidean distance
by digital distances.
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