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ON THE A.E. CONVERGENCE OF FOURIER
SERIES ON UNBOUNDED VILENKIN GROUPS

G. GAT

ABsTRACT. It is well known that the 2™th partial sums of the Walsh-Fourier series
of an integrable function converges a.e. to the function. This result has been proved
[Sto] by techniques known in the martingale theory. The author gave “purely dyadic
harmonic analysis” proof of this in the former volume of this journal [Gat]. The
Vilenkin groups are generalizations of the Walsh group. We prove the a.e. convergence
Sum, f — f(n — o0), f € LY(Gy) even in the case when G, is an unbounded
Vilenkin group. The nowelty of this proof is that we use techniques, which are
elementary in dyadic harmonic analysis. We do not use any technique in martingale
theory used in the former proof [Sto].

First we give a brief introduction to the Vilenkin systems. The Vilenkin systems
were introduced in 1947 by N.Ja. Vilenkin (see e.g. [Vil]). Let m := (my,k €
N) (N :={0,1,...}) be a sequence of integers each of them not less than 2. Let
Zm, be the my -th discrete cyclic group, i.e. Z,,, can be represented by the set
{0,1,...,my — 1}, where the group operation is the mod my addition and every
subset is open. Haar measure on Z,, is given in the way that the measure of a
singleton is 1/my, (k € N). Let

k

o0
G = X Zpy,.
k=0

The elements = € G, can be represented by the sequence x = (x;,i € N), where
x; € Zm, (i € N). The group operation on G, (denoted by +) is the coordinate-
wise addition (the inverse operation is denoted by —), the measure (denoted by
p) and the topology is the product measure and topology , resp. Consequently,
G, is a compact Abelian group. If sup,,cn myn < 00, then we call Gy, a bounded
Vilenkin group. If the generating sequence m is not bounded, then G,, is said to
be an unbounded Vilenkin group. G, is a (bounded or not) Vilenkin group in this
paper.
Give a base for the neighborhoods of G, :

In(z) =Gy, In(z):={y=(yi,i € N) € Gy, : y; = x; fori < n}

for x € Gp,,n € P := N\ {0}. Denote by 0 = (0, € N) € G, the nullelement
of Gy, I, := I1,,(0) (n € N). Denote by LP(G,,) (1 < p < 00) the usual Lebesgue
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spaces (||.||, the corresponding norms) on Gy, A,, the o algebra generated by the
sets I,(z) (r € Gy,) and E,, the conditional expectation operator with respect to
An(n € N) (E_1f :==0(f € L').) If m is bounded then Z := {I,,(z) : 2 € Gpp,n €
N} is called the set of intervalls on G,,. If the sequence m is not bounded, then
we define the set of intervalls in a different way ([Sim]), that is we have “more”
intervalls than in the bounded case.

A set I C G, is called an interval if for some x € G,,, and n € N, I is of the
form I = J,cy In(z, k) where U is obtained from

U, = {0,...,mn—1},U;,0:{0,..., {%}—1},@}“1: {[%],...,mn—l}
PN T (1 S I WPR CC B 8 A O

etc, where I,(z, k) :=={y € Gp, 1 y; = z;(j <n),yn =k}, (v € Gy, k € Zp,,,n €
N). The sequence of U’s: (i.e. U is one of the following sets)

0 1 1 2 2 2 2 Un Un Un
Un,O? Un,O? Un,l? Un,O? Un,l? Un,27 Un,37 tet Un,O? Un,l? S Un,Z“n—l'

The set of intervals is denoted by Z.
Let My := 1, My,+1 := m, M, (n € N). Then each natural number n can be
uniquely expressed as

n=> nM; (n;€{0,1,...,m; —1}, i € N),
=0

where only a finite number of n; ’s differ from zero. Set

rn(x) = exp(2m$—n) (x € Gpyn € Nyo:=+/—1)

n

the generalized Rademacher functions ,
oo

Py = Hr?i (n € N)
j=0

the Vilenkin functions. The system 1 := (¢,, : n € N) is called a Vilenkin system.
Each 1, is a character of GG,,, and all the characters of G,,, are of this form. Define
the m -adic addition:

k®n:= Z(kJ +nj(modm;))M; (k,n e N).
=0
Then, 7vbkean = Yrn, @bn(l' + y) = wn($)¢n(y)7 wn(_x) = @En(x)v |7vbn| =1 (k7n €

N,z,y € Gp,).

Define the Fourier coefficients , the partial sums of the Fourier series, the Dirich-
let kernels, the Fejér means and the Fejér kernels with respect to the Vilenkin
system 1 as follows.

n—1
F(n) = /G [y Suf =3 F(B),
m k=0
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n—1
Dy(y,x) = Dy — ) := Y tu(y) ()
k=0

ruf = LSS Kulnn) = Kaly ) = 2 L Daly =),
k=1

k 1

(nEP,y,:CGGm,f / f, f € LY (Gp)).

It is well-known that
= [ S@Duy = wyiuta). (@.0)) = [ @Ky = )it
Gm

(n€P,y€ G, f €LY G)).
It is also well-known that

M, ifz € I,(0)

Dar, (@) = { 0  ifxd I,(0)

Sm, f(x) = My, » )f = Enf(z)(f € L'(Gm),n € N).

We say that an operator T : L'(G,,) — L°(Gp,) (L°(Gy) is the space of mea-
surable functions on G,) is of type (p,p) (for 1 < p < o0) if |Tf|, < ¢l f]|,p for
all f € LP(G,,) and constant ¢, depends only on p. We say that T is of weak type
(1,1) if p({|Tf| > A}) < c||f]|1/A for all f e LY (G,y,) and X > 0.

In this paper ¢ denotes an absolute constant which may not be the same at
different occurences. For more on the Vilenkin system see [AVD, Tai, Vil].

Theorem 1. (The Calderon-Zygmund decomposition ( [Sim]). Let f € LY(G,,),
A> ||fll1. Then there exists a decomposition

f= Zfﬁ : lEUJ_ij(uj7l)EI

disjoint intervals for which supp f; C I’ s fi =0, (I7)~ fIJ 1fi] < eX (u! €
Gm, kj,aj,b; € N, j € P), | folloo < €A, p,( ) < <||flli/A, where F=Ujepl’.

The proof of Theorem 1 uses the fact that the M, th partial sums of the Walsh-
Fourier series of an integrable function converges a.e. to the function. This later
statement was proved by techniques known in the martingale theory. We give a new
proof for Theorem 1, which use techniques known in the theory of dyadic harmonic
analysis, only. First we prove the following lemma which is similar to Theorem 1,
but differs in the conditions to be proved for f.

Lemma 2. Let f € LY(G,), A > ||f|l1. Then there exists a decomposition

f= Zfﬁ = leUJ Ty, (W) €T
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disjoint intervals for which supp f; C 17, Jr5 fi =0, w(I)7Y [ 1f5] < e, (u? €
va k]aajvb] S N)j S P)? lirnsupn—)oo SMn|f0| = C)‘ M(F) < C||f||1/)\ where
F — Uje]_)[].

Proof of Lemma 2. Construct the following decomposition of the Vilenkin group
G-

QY = {Io(z) : My / F@)lduy) > A € G} = 0,
Ip(z)

O i= {Useog, Jolw.B) = 1 w0 [ 17)ldnto) > X, BT € 0§ 1 ¢,
b=0,1,z€ Gp},...

Qg0 = {UkeUggIO(xv k)=:1T:p(I)™* /I |f(y)|du(y) > X, AJ € Uj<1,OQg I C J,

b=0,1,...,2%° =1,z € G },...

0% o= Ve, Tulak) = T2 u(D)™" [ 11@lduty) > A

2T € (Ujen Uico, V) U (Uical) : I C Jb=0,1,...,2° = 1,z € G}
(a=0,1,...,0p)...

(n € P). Then, the elements of QX n,k € N are disjoint intervalls. Moreover, if
@ # 1, then for all J € QF, KeﬁawehaveJﬂK—Q)(aaeN) IfzeleQl,
then since there is no J € Ujcpn Uico, QJ Ui<q €2, for which I C J, then we have
M; fI,-(z) |f(y)|du(y) < Afor j=0,1,...,n—1. and for all K € Qa_l for which z €

K we have pu(K)™" [ |f(y)|du(y) < A. This implies A < p(I)~" [, |f(y)ldu(y) <
3. Since QF has a finite number of elements, then set the notatlon

O = (I i=1,.. . lho} €T, F:=U,Uln, Umsmei,

Then,

fn,a,,i = flIn’a’i - M(In,a’i)_l/ f (Z < ln,a,a a < vp,n € N)7

n,a,i

1, if z€ B,

. the characteristic function of set B C G, (z €
0, if ¢ B

where 15(z) := {
Gm)-

Un na

DD WD

n=0a=0 =1

o0 Up ln,a
PN

n=0a=0 =1

Un na

<1 ZZZ/ e /Gm £ = £/

nOaOzl
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Then,

Un na

f= Z SN flpees + flg\rF

n=0a=0 i=1

0© Up In,a
=222 <f urey [ f) Lo

n=0a=0 1=1

+ZZZ< (™)~ /M’if> lpnai + flg,\F

n=0a=0 =1

Un na

ZZanm+fo

n=0a=0 i=1

Discuss the functions fy, 4 ;-
supp fn,a,i C In,a,z,

[ o= [ 0@ -nw [ pduant = o

T T e
<o [ e [

< e\

fl < c-p(Imeiyt / 1)

n,a,t

The only relation rest to prove is limsup,, Sn,, |fo| < .

Un na

=SS (e [ )t Pl = £ B

n=0a=0 =1

First, discuss function fgi.

00 Up ln,a
|f01| S ZZZCAl[TL,a,i) = C)\lp S CA.

n=0a=0 =1

Thus,

Su, | fo ()| = My, o FL(E)|dp(t) < e

for all z € G,,,n € N. Consequently, limsup,, Sas, | fo| < ¢\ everywhere.

Secondly, discuss function f&. If x € F, then since set F' is open (the union of
intervalls (intervalls are both open and closed)), then there exists a n € N such as
I(z) C F. Since f§ = flg,\F, then f§ is zero on the intervall I,,(z). Thus, for
each | > n we have M; [, () |f2(t)|du(t) = 0. This implies, lim sup,, Sys, | f3(x)] = 0
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for z € F. Finally, let ¢ F. Then M; ij(w) |f(y)ldp(y) < Afor j =0,1,.... This

gives

Sum, | f5 ()] = M; » )If(y)lom\F(y)|du(y) < M; .y )If(y)ldu(y) <A

for j = 0,1,.... This follows that limsup,, Sy, |f&(z)| < A in the case of z ¢ F.
Consequently, limsup,, Sz, |f(2)| < limsup,, S, |fo(#)| + limsup, Sar, |3 ()] <
cA. This completes the proof of Lemma 2. [

Set the following maximal operators

S°f :=limsup [Sp, f(2)|,  Sf :=sup|Sn, f(2)]-

for f € LY(Gnm).
Lemma 3. Operators S° and S are of type (00, 00).
Proof.

15° flloo < 15 flloo = |l sup | M, / t)dp ()]l

< I f1loe sup My, Ldp(t)]loo = [|f l|so-
neN

In(z)

O

Lemma 4. Operator S° is of weak type (1,1).
Proof. A > ||f||1 can be supposed. Apply Lemma 2.

p(SCf > 2eX) < u(S°fo > cA) + u(S’o(Z froai) > cX) =111 + 1.

n,a,t

Since |S°fo| < ¢ a.e., then [; = 0. On the other hand, by the o-sublinearity of
operator S

Iy < (F) + p(w € G \ F: S(D_ frai) > cA)

<pl)+ 5 [ S fua)
<ellfli/r+ S / ZSfW
<ellfl/r+ S Z/ S(fmas)

n,a,t

<A+ [ S

n,a,t
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We prove that me\In,a,i S(fnai)=0foralli<l,,a<v,necN.

If y € Gp \ I = Gy \ UkEUZbIn(iUn’a’iyk)7 then we have two cases. If
y € I (z™%%) \ Ioqq1(x™%%) for some a = 0,...,n — 1, then If N > a implies
SMan,a,i(y) = MN fIN(y) fn,a,i — 0, because IN(y) N In(xn,a,i) = @

If N < a, then Dy, (y — ) = My for z € UkeU;,bIn(x”’“”,k) C In(x™®").
Consequently, Sary fr,a,i(¥) = MN [in.a.i fryai = 0.

The second case: y € I,(z™%") but y, ¢ Ug,. In this case N > n + 1 implies
Li1(y) N I™%t = (), that is, Spy frei(y) = 0. If N < n, then for each z €
[t = UkeUg,bIn(a:”’“’i, k), we have Dy, (y—x) = My which gives Sary frn,a,i(y) =
My fln,a,i fn.a,i = 0. That is, in all cases for all N € N we have Sy, fna.i(y) =0,
thus Sfy q,i(y) =0 for all y € Gy, \ I™**. Consequently, I3 < ¢||f||1/A. The proof
of Lemma 4 is complete. [

The proof of the following theorem known till now is based on the martingale
theory (see e.g. [Sto]). We give a “pure dyadic analysis” proof for it.

Theorem 5.Let f € LY(G,,). Then Sy, f — f a.e.

Proof. Let € > 0. Then let P be a Vilenkin polynomial , that means P = Zf:_ol d;;
for some do,...,dx—1 € C, k € P. Since Sy, P(x) — P everywhere (moreover,
Sy, P = P for M,, > k), then by lemmas 3 and 4 we have

p({x e G : lirnnsup |Sn, f(x) — f(x)| > €})
<pu{reqGy: limnsup |Sn, f(x) — Sa, P(z)] > €/3})
+ p({z € Gy limnsup |Snm, P(z) — P(x)| > €¢/3})

+p({r e Gy : limnsup |P(z) — f(z)] > €¢/3})

< ul{x € Gy, :limsup [Sy, (f(x) — P(x))| > ¢€¢/3}) + 0+ ||P — f||1§
<c|P— flli/e=:94.

Since the set of Vilenkin polynomial is dense in L!(G,,) (see e.g. [AVD]), then §
can be less than an arbitrary small positive real number. This follows u({x € G, :
limsup,, |Sn, f(x)— f(z)| > €}) = 0 for all € > 0. This gives the relation Sys, f — f
almost everywhere. [l

The proof of Theorem 1. We apply Lemma 2 and Theorem 5. The proof follows the
proof of Lemma 2. The only difference is that we have to prove || fo||co < ¢ instead
of limsup,,_, . Swm, | fo| < ¢A. By Theorem 5 we have Sy, fo — fo a.e. Thus, we
have the a.e. inequality

| fo| = limsup |Su, fo| < limsup Sy, |fo| < cA.
n n
That is, the proof is complete. [

Corollary 6. The operator S is of type (p,p) for each 1 < p.

Proof. Since we have proved that operator S is of type (0o, 00) and of weak type
(1,1), then by the interpolation theorem of Marczinkiewicz (see e.g. [SWS]) the
proof of Corollary 6 is complete. [
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