
SOME NUMBER THEORETIC APPLICATIONS OF

THE SMALLEST DENOMINATOR FUNCTION

Zolt�an Boros and �Arp�ad Sz�az

Abstract. We show that the smallest denominator function can be treated
with a minimum amount of number theory. Moreover, this function can be used
to nicely prove a number of fundamental divisibility and irrationality results.
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Introduction

In [ 4 ] , after summarizing some basic properties of real numbers and di-
visibility of integers, we presented a detailed study of the functions p and q
de�ned by

q(x) = min
�
n 2 N : nx 2 Z

	
and p(x) = x q(x)

for all x 2 Q , which made the investigation of the Riemann function consid-
erably more easy.

In the present paper, we are going to show that most of the number theoretic
background encountered in [ 4 ] is not actually needed for the investigation
of the functions p and q . For example, an important divisibility theorem
applied there can be substituted by a simple lemma concerning the function q .
Moreover, we show that the functions p and q can also be well utilized in the
proofs of several fundamental divisibility and irrationality results.

1. The necessary prerequisites

Troughout in the sequel, the letters R , N , Z , and Q will stand for the
sets of the real, natural, integer, and rational numbers, respectively.

Moreover, we assume that the reader is familiar with an appropriate system
of axioms for the real numbers and some of its most important consequences
such as the following theorem, for instance.

1991 Mathematics Subject Classi�cation. 11-01; 11A99.
Key words and phrases. The smallest denominator function, divisibility and irrationality.
The authors' work was supported by the grants OTKA T-016846 and FKFP 0310/1997.

Typeset by AMS-TEX

19
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Theorem 1.1. If A is a nonvoid subset of Z such that A is bounded below
(resp. above) in R , then min(A) ( resp. max(A) ) exists.

Remark 1.2. From this theorem one can easily derive that Z cannot be
bounded either below or above in R .

Moreover, by Theorem 1.1, it is clear that for each x 2 R the integral part

[x ] = max
�
k 2 Z : k � x

	

of x exists. Note that thus we have [x] 2 Z such that [x] � x < [x] + 1 .

Concerning the division in Z , we shall only need here the following simple
facts.

De�nition 1.3. If m; n 2 Z such that there exists a k 2 Z such that
m = k n , then we say that n divides m, and we write n jm .

Remark 1.4. Note that if n jm and m 6= 0 , then we necessarily have
jn j � jmj .

Therefore, the family of all divisors of m is bounded, and thus we may also
have the following

De�nition 1.5. If m; n 2 Z such that m 6= 0 or n 6= 0 , then the number

(m ; n ) = max
�
k 2 Z : k jm ; k jn	

is called the greatest common divisor of m and n .

From this de�nition, we can at once see that (m ; n ) is in N . Moreover,
we can easily prove the following

Theorem 1.6. If k = (m ; n) , and moreover m1 = m=k and n1 = n=k ,
then m1 ; n1 2 Z such that (m1 ; n1) = 1 .

Proof. To prove the less obviuos part of the theorem, note that if l = (m1 ; n1) ,
then under the notations m2 = m1=l and n2 = n1=l we have m = k lm2 and
n = k l n2 . Hence, by the corresponding de�nitions, it is clear that k l � k .
Therefore, we necessarily have l � 1 , and hence l = 1 .

Remark 1.7. One can, quite similarly, show that if (m ; n) = 1 , then
(m+ k n ; n) = 1 for all k 2 Z .

2. The smallest denominator function

In [ 4 ] , to precisely de�ne and easily investigate the Riemann function, we
have introduced the following two interesting functions de�ned only for rational
numbers.
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De�nition 2.1. For each x 2 Q , we de�ne

q(x) = min
�
n 2 N : nx 2 Z

	
and p(x) = x q(x) :

Remark 2.2. Note that, by the de�nition of Q and Theorem 1.1, the de�nition
of q (x) is correct. Moreover, we have q (x) 2 N and p (x) 2 Z for all x 2 Q .

By computing some of the values of q , we can easily get to the following

Lemma 2.3. If x 2 Q and n 2 Z such that nx 2 Z , then q(x) jn .

Proof. If n > 0 , then by the condition nx 2 Z and the de�nition of q(x) ,
it is clear that q(x) � n , and hence 1 � n=q(x) . Therefore, by de�ning

k =
�
n=q(x)

�
;

we have 1 � k , and hence k 2 N . Moreover, it is clear that

k � n=q(x) < k + 1 ; and hence k q(x) � n < k q(x) + q(x) :

Therefore, by de�ning
r = n� k q(x) ;

we have 0 � r < q(x) . Hence, since

rx = nx� k q(x)x = nx� k p(x) 2 Z ;

by the de�nition of q(x) it is clear that r = 0 , and thus n = k q(x) .

While, if n < 0 , then it is clear that �n > 0 and (�n)x = �nx 2 Z .
Therefore, by the above proof, we have q(x)j(�n) , and hence q(x)jn . Finally,
to complete the proof, we note that if n = 0 , then the assertion of the lemma
trivially holds.

Now, by using the above lemma, we can also easily prove the next funda-
mental

Theorem 2.4. If m 2 Z and n 2 N , then

p
�m
n

�
=

m

(m ; n)
and q

�m
n

�
=

n

(m ; n)
:

Proof. De�ne

x = m=n ; k = (m ; n) ; m1 = m=k ; n1 = n=k :

Then, by Theorem 1.6, it is clear that m1 2 Z and n1 2 N such that

n1 x = m1 and (m1 ; n1) = 1 :

Hence, by using Lemma 2.3, we can infer that there exists an l 2 N such that

n1 = l q(x) ; and thus m1 = n1 x = l q(x)x = l p(x) :

Therefore, we necessarily have l = 1 , and thus p(x) = m1 and q(x) = n1 .
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Remark 2.5. From Theorem 2.4, by Theorem 1.6, we can at once see that

�
p(x) ; q(x)

�
= 1 :

for all x 2 Q .

Now, the further properties of the functions p and q , with the only exception
of [ 4 , Theorem 3.6 ] , can be easily established without using any number
theoretic results.

3. Two number theoretic applications of the functions p and q

By using Lemma 2.3 and Theorem 2.4, we can now easily prove a slight
extension of a basic divisibility theorem [ 5 , Proposition 1.1.1 , p. 5 ] .

Theorem 3.1. If m1 ; m2 ; n 2 Z such that n jm1m2 , and moreover
k = (m1 ; n) , then n j km2 .

Proof. If n > 0 , then by de�ning x = m1=n we have

m2 x = m1m2 =n 2 Z

Therefore, by Lemma 2.3, there exists an l 2 Z such that

m2 = l q(x) :

On the other hand, from Theorem 2.4, we know that

q(x) = n=k :

Therefore, we have km2 = l n , and hence n jkm2 .

While, if n < 0 , then since n jm1m2 we also have �n jm1m2 . Hence,
since 0 < �n , by the �rst part of the proof we can already state that �n j km2 .
And thus, n j km2 is also true.

Finally, if n = 0 , then because of m1 jn we can only have k = jm1 j .
Therefore, in this case, the assertion n jkm2 is an immediate consequence of
the condition n jm1m2 .

Remark 3.2. In the sequel, we shall show that the k = 1 particular case of
the above theorem can also be proved by using only Lemma 2.3.

Moreover, it is also worth mentioning that the following theorem can also be
proved more easily by using Lemma 2.3 and Theorem 2.4 instead of Theorem
3.1.
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Theorem 3.3. If m; n 2 Z such that m 6= 0 or n 6= 0 , and moreover
� ; � 2 Z , then the following assertions are equivalent :

(1) �m + � n = 0 ;

(2) 9 l 2 Z : � = l n =(m ; n) ; � = �l m =(m ; n) .

Proof. If the assertion (1) holds and n 6= 0 , then under the notation x = m=n
we evidently have

�x = �� 2 Z :

Therefore, by Lemma 2.3, there exists an l 2 Z such that

� = l q(x) ; and thus � = ��x = �l q(x)x = �l p(x) :

Hence, by using Theorem 2.4, it can be easily seen that the assertion (2) also
holds.

The converse implication (2) =) (1) is quite obvious.

Remark 3.4. Unfortunately, to solve the more general Diophantine equation
�m+� n = k , Lemma 2.3, which is actually a particular case of [ 4 , Theorem
1.18 ] , is certainly not su�cient.

4. Some further applications of the functions p and q

From Theorem 3.1, by induction, we can easily get the following more general

Theorem 4.1. If m1 ; m2 ; n 2 Z and l 2 N such that n j (m1)
lm2 , and

moreover k = (m1 ; n) , then n j k l m2 .

Proof. From Theorem 3.1 we know that the assertion of the theorem is true for
l = 1 . Moreover, if i 2 N , then again by using Theorem 3.1 we can see that

n
�� (m1)

i+1m2 ; i. e., n
�� m1

�
(m1)

im2

�

implies

n
�� k �(m1)

im2

�
; i. e., n

�� (m1)
i (km2) :

Therefore, if the assertion of the theorem is true for l = i , then it is also true
for l = i+ 1 .

Now, by using the k = 1 particular case of Theorem 4.1 and following the
treatment of Niven [ 6 , x 4.3 , p. 57 ] , we can also prove the following much
more general divisibility theorem
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Theorem 4.2. If ai 2 Z for all i = 0 ; : : : ; n , and moreover x 2 Q such
that

nX
i=0

ai x
n�i = 0 ;

then q(x) j a0 and p(x) j an .
Proof. In this case, by making use of the equality x = p(x)=q(x) , we can easily
see that

nX
i=0

ai p(x)
n�i q(x)i = 0 ;

and hence

a0 p(x)
n = �q(x)

nX
i=1

ai p(x)
n�i q(x)i�1

and

an q(x)
n = �p(x)

n�1X
i=0

ai p(x)
n�1�i q(x)i :

Therefore,

q(x)
�� p(x)n a0 and p(x)

�� q(x)n an :
Hence, by Remark 2.5 and the k = 1 particular case of Theorem 4.1, the
required assertions are immediate.

Now, as some important particular cases of the above theorem, we can also
state the following two theorems.

Theorem 4.3. If ai 2 Z for all i = 1 ; : : : ; n , and moreover x 2 Q such
that

xn +
nX

i=1

ai x
n�i = 0 ;

then x 2 Z such that x j an.

Theorem 4.4. If n ; k 2 N , then n

p
k 2 N or n

p
k 2 R n Q .

Moreover, as a useful application of the latter theorem, we can also easily
establish the following

Example 4.5. If n 2 N n f1g , then n

p
n 2 R n Q .

Namely, by using induction or the Bernoulli-inequality, we can at once see
that in this case 1 < n < 2n , and hence 1 < n

p
n < 2 .
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5. Some supplementary notes

It is worth noticing that the k = 1 particular case of Theorem 3.1 can also
be proved by using only Lemma 2.3.

Theorem 5.1. If m1 ; m2 ; n 2 Z such that n jm1m2 and (m1 ; n) = 1 ,
then n jm2 .

Proof. If n 6= 0 , then by de�ning x = m2=n , we evidently have

nx = m2 2 Z and m1x = m1m2=n 2 Z :

Hence, by Lemma 2.3, it is clear that

q(x) � (m1 ; n ) = 1 :

Therefore, only q(x) = 1 , and hence x 2 Z can hold true.

Remark 5.2. By using Theorem 5.1, we can easily see that if m1 ; m2 ; n 2 Z

such that n jm1m2 and n is prime, then n jm1 or n jm2 .

Namely, if k = (m1 ; n) , then by using that n is prime we can see that
k = 1 or k = n . Therefore, if n 6 jm1 , then k = 1 . Thus, by Theorem 5.1,
n jm2 .

The importance of the above assertion lies mainly in the fact that it allows
of an easy proof of the unicity part of the prime factorization theorem [ 5 ,
Theorem 1 , pp. 3{5 ] .

Moreover, it is also worth mentioning that following the ideas of Beigel [ 1 ] ,
Theorem 4.3 can also be proved by using only De�nition 2.1.

Theorem 5.3. If ai 2 Z for all i = 1 ; : : : ; n , and moreover x 2 Q such
that

xn +
nX

i=1

ai x
n�i = 0 ;

then x 2 Z such that x j an .

Proof. To prove the essential part of the theorem, it is enough to show that

xk = x p(x)n�k 2 Z for all k = 1 ; 2 ; � � � ; n :

Namely, this implies in particular that x = xn 2 Z .

To prove the above apparently more general assertion, note that

x1 = x p(x)n�1 = xn q(x)n�1 = �
nX

i=1

ai p(x)
n�i q(x)i�1 2 Z :
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Moreover, if k 2 f1 ; 2 ; � � � ; n� 1g such that xk 2 Z , then the number

r = hxk+1i q(x) = xk+1 q(x)� [xk+1 ] q(x) = p(x)n�k � [xk+1 ] q(x)

satis�es not only 0 � r < q(x) and r 2 Z , but also

r x = p(x)n�k x � [xk+1 ] q(x) x = xk � [xk+1 ] p(x) 2 Z :

Therefore, by the de�nition of q(x) , we can only have r = 0 , and hence
hxk+1i = 0 .

Moreover, it is also noteworthy that the following particular case of Theorem
4.4 has an even more simple proof.

Theorem 5.4. If k 2 N , then
p
k 2 N or

p
k 2 R n Q .

Proof. If x =
p
k 2 Q , then the number

r = h x i q(x) = x q(x)� [x] q(x) = p(x)� [x] q(x)

satis�es not only 0 � r < q(x) and r 2 Z , but also

r x = x2q(x)� [x]x q(x) = k q(x)� [x] p(x) 2 Z ;

Therefore, by the de�nition q(x) , we can only have r = 0 , and hence
h x i = 0 .
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