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ON THE LIMIT OF A SEQUENCE

7. LAszLO AND Z. VOROS

ABsTRACT. The object of this article is to examine the sequence

well known from probability theory. We prove that the sequence is bounded, strictly
monotonously decreasing, and lim, o0 arn, = % . The last two statements are proved
by analytical means. Finally, a modification and a generalization of (an) will be
mentioned, and the sketch of a second analytical proof for the original limit will be

given.

1. On p. 288 of [1] (under 6.1) the following theorem is to be found: For

A — 00,
k 0, if ©>
o3 (A0) _>{ : T
o k! 1, if O<u

[1] has no reference to the case © = = . The sequence (a,) of the present article is
a reformulation of this specific case.

The main problem to be discussed in this article was raised by Professor Zoltan
Laszlo of Veszprém University several years ago.

Initially I was motivated to find an elementary solution to the problem, but the

cul-de-sacs have convinced me that this is hardly viable.
noi

n
o,
Let a,, = %. Then the usual questions are likely to arise: Is the sequence

e
monotonous? Is it bounded? Does a limit exist?
2.1. Boundedness is relatively easy to decide: The sequence is bounded

from below, as a sum of positive terms is divided by a positive number, so a,, > 0
o

n
holds; on the other hand, it is known that for all given n E o
i!
i=0
numerator of a,, is a partial sum of this very series. So a,, < 1 follows.

2
= ¢", and the

2.2.  The remaining two questions are more difficult to answer; here we have
to resort to other means. On integrating by parts we obtain

/nﬂdl-—l_e_”.(1+n+n_2+...+ﬁ>
! - ! !
0 n! 2! n!
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"eTT . gl
a, =1— —dz .
0 TL'

Now we shall prove that the sequence (a,,) is strictly monotonously decreasing.

So for a,

Statement: (p, > Gpgl-

Proof: By reason of the above formula for a,, we are to show that

n o _—x  ,.n n+l —x  ,.(n+1)
/ S dr < / £ v dx .

By decomposition of the integral

/n+1 e—x.x(n+1)d _/n €_$'$(n+1)d +/n+1 €_$'$(n+1)d
o Dl T )y Tmrnr YT Tmenr 4

Hereafter we shall denote the first and second integrals on the right side by I;, and
I, respectively.
First we shall give an estimate for I5. For the derivative f’(x) of the function

e_m . ;U(n+1)

, e . z" x .
=—-|[1-— > f 1
I (x) o ( n+1> >0, if ze0,n+1],

which means that in this interval f(x) is monotonously increasing. So

e . n(n—i—l)
L>1. 2"
(n+1)!

Let us deal now with the first integral. By integration by parts

n _—z .. (n+1) —z . (n+1)7" n _—zx , ..n
[1:/ de:[_i] +/ et
o (n+1)! m+1)! 1, Jo n!

So we obtain that

n+l —z  .(n+1) n o—x  .n -n , ,n+l
e xr e xr e n
/ ————dzx =1, + / dr — >
0 0

(n+1)! n! (n+1)!

. /n e~ T . o+ e . nn+1 e~ . nn+1
e x J—

~—Jo n! (n+1)! (n+1)! 7’

e ™. n(n+1)

(n+1)!
Thus we have proved that the sequence (a,) is bounded from below and strictly
monotonously decreasing, consequently a limit exists.

as Iy >
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2.3. Next, we shall try to find this limit. To this end, we are going to use the
following lemma (without proof):
Lemma:

(%)n-n!:\/ﬁ—FO(%) : (1)

whence

n" 1 1
= -14+0 | — .
= 00)]
(The proof can be found in numerous places. E.g. [3].)
;From the formula for a,,

n —T n

T

dx |

lim a, =1— lim
n—00 n—oo /g n!

so, to find the limit of the sequence, we have to calculate

n ,—x

e n

T

lim dz.
n—oo [ n!

Let p = n~ 2%, where 0 < ¢ < L. Then, by the substitution z = n - (z + 1)

no_—z . ,.n 0 —n-(2+1) . n ., (n+tl) n 0
/ et .1 da::/ e (z+1)"-n P / e~ (1) =
0

n! 1 n! nl-e” J_4

:\/g- {1+O<%>] -/_01 e - (1+2)]"de =

(Here we used Lemma (1) .) Transforming the integral further

- \/g [1+0 (%)] -/_01 e (14 2)]" dz =
T fro)] [T ot e s

As for the derivative f’(z) of the function f(z) :=e %-(1+ 2) f'(z) = —e~* - z,
for z < 0 f'(z) > 0 holds, which means that the above function is monotonously
increasing in the interval [—1, —n]. So

/_77 [e_z . (1+z)]ndz <(l-mn)- [e_" (1 —n)]n < [e_” (1 —n)]n ,

-1

that is, for the above integral

\/g' {“O(%)} '/_01 e (1+2)]"dz =
o)) e o)
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On the remaining segment of the interval, using the equalities

f(z)= eln £(2) , and Inf(z)=—-z+In(z+1),
(z € [-n,0]), and MacLaurin’s series for the function In (z + 1) :

2

3
z oz z
l 1)==-——
nED =g St T i)
for the expansion of the integrand we obtain
22 23 2
- _+_ -
f@y=e 2 3

4-(14+9(2))*

Y

4
where 0 < 9(z) < 1. The factor e~ *@+9G)7 is of the form 1+ O (n™'7"¢) so the
integral assumes the following form

0 —n<Z—2—z—3> !
,/%-[1+O(n_1+4e)}-/ne 2 dz+ O \/ﬁ-e_in

It is known that

and

.3
is of the order n~/2, the order term in e™ 3

is O (n=1%%¢), s0

\/g. 140 (n=1+)] -/0 . <§ %3> 0

n

e 1+n-z—

3 ) dz + O (n1+66) =

1 0 92 93 146
:ﬁ/_56_7<1+m>d’lg+0(n_+e):

10 e 1 0 93.c—%
= . e” T di + / ————d9+ O (n717%)
V2o /_oo V2rn 0o 3 ( )

The first integral equals 1/2 (Gaussian integral), while the second one will be trans-
formed further:

\/%' 140 (n1+%)] ./0 —_ < ’

n

0 03 -2 o —027° 0
9° - 2 9= - 2 2 2 2 210 2
e e e e Y IS R e
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(using integration by parts). Thus, for the limit

lim -<—2>:0, és  lim O (n™'%) =0,

n—00 \/2mn 3 n—00

i.e. the value of the original integral is %, so we have proved the following

1
Theorem: Iim a, ==-. &
n— 00 2
3.1. Remark: Defining the sequence b,, as
2n n,L'
2
_ i=0
= e

it can be shown that this sequence is strictly monotonously increasing. Integration
n n

by substitution is used and the relationship f < g = / f < / g is applied.
0 0

Boundedness is proved in practically the same manner as in the previous case.The
calculation of the limit is performed similarly, and

lim b, =1.
n—oo

is obtained.

Moreover, it can be shown that by modifying the limits of the summation the
limit can assume any value in the interval [0,1].

3.2. Remark: To give a further proof for the limit of (a,) we shall use
the following theorem: (p. 128 of [2])

If the functions ¢(z), h(z) and f(z) = €M) defined for the finite or infinite
interval [a, b] satisfy the following conditions:

(i) () - [f(x)]" is absolute integrable in [a, b] for V n € N,

(74) h(z) assumes its maximum only in £ of (a,b), and the least upper bound
of h(z) is less than h(§)-t for all closed intervals not including ¢; furthermore, a
neighbourhood of ¢ exists such that h”(x) exists and is continuous; finally, h”(x) <
07

(13i) (x) is continuous in x =&, ¢(x) # 0,

then, for Va € R

£+ .2
/ ) [f@)dr ~ (€)M zdt, (2)

1 «-C _
/~n - B (€) '/_Oo ¢
where ¢ = \/—h"(€¢). O

Let now a =0, b=n+1, p(z) =1, « = 0. So condition (7i7) is satisfied.
Inn!
Let h(z) =Ilnx — T Then W(z) =L — 1 whence we get that h has got a
n n

maximum in z = n, and h(z) is strictly monotonously increasing in (0, n], is strictly
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1
monotonously decreasing in [n,o0), and £ = n. — 3 < 0, so condition (i7) is also

automatically satisfied.
On the other hand,

1 00 ,—T . N
—T(n—1) :/ T
n! 0 n!

is absolute integrable, so (i) is also satisfied. Substituting this for formula (2) we

get
"eTT . gl eTm.n® 1 0 2
/ Ty . / 5 dt
0 TL' n' \/I — 00
n

then, using Stirling’s Formula the result 1/2 is received.
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