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DISCRETE LAGUERRE FUNCTIONS AND EQUILIBRIUM
CONDITIONS

SCHIPP FERENC

Dedicated to the 60th birthday of Professor Arpdd Varecza

ABSTRACT. The discrete Laguerre functions L% (n € N) forms an orthonormal
system on the unite circle T and the finite set of functions L% (n = 0,1,--- , N—
1) is orthonormal with respect to a discrete scalar product defined by the
discrete subset T}, of T. It is showed that the set T, can be interpreted as a
solution of an electrostatic equilibrium problem.

1. INTRODUCTION

In the control theory the discrete Laguerre functions and their generalizations
are often used to identify the transfer function of the system [1], [2], [3]. The
discrete Laguerre functions L% (n € N) contain a complex parameter a € D := {z €
C: |z] < 1} and can be expressed by the Blaschke functions

Z—a

Bu(2) : (z € Q).

T 1-az
Namely (see [2])

a . V1_|a‘2 n 2 (Z_a)n
Li(2) := 1—7@3‘1 (z) =+v/1—]q| A —annt (z € C).
The Laguerre functions form an orthonormal system on the unite circle T :=
{z€C:|z| =1}, ie.
1 2m )
(L8, L2) = 7/ L8 () TE (@) dt = 6 (o € N),
2m Jo
where 0,,,,, is the Kronecker symbol (see [2]). A generalization of this system is the
Malmquist—Takenaka system (see [4]).
If @ belongs to D then B, is a 1 — 1 map on D and on T, respectively. Moreover
(see [2]) B, can be written in the form

(1.1) Bu(e't) = eP® (t € R,a = re’* € D),
where
t 1
Ba(t) = a+s(t —a), vs(t) := 2arctan(s tan 5) (t € [-m,7m)), s:= T Rl
—r
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and ; is extended to R by v4(t + 27) = 27 4+ 74(t) (¢ € R). The finite collection of
the functions L% (0 < n < N) form a discrete orthonormal system with respect to
the scalar product

ool = 5 3 F)eEna(z),

z€Tg,

where
- 2k
T?V::{elﬁal(t):t: N7T7k:031".'71"_1}7

1 —az?
pa(z) T 1— ‘a|2

(z€T) and B;'(t) =a+7y,1(t—a) (t €R)
is the inverse function of 8, (see [2]). Namely, it is easy to check that
Ly, L] = 0mn (0 <m,n < N).

Indeed, by the definition of L%, T% and (1.1) and by the orthogonality of the
discrete trigonometric system, for 0 < m,n < N we have

L8 Lol = O L) T Ep(e) =

z€Tg,
1 1 N-1
— i(n—m)k/N
_ N Z B;I ’H’L(Z) — N Z 627rz(n m)k/N _ S
2€Tg, k=0

In this paper we show that the points of T}, are the solution of the following problem
of electrostatic equilibrium:

Problem. Leta € D and N € N, N > 2 be given numbers. If N unite “masses” at

the variable point z1,z9,- -+ ,zy € T and two fized masses g = —(N —1)/2 at a and
a~' are considered, for what position of the points z1,zs,--- ,zn does the potential
function

(1.2) V(z1, - ,2n) == —log H |z — 2] H |zi —al?|z; —a '
1<i<j<N 1<i<N

(21, - ,2nv €T)
become a minimum ¢

The function V' can be interpreted as the energy of the electrostatic masses
just defined. The minimum position corresponds to the condition of electrostatic
equilibrium. Namely we have the following
Theorem. The numbers wy, = €™, 75, := 3, (2r(k —1)/N) (k =1,--- ,N) of
T% are the solution of the equilibrium equations

N
1
(1.3) > 4 L 0 (n=12--,N)
hein Wn Wk Wp—a  wn —a
Moreover the point (11,72, -+ ,7n) € RY is a stationary point of the potential

Ve, - e™) ((ty,---,ty) € RY),

3‘/(ei71’... 7eiTN)
8tn

=0 (n=1,---,N).
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The system of equations (1.3) can be interpreted as the electrostatic equilibrium
condition for the masses in question. We remark that the zeros of the Jacobi,
Laguerre and Hermite polynomials admit a similar interpretation (see [6], pp. 140,
153).

A generalization of these results with respect to the Malmquist—Takenaka sys-
tems will be published in [5].

2. THE EQUILIBRIUM CONDITION

First we show (1.3).

Proof of (1.3). Denote

(z—a)N — (1 —az)V

p(2) = BN(Z) —-1= (1—az)N

(z € C).

By (1.1) it is clear that (z) = 0 if and inly if 2 = wy = efa CTR/N) (] =
1,2,---,N). Set

=

f(z):=1](z—-wr) (z€C).

x>
Il

1

Since the polynomials f and g(z) := (z — a) — (1 — az)" (2 € C) have the same
degree and roots, therefore f(z) = A[(z —a)¥ — (1 —az)"] (2 € C) with a constant
AeC.

It is easy to see that

1g"(wa) _1f"(wn) <~ 1 _
OO ) "I T A MThEN)

1
On the other hand by the definition of the function g and by

w, —a \
__n = =1 =1.2..-- . N
(1&wn) (n=12,N)

we have

g"(wn)  N(N —1)(w, —a)N"2 - a®N(N — 1)(1 — aw, )V 2

g'(wn) N(w, —a)N-1 +aN(1 — aw,)N-1
N(N-1) @N(N-1)
_ (wn—a)?2  (1-aw,)?
N aN '
+

wy, —a 1 —aw,

Hence we get

1 1
/" 2 —a-1)2
g/(wn) —(N-1) (wn 1a) (w"1 a1 _
w

' Wy — G Wy — a1

1 1
( )(wn—a+wn—d1)
Comparing (2.1) and (2.2) we get (1.3). O O

Now we show that for the solution of (1.3) the condition (1.4) is satisfied.
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Proof of (1.4). Set a :=re*®. Then by (1.3) we have

N -1
Z cos Ty, —cosTy  q(cosT, —rcosa)  q(cosT, —r !cosa)

=0
1 [wn — wi|? lwn — al? lwn, — a2 7
N . : . : . 1
Z sint, —sin7, | q(sin7, —rsina) q(sint, —r"'sina) 0

2 T, —wy P fw — af? [ — a1

(n=1,2,---,N).
Multiplying the first equality by sin 7, the second by cos 7, and taking the dif-
ference we get

N sin(r, — )  grsin(r, —a)  qr~tsin(r, — )
(23) Y n 2 n =0 (k=1,---,N).
k=1

|[wy, — wg|? |wy, — al? |w, —a=1?

By the definition of V'

V(eitl,“' ,eitN):flOg H |eitj 76”1“‘ H |eitj 70,“1‘6”7‘ 7@71(1 —
1<j<k<N 1<j<N

= —log II |eiti—tr) _ 1| II |e(ti=) — p|9|eiltti—e) _ p=1ja
1<j<k<N 1<j<N

(0<t; <--- <ty <2m).
It is easy to check that
AV (e ... e B

Oty
_ iv: sin(r, — %) gqrsin(r, —a) qr~tsin(r, — a)
= |wn — w? |wy, — al? |wy, — a2
(k=1,---,N).
and by (2.3) we get (1.4). O
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