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ON THE PRODUCT OF ALL ELEMENTS IN A FINITE GROUP

PÁL DÖMÖSI

In honour of Professor Árpád Varecza on his 60th birthday

Abstract. A new elementary and direct proof is given to show a consequence

of the Dénes–Hermann Theorem.

1. Motivations

An automaton (without outputs) can be considered as a generating system of
a transformation semigroup. Especially, we can also consider an automaton as a
generating system of a permutation group if all input letters induce a bijective
mapping of the set of states onto itself. By these simple facts, in general, transfor-
mation semigroups and permutation groups are useful tools in the algebraic theory
of automata [6, 7, 10]. Moreover, finite groups have an important role in the compo-
sition of finite automata [8, 11, 12]. One can consider compositions of automata as
automata networks [2, 5, 9]. Furthermore, permutation factorization by networks
of automata is an important subject in theoretical computer science [14, 15].

The well-known Dénes–Hermann Theorem [1] shows an interesting property of
the product factorization of all elements in a finite group. A direct consequence of
this result has important applications in compositions of automata [3, 4]. The only
known proof of the Dénes–Hermann Theorem uses the Feit–Thomson Theorem.
Thus Z. Ésik gave a direct proof of this consequence in [4]. Using an idea of
P. P. Pálfy [13], we give another direct and elementary proof of this consequence of
the Dénes–Hermann Theorem.

2. Results

Now we show the following
Theorem. Let G = {g1, . . . , gn} be a (finite) order n group. Put

PG = {gP (1) . . . gP (n) : P is a permutation over {1, . . . , n}}.
If G is simple and noncommutative then there exists a positive integer m with
Pm

G = G.

Proof. First, for every positive integer t and r ∈ PG, we have |P t+1
G | ≥ |rP t

G| = |P t
G|,

and the group is finite. Therefore, this growing should be finished, i.e., there exists
a t0 such that t ≥ t0 implies |P t

G| = |P t0
G |. Let m ≥ t0 be such that e ∈ Pm

G , where e
denotes the identity element of the group G. (Of course, for every r ∈ PG, rr−1 = e.
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Thus, for example, m may be an arbitrary positive even number with m ≥ t0.) Then
Pm

G Pm
G = P 2m

G and P 2m
G ⊇ ePm

G = Pm
G . But they have the same number of elements.

Thus Pm
G Pm

G = Pm
G . Therefore, Pm

G is a subgroup. Prove that for arbitrary r ∈ G,
rPm

G = Pm
G r. Indeed, let gP1(1) . . . gP1(n) . . . gPm(1) . . . gPm(n) ∈ PG

m, r ∈ G. Then,
using the fact that for every g′, g′′ ∈ G, ϕ′

g : g → g′g, g ∈ G and ϕ′
g′′ : g → gg′′, g ∈

G are one-to-one mappings, for every i = 1, . . . ,m, {rgPi(1)r
−1, . . . , rgPi(n)r

−1} =
G. In other words, for every i = 1, . . . ,m, rgPi(1)r

−1 . . . rgPi(n)r
−1 ∈ PG leading

to rPm
G r−1 = Pm

G , i.e., rPm
G = Pm

G r. Therefore, every element of G normalizes
Pm

G , and thus Pm
G is normal subgroup in G. Since G is non-commutative, there are

gi, gj ∈ G with gigj 6= gjgi. But then we get gigjg
′
1 . . . g′nm−2 6= gjgig

′
1 . . . g′nm−2,

g′1, . . . , g
′
nm−2 ∈ G. Thus, of course, |Pm

G | ≥ 2. Therefore, by the simplicity of G,
Pm

G = G necessarily holds. �

Let G be a group. An element g ∈ G is called commutator if g = aba−1b−1 for
some elements a, b ∈ G. The smallest subgroup that contains all commutators of G
is called the commutator subgroup or derived subgroup of G, and is denoted by G′.
It is well-known that G = G′ whenever G is simple and non-commutative. Thus we
can also get our previous result as a direct consequence of the following well-known
theorem.

Dénes–Hermann Theorem. Let G = {g1, . . . , gn} be a (finite) order n non-
commutative group and denote G′ its commutator subgroup. Put

PG = {gP (1) . . . gP (n) : P is a permutation over {1, . . . , n}}.

There exists a g ∈ G with PG = G′g. Thus PG = G, whenever G = G′.

Problem. Find an elementary proof of the Dénes–Hermann Theorem.
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