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SOME INEQUALITIES CONCERNING THE EXISTENCE OF
(k, λ, l)-CHORDAL POLYGONS

MIRKO RADIĆ AND TIBOR K. POGÁNY

Abstract. The paper deals with some inequalities concerning the existence
of k-chordal polygons and its generalized variant, the (k, λ, l)-chordal poly-
gons, i.e. the k-chordal polygons which sides a1, . . . , an have the property that
aλ
1 , . . . , aλ

n; λ ∈ R+ are the side lengths of an another l-chordal polygon. In

fact, the hypothesis and results obtained in the paper [1] are generalized and

discussed.

1. Introduction

This article is an addendum to the paper [1] and primarily deals with the hy-
pothesis given there. For convenience we shall first repeat briefly some definitions
and the results of the Corollary 1.2. from the quoted article.

Definition 1.1. Let A = A1A2 · · ·An be a chordal polygon and let Cn
A be its

circumcircle. By SAi
and ŜAi

we denote the semicircles such that

SAi
∪ ŜAi

= Cn
A, Ai ∈ SAi

∩ ŜAi
.

The polygon A is said to be of the first kind if the following is fulfilled:
(1) not all vertices A1, A2, · · · , An lie on the same semicircle;
(2) for every three consecutive vertices Ai, Ai+1, Ai+2 it is valid

Ai ∈ SAi+1 =⇒ Ai+2 ∈ ŜAi
;

(3) any two consecutive vertices Ai, Ai+1 do not lie on the same diameter.

Definition 1.2. Let A = A1A2 · · ·An be a chordal polygon and let k be a positive
integer. The polygon A is said to be k-inscribed and called k-chordal polygon if it
is of the first kind and if

∑n
i=1 ∠AiCAi+1 = 2kπ, where C denotes the centre of

the circumscribed circle to the polygon A.

For the sake of the simplicity we write βi for ∠CAiAi+1 in the sequel according
to the notations introduced in [1]. Now, it is easy to see that if A is k-chordal, then

(1)
n∑

i=1

βi = (n− 2k)π.

It is important to report on the following result concerning the sum of the side
lengths in the k-chordal polygons, as well.

Denote in the sequel a? = max1≤j≤n aj .
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Corollary 1.1. ([1], Corollary 1.2.) If a1, a2, . . . , an are the side lengths of the
k-chordal polygon A, then

(2)
n∑

i=1

ai > 2ka?.

Remark 1.1. The following question immediately arises: If a1, a2, · · · , an are the
given lengths so that (2) holds, is there always a k-chordal polygon with the sides
of prescribed lengths? The answer is negative! For example, when we specify
ai = 9 + i; i = 1, 5 and we are looking for the 2-chordal pentagon, then (2) is
indeed satisfied, but no angles β1, · · · , β5 are there so that

β1 + · · ·+ β5 =
π

2
, 0 < βi <

π

2
cos β1

a1
= · · · = cos β5

a5
.

2. Existence of k-chordal polygons

At first we give a very probable new hypothesis reading as follows:

Hypothesis. Let the lengths a1, a2, . . . , an be such that

(3)
n∑

i=1

a2m−1
i > 2m(a?)2m−1,

where m =
[

n−1
2

]
, i.e. m = n−1

2 if n is odd and m = n
2 − 1 as n is even. Then

for each k = 1, 2, . . . ,m there exists a k-chordal polygon, sides of which possess the
already given length a1, a2, . . . , an.

It is very difficult to find out some convenient approximation for proving the
Hypothesis. Anyway, the following result gives some progress in this direction.

Theorem 2.1. Let (3) be valid and let k be a fixed positive integer so that

(4) (2m− 1)Sm + Rm > (2k − 1)
π

2
,

where

Sm := 1 +
1
2
· 1
3

+
1 · 3
2 · 4

· 1
5

+ · · ·+ 1 · 3 · · · (2m− 1)
2 · 4 · · · 2m

· 1
2m + 1

,(5)

Rm :=
∞∑

i=m+1

1 · 3 · · · (2i− 1)
2 · 4 · · · 2i

· 1
2i + 1

· a2i−1
2 + · · ·+ a2i−1

n

a2i−1
1

.(6)

Then there is a k-chordal polygon the sides of which have the length a1, a2, . . . , an.

Proof. Suppose a? = a1. From (3) it follows that for each k = 1, 2, . . . ,m it is
n∑

i=2

(
ai

a1

)2m−1

> 2m− 1 =⇒
n∑

i=2

(
ai

a1

)2k−1

> 2m− 1.

Hence, we get the inequality

(7) a2k−1
2 + · · ·+ a2k−1

n > (2m− 1)a2k−1
1 .

Now, we will show that for each positive integer k satisfying (4) there are the angles
β1, β2, . . . , βn so that

n∑
i=1

βi = (n− 2k)
π

2
; 0 < βi <

π

2
,

cos β1

a1
= · · · =

cos βn

an
.
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For this goal it is sufficient to show that the angles γ1, γ2, . . . , γn exist with the
properties

cos γi =
ai

a1
cos γ1, γ1 = 0,

n∑
i=2

arccos
(

ai

a1

)
< (n− 2k)

π

2
.(8)

To prove this inequality, we use the well-known equality
n∑

i=2

arccos
(

ai

a1

)
= (n− 1)

π

2
−

n∑
i=2

arcsin
(

ai

a1

)
.

The power-series expansion of the sum of arcsines in the above equality and (7)
give us:

a2 + · · ·+ an

a1
+

1
2
· a3

2 + · · ·+ a3
n

3a3
1

+
1 · 3
2 · 4

· a5
2 + · · ·+ a5

n

5a5
1

+ · · ·

> (2m− 1)Sm + Rm > (2k − 1)
π

2
,

an equivalent form of (8). This ends the proof of the Theorem 2.1. �

Remark 2.1. Here we have to point out that for each positive integer m < 10 and
for all positive integers k < 9 it is valid

(9) (2m− 1)Sm > (2k − 1)
π

2
.

Consequently, if n ≤ 20 having in mind that (3) holds, there exists a k-chordal
polygon with n sides for at least k = 1, 2, . . . ,m− 1.

For k = m− 1 we define Vm := (2m−1)Sm

2m−1 , and we are looking for its minimum.
It is not difficult to see that minm∈N Vm = V33.

So it is quite possible that there is a m-chordal polygon as well, since the in-
equality (9) replaces now the inequality (4).

At this point we are focusing to the following important question. Assume that
A is k-chordal polygon. It is natural to ask for the radius of the circumcircle
Cn

A of A in terms of its side lengths a1, a2, . . . , an. (The convex case, i.e. the 1-
chordal case is well-known for triangles and quadrilaterals. It is well-known that no
explicite formula is there for the radius of Cn

A for n ≥ 5 in general). The results in
continuation completely describe the computation method of the mentioned radius
of the circumcircle Cn

A.

Theorem 2.2. Let Cn
A be the circumcircle of the k-chordal polygon A, with given

side lengths a1, a2, . . . , an. Then no permutation of the sides of A changes the radius
% of the depending circumcircles Cn

A.
Moreover, let K be a circle with the fixed radius R > a?

2 and let ϕi be the central
angle corresponding to certain chord in K of length ai. Then % is the unique solution
of the equation

(10)
n∑

i=1

arcsin
(

R

%
sin

ϕi

2

)
= kπ.

Proof. Denote αi the central angle of Cn
A corresponding to the side with the length

ai, i = 1, 2, . . . , n and let % be its radius. Then taking a circle K with radius
R > a?

2 , we inscribe the lengths ai consecutively into K. Obviously, knowing ai

and R, the central angles ϕi are uniquely determined in K. Now, it is easy to
see that R sin ϕi

2 = % sin αi

2 , and therefore, bearing in mind that A is k-chordal,
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it immediately follows (10). Since the sums in (10) are invariant with respect to
any permutation of its addenda, the proof of the first assertion of the theorem is
complete.

Now, it remains to show that (10) possesses unique solution in %. In this goal
write

fk(%) =
n∑

i=1

arcsin
(

R

%
sin

ϕi

2

)
− kπ.

Because of the radius R > a?

2 can be taken so that the endpoint of the last length
inscribed into K does not coincide with the first endpoint of the first inscribed
length we have ∑

i=1

ϕi < 2kπ.

Therefore it is clear that

fk(R) =
1
2

n∑
i=1

ϕi − kπ < 0.

Put

r =
R

kπ

n∑
i=1

sin
ϕi

2
.

By the help of the well-known result arcsinx > x we clearly get

fk(r) >
R

r

n∑
i=1

sin
ϕi

2
− kπ = 0.

On the other hand fk(%) monotonously decreases on the interval [r, R], since its
first derivative is negative:

f ′k(%) = −R

%2

n∑
i=1

sin ϕi

2√
1−

(
R
%

)2

sin2 ϕi

2

< 0.

This proves together with fk(r)fk(R) < 0 that the equation (10) has the unique
root in % on (r, R). �

3. On (k, λ, l)-chordal polygons

The following result is in fact a converse of the Theorem 2.1.

Theorem 3.1. Let Cn
A be any given k-chordal polygon with a1, a2, . . . , an as being

the lengths of its sides. If l ∈ N, λ ∈ Q+ so that

(11) (n− 2k)λ = n− 2l,

then

(12) aλ
1 + aλ

2 + · · ·+ aλ
n > 2l(a?)λ.

Proof. Denote % the radius of the circumcircle Cn
A. For the angles βi ∈ (0, π

2 ); i =
1, n then it is

∑n
i=1 βi = (n− 2k)π

2 and

(13)
cos β1

a1
= · · · = cos βn

an
=

1
2%

because Cn
A is k-chordal by the assumption. By reason of simplicity put ti := 2

π βi.
That means

∑n
i=1 ti = n − 2k. It is well-known that cos

(
π
2 ti
)

> 1 − ti on (0, 1).
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It is also not hard to show (e.g. by the properties of the weighted means and the
Bernoulli inequality) that using (11) we get

n∑
i=1

cosλ
(π

2
ti

)
>

n∑
i=1

(1− ti)λ ≥ n

(
2k

n

)λ

≥ 2l.

It is straightforward that 2l ≥ 2l cosλ βj for all j = 1, n therefore
n∑

i=1

cosλ βi > 2l cosλ βj .

Now, multiplying the last display with (2%)λ, by means of (13), the inequality (12)
follows. �

Remark 3.1. Taking e.g. n = 11, k = 5, λ = 3 it is l = 4, so

a3
1 + · · ·+ a3

11 > 8(a?)3.

In this section of the paper we introduce the so-called (k, λ, l)-chordal polygons
and we extend the already given results to this very general geometrical concept
according to the Definitions 1.1 and 1.2.

Definition 3.1. When A is a k-chordal with the sides of the length a1, . . . , an and
in the same time aλ

1 , aλ
2 , . . . , aλ

n; λ ∈ R+ are the side lengths of a l-chordal polygon,
then A is called (k, λ, l)-chordal polygon.

The following theorem is related in some way to the Theorems 2.1. and 3.1. and
in many aspects may be considered as the main result of the paper.

Theorem 3.2. Let a1, a2, . . . , an be any given lengths satisfying (2) for some fixed
positive integer k ≤

[
n−1

2

]
. If l ∈ N, λ ∈ (1,∞) satisfy the condition

(14) arcsin
(

2k

n

)λ

>
lπ

n
,

then there is a (j, λ, l)-chordal polygon, j = 1, l, the side lengths of which are
a1, . . . , an.

Also, whenever it holds

(15) arcsin
(

2k

n

)
>

lπ

n
,

then there is a (l, µ, j)-chordal polygon with the side lengths a1, a2, . . . , an, where
j = 1, l and µ ∈ (1, µ0]. Here µ0 is the solution in µ of the equation

arcsin
(

2k

n

)µ

=
lπ

n
.

Proof. Assume that a? = max1≤i≤n ai (cf. [1], Theorem 1.). By (2) it follows that,
for at least l = λ = 1 it is valid

(16)
n∑

i=1

arcsin
( ai

a?

)λ

> lπ.

To show this consider the left-hand expression L in (16). Because of the convexity
and the monotony of arcsine and the function xλ, λ ≥ 1 it follows that:

L = n
n∑

i=1

1
n

arcsin
( ai

a?

)λ

≥ n arcsin

{
n∑

i=1

1
n

( ai

a?

)λ
}

≥ n arcsin

(
1
n

n∑
i=1

ai

a?

)λ

> n arcsin
(

2k

n

)λ

.
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Finally we get by (14) that

L > n arcsin
(

2k

n

)λ

> lπ.

Thus, (16) holds for all l ∈ N, λ ∈ (1,∞), that satisfy (14). But, this is equivalent
to

n∑
i=1

arccos
( ai

a?

)λ

< (n− 2l)
π

2
.

Now it is not hard to see that there is an unique θ ∈ (0, 1) so that
n∑

i=1

arccos
[( ai

a?

)λ

θ

]
= (n− 2l)

π

2
.

Also, there is unique β? ∈ (0, π
2 ) so that θ = cos β?. Consecutively putting

βi = arccos
[( ai

a?

)λ

cos β?

]
, i = 1, n,

we get the angles βi of a l-chordal polygon which sides are of the length aλ
1 , . . . , aλ

n.
Finally, as

arcsin
(

2k

n

)
> arcsin

(
2k

n

)λ

>
jπ

n
; λ > 1; j = 1, l,

it follows that a1, a2, . . . , an are the side lengths of an l-chordal polygon for the
same reasons as before.

Now, it remains to prove the second part of the theorem, when (15) is assumed.
Precisely speaking the condition

arcsin
(

2k

n

)
>

lπ

n

enables the interpolation

arcsin
(

2k

n

)
> arcsin

(
2k

n

)µ

>
lπ

n
,

using some real parameter µ > 1.
Thus, the proof of the Theorem is complete. �

Example 3.1. It may be interesting that, for example

n k λ l

5 2 1 1
7 3 1 1,2
15 7 1 1,2,3,4,5
15 7 2 1,2,3,4,5
15 7 4.5 1,2,3

Theorem 3.3. Let a1, a2, . . . , an be any given lengths satisfying

(17) |aj −M | < M

2k
, j = 1, 2, . . . , n,

where nM :=
∑n

i=1 ai, k positive integer so that k ≤
[

n−1
2

]
. Then it holds that

a1 + a2 + · · ·+ an > 2ka?.



SOME INEQUALITIES. . . 67

Proof. By the direct computation we get
n∑

i=1

ai = nM ≥ (2k + 1)M = 2k · 2k + 1
2k

M > 2ka?.

The assertion is proved. �

The following special case of the Theorem 3.2. is of particular interest, but the
proving procedure uses just the efforts of the Theorem 3.3. therefore we list it in
the continuation of the exposition of the matter.

Corollary 3.1. Let the situation be the same as in the previous Theorem. Then if

(18) arcsin
(

2k

2k + 1

)
>

kπ

n

then there is the k-chordal polygon the sides of which have these lengths.

Proof. As
n∑

i=1

arcsin
( ai

a?

)
≥ n arcsin

(∑n
i=1 ai

na?

)
,

using (16) and (17) it holds that
n∑

i=1

arcsin
( ai

a?

)
≥ n arcsin

(
M

na?

)
> n arcsin

(
2k

2k + 1

)
> kπ.

Since
n∑

i=1

arcsin
( ai

a?

)
= n

π

2
−

n∑
i=1

arccos
( ai

a?

)
,

repeating the proving procedure of the Theorem 3.2., we easily show the required
statement. �

Example 3.2. The inequality (18) is valid e.g. under the following specifications:

k = 2 3 4 11 30 127 2001 3001
n ≥ 7 10 14 30 68 270 4060 6073

It is obvious that with growing k the least upper bound for side number n of the
considered polygon A converges to 2k. Actually, the result of the Corollary 3.1.
means that for the not “too large ai with respect to the mean M”, (18) is sufficient
for the existence of a k-chordal polygon with the prescribed side lengths ai.

Now we are ready to formulate a question concerning the Remark 1.1. As we
know, the condition a1 + · · · + an > 2ka? is not sufficient for the existence of the
k-chordal polygon with the sides of the lengths ai, i = 1, n. Accordingly, one
asks: Is there some constant γ(k, n) depending just on the parameters k, n, that the
condition

(19) a1 + · · ·+ an > γ(k, n)a?

suffices for the existence of the k-chordal polygon with the side lengths ai, i = 1, n?
Also, how close can we go with γ(k, n) to 2k, i.e. order lim infn→∞ γ(k, n), etc.

We can immediately remark that γ(k, n) has to be from the interval (2k, n) 1.

1The constant γ(k, n) defined by (19) has the same meaning in the sequel, therefore we will
not note this separately.
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Theorem 3.4. Let a1, a2, . . . , an be any given lengths so that

(20) a1 + a2 + · · ·+ an > γ(k, n)a?,

where k ∈ N and k ≤
[

n−1
2

]
. If

(21) γ(k, n) ≥ n sin
kπ

n

then there is a k-chordal polygon whose sides have the length a1, a2, . . . , an.
Also, when

lim
n→∞

γ(k, n) < kπ,

then no k-chordal polygon exists the side lengths of which are a1, a2, . . . , an.

Proof. By the convexity of the arcsine function we conclude:

(22)
n∑

i=1

arcsin
( ai

a?

)
≥ n arcsin

(
1

na?

n∑
i=1

ai

)
≥ n arcsin

γ(k, n)
n

.

When the last expression satisfies n arcsin γ(k,n)
n < kπ, then the sum of arcsines in

(22) cannot achieve kπ by any transformation of the arguments, therefore it has to
be

γ(k, n) ≥ n sin
kπ

n
.

The second assertion in the Theorem is the straightforward consequence of (21). �

The proving procedure of the following corollary is in fact the same as the already
given results. Therefore we leave to the reader to prove it. Anyway it is a modest
generalization of the preceeding Theorem.

Corollary 3.2. Let a1, a2, . . . , an be any given lengths so that

aλ
1 + aλ

2 + · · ·+ aλ
n > γ(k, n)(a?)λ,

where k ∈ N, λ ∈ [1,∞) and k ≤
[

n−1
2

]
. Then there is a (k, λ, k)-chordal polygon

the side lengths of which are aλ
1 , aλ

2 , . . . , aλ
n.

Corollary 3.3. Let the situation be the same as in the previous Theorem. If
ai = a + (i− 1)d, i = 1, n; a, d > 0 and 2γ(k, n) > n, then d → 0 as n goes to the
infinity.

Proof. From
n∑

i=1

[a + (i− 1)d] > γ(k, n)[a + (n− 1)d]

it follows that

d <
2a
(
1− γ(k,n)

n

)
(n− 1)

(
2γ(k,n)

n − 1
) .

Now it is easy to show the validity of the assertion. �

Remark 3.2. Taking e.g. γ(k, n) := n sin kπ
n , the condition 2γ(k, n) > n becomes

3k > n in the Corollary 3.3.

Theorem 3.5. Let
∑n

i−1 βi = π
2 ; 0 < βi < (2k+1)π

4nk , where k is a positive integer
so that k ≤

[
n−1

2

]
. Then

(23)
n∑

i=1

cosk βi > 2k cosk βj , j = 1, n.
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Proof. One approximates cosk x by the secant of the cosine function on the interval
[0, (2k+1)π

4nk ]. Therefore, with by means of the Bernoulli inequality, we conclude that

cosk βi ≥
(

1− 8nkβi

(2k + 1)π
sin2 (2k + 1)π

8nk

)k

> 1− 8nk2βi

(2k + 1)π
sin2 (2k + 1)π

8nk
.

After that, since sin x < for all x > 0, we clearly get

cosk βi > 1− (2k + 1)π
8n

βi > 1− (2k + 1)2π2

32n2k
.

Thus
n∑

i=1

cosk βi > n− (2k + 1)2π2

32nk
> n− (2k + 1)π

4n
> n− 1.

Now obvious transformations lead to the required result. �

Corollary 3.4. Let A be m-chordal polygon, m =
[

n−1
2

]
. When β1, . . . , βn corre-

sponding to the sides a1, . . . , an of A satisfy 0 < βi < (2m+1)π
4mn , then

am
1 + am

2 + · · ·+ am
n > 2m(a?)m.

Proof. The angles β1, β2, . . . , βn satisfy the following identities:

β1 + β2+ · · · +βn =
π

2
cos β1

a1
= · · · =

cos βn

an
=

1
2%

,

where % is the radius of the circumcircle of the polygon A. �
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