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ON EXISTING OF FILTERED MULTIPLICATIVE
BASES IN GROUP ALGEBRAS

ZSOLT BALOGH

ABSTRACT. We give an explicit list of all p-groups G of order at most p* or 2°
such that the group algebra KG over the field K of characteristic p has a filtered
multiplicative K-basis.

1. Introduction. In [8] Kupish introduced the following definition. Let A be a
finite-dimensional algebra over a field K and B a K-basis of A. Suppose that B is
a K-basis of A with properties:

1. if u,v € B then either uv = 0 or uv € B;

2. BNrad(A) is a K-basis for rad (A), where rad (4) denotes the Jacobson

radical of A.

Then B is called a filtered multiplicative K -basis of A.

R. Bautista, P. Gabriel, A. Roiter and L. Salmeron showed in [1] that if there
are only finitely many isomorphism classes of indecomposable A-modules over an
algebraically closed field K, then A has a filtered multiplicative K-basis.

In the present article we shall investigate the following question from [1]: When
have the group algebras KG got a filtered multiplicative K -basis?

According to Higman’s theorem the group algebra K'G over a field of character-
istic p has only finitely many isomorphism classes of indecomposable K G-modules
if and only if all the Sylow p-subgroups of G are cyclic.

Let G = (ay1) X {(ag) X -+ X (as) be a finite abelian p-group with factors (a;) of
order g;. Then the set

B ={(a1—1)"(az— )™ (as — )™ | 0<n, <q;}

forms a filtered multiplicative K-basis of the group algebra KG over the field K of
characteristic p.
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Evidently, if By and By are filtered multiplicative K-bases of KG7 and KGo,
respectively, then By x Bs is a filtered multiplicative K-basis of the group algebra
K [Gl X GQ]

First L. Paris gave examples of nonabelian metacyclic p-groups G such that
group algebras KG have a filtered multiplicative K-bases in [9].

In [10] P. Landrock and G.O. Michler proved that the group algebra of the small-
est Janko group over a field of characteristic 2 does not have a filtered multiplicative
K-basis.

In [2] the following theorem was proved:

Theorem. Let G be a finite metacyclic p-group and K a field of characteristic p.
Then the group algebra KG possesses a filtered multiplicative K -basis if and only if
p =2 and exactly one of the following conditions holds:
1. G s a dihedral group;
2. K contains a primitive cube root of the unity and G is a quaternion group of
order 8.

In [3] was given all p-groups G with a cyclic subgroup of index p? such that the
group algebra KG over the field K of characteristic p has a filtered multiplicative
K-basis.

For this question negative answer was given in [3], when G is either a powerful
p-group or a two generated p-group ( p # 2 ) with central cyclic commutator
subgroup.

2. Main results.

Denote C), the cyclic group of order n. For the sake of convenience we shall keep
the indices of these groups as in GAP. We have obtained the following theorems:

Theorem 1. Let KG be the group algebra of a finite nonabel p-group G of order
p" over the field K of characteristic p, where n < 5. Then KG possesses a filtered
multiplicative K-basis if and only if p = 2 and one of the following conditions
satisfy:
1. G is either dihedral group Dg of order 8 or dihedral group D1g of order 16;
2. G is either Qg or Qg x Cy and K contains a primitive cube root of the unity;
3. G is either Dg x Cs, or the central product DgY Cy of Dg with Cy;
4. GisHig={ a,c | a*=b=c*>=1, (a,b) =1, (a,c)=b, (bc)=1 ).

Theorem 2. Let K be a field of characteristic 2 and
G=( ab | a* =" =c*=1, (a,b) =¢, (a,c)=1, (be)=1 ),

with n,m > 2. Then KG possesses a filtered multiplicative K -basis.
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Theorem 3. Let G be the group

G={( ab | > =*=2=d’>=1, (a,b) =¢, (a,c) =d,
(a,d) = (b,c) = (b,d) = (c,d) =1 ),

withn > 1, and K a field of characteristic 2. Then KG has no filtered multiplicative
K-basis.

Theorem 4. Let KG be the group algebra of a finite nonabel 2-group G of order
2° over a field K of characteristic 2. Then KG possesses a filtered multiplicative
K -basis if and only if one of the following conditions satisfy:
1. G is Glg = D32, G25 = Dg X 04, G39 = D16 X 02 or G46 = Dg X Cg X 02,'
2. G is Gog = Qg X Cy, or G47 = Qg x Cy x Cy and K contains a primitive cube
root of the unity;

3. G is G22 = H16 X CQ, G4g = (D8Y04) X CQ
4. G 1is one of the following groups:

( ab | a*=b'=c*=1, (a,b)=c, (a,c)=1, (bye)=1 );
( ab | a®=0*=c*=1, (a,b) =¢, (a,¢) = (b,c)=1 );
( abc| a®= ) ) )=1
Gs =( a,byc| a®=c2=1, V> =da*, (a,¢) =a*, (a,b) =a'c, (bc)=
( a,bc| a*=b=c*=1, (bc)=ab’ (a,c 1

{

{

{

)
a,b,c\ a8:b4262:17 a4:b27 (a,b):CLGC, (a,c):(b,c): >;

)
(a,c) = (a,d) = (b,c) = (b,d) =1 ).

3. Preliminary remarks and notation. Assume that B is a filtered multiplica-
tive K-basis for a finite-dimensional K-algebra A. In the proof of the main results
we use the following simple properties of B (see [2]):

(I) Bnrad(A)" is a K-basis of rad(A)" for all n > 1.

(IT) if u,v € B\ rad(A)* and u = v (mod rad(A)*) then u = v.

Recall that the Frattini subalgebra ®(A) of A is defined as the intersection of all
maximal subalgebras of A if those exist, and as A otherwise. If A is a nilpotent
algebra over a field K, then ®(A) = A? by [5]. It implies that
(III) if B is a filtered multiplicative K-basis of A and if B\ {1} C rad(A), then all

elements of B\ rad(A)? are generators of A over K.
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A p-group G is called powerful, if one of the following conditions holds:

1. G is a 2-group and G/G* is abelian;

2. G is a p-group (p > 2) and G/GP is abelian.

Let G be a finite p-group. For a,b € G we define a® = b='ab and the commutator
(a,b) = a=tb~tab. Denote by Qan, Dan and SDan the generalized quaternion group,
the dihedral and semidihedral 2-group of order 2", respectively, and

—1 n—2

MDyw =( ab | o =b*=1, (a,b) =d? ).

We define the Lazard-Jennings series M;(G) of a finite p-group G by induction
( see [6] ). Put M;(G) = G and M;(G) = { (Mi_l(G),G),Mﬁ-](G)) ), where
— [%] is the smallest integer not less than %;

— (M;—1(G),G) ={ (u,v) | ueM;_1(G), ve G);
— M?(G) is the subgroup generated by p-powers of the elements of M;(G).
Evidently,

M;(G) 2 My(G) D --- 2 My(G) = 1.

Let K be a field of characteristic p. The ideal

A(KG):{ > g€ KG | Zagzo}

geG geG

is called the augmentation ideal of KG. Since G is a finite p-group and K is a field
of characteristic p, A(KG) is nilpotent, and

A(KG) D A*(KG) D -+ D A%(KG) D AT (KG) = 0.

Moreover, A(KG) is the radical of KG.

Then the subgroup D,(G)={ g€ G | g—1¢€ A"(KG) } is called the nth
dimensional subgroup of KG.

It is well known that for finite p-group G, M;(G) = ©;(G) for all i.

Let I = {i € N | D;(G) # D;11(G)}. For i € I, let p%i be the order of the
elementary abelian p-group

d;

@Z(G)/gH_l(G) = H<’UJ”©H_1(G)>

j=1
Hence each g € G can be written uniquely in the form

f— all a12 DY aldl a21 DY a2d2 all DR aldv’ DY a31 DY anS
g = Uq1 Uqg Uyg, Ui Ugq,™ -+ - Uy W;d, Ugy Ugq, »
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where the indices are in lexicographic order, i € I, 0 < a;; < p, and s is defined as
above.

Let w = HleH(HZ;l(ulk —1)¥*) € A(KQG) be where 0 < y;, < p, and the indices
of the factors are in lexicographic order. Then w is called a regular element of weight
p(w) =3 cr (Zglzl lyix). By Jennings Theorem ( see [6] ), regular elements which
weight not less than ¢ constitute a K-basis for the ideal A*(KG).

Clearly, { (u1;—1)+A*(KG) | j=1,...,dy }isa K-basis of A(KG)/A*(KG).

Note that ®9(G) coincides with the Frattini subgroup of G, so the set
{u11,u12,... ,u14, } is @ minimal generator system of G.

Suppose that By = {1} U {b1,ba,... ,bjg|—1} is a filtered multiplicative K-basis
for KG. Then B = B \ {1} is a filtered multiplicative K-basis of A(KG) and
contains |G| — 1 elements.

Let B\ (BN A%(KQG)) = {b1,b2,... ,b,}. Evidently, n = d; and

by, = Z agi(u; — 1) (mod A*(KG@)),

where ay; € K and A = det(ay;) # 0.
For units z,y of KG we have

-—De-1)=[-Dy-D+@E-1)+F-1](z-1)
+-Dy-1)+(=-1), (1)

where 2z = (y,z). Since z;; = (u1j,u1;) € D2(G) and z;; — 1 € A*(KQG), using (1)
we obtain that

(ulj — 1)(U11 — 1) = (Uli — 1)(U1j — 1) + (Zji — 1) (mod Ag(KG)) (2)

Thus simple computations give that

n n
bkbs = Zakiasi(uli — 1)2 + Z (akiasj + akjasi)(uli — 1)(u1j — 1)

i=1 i,j=1
i<j

n
+ Z akjasi(zji - 1) (mOd Ag(KG))7 (3)

where k,s =1,... ,n.

Denote by 2 the set of groups which belong to one of the following type of
nonabelian p-groups:
1. either metacyclic or powerful;
2. p-group with cyclic subgroup of index p?;
3. two generated p-group (p # 2) with central cyclic commutator subgroup.
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4. Proof of Theorem 1. Let K be a field of characteristic p (p is odd) and
G a p-group of order p*. The classification of these groups can be found in [7].
According to [2] and [3] if G belongs to 2 then G has no filtered multiplicative
basis. If G does not belong to 2, then it is one of the following two groups:
Hi={( ac | a?=c =1, (a,c)=d,(d,c)=f,

(a,d) = (a,f) = (¢, f) = (d, ) =1 ) with p >3;

Hy={( a,c | a?=c? =1,(a,c)=d,

(c,d)=(a,d)=1 )Yyx{( h|hP=1 ) withp>3.
It is easy to check that in both group algebras K H; and K Ho:
(c—=1)(a—1)=(a—1)(c—1)—(d—1) (mod A*(KQ)). (4)

Let us consider the following cases:
Case 1. Let G = H;. Since

Mi(G) =G, My(G)=(G,G") ={d, [), Ms(G)=(({d,[),G),G")=(f)

we have that p(d) = 2 and p(f) = 3, where p is the weight of these elements. Using
(4) and

(d—D(c—1)=(c—1)(d-1)+(f—-1) (mod A*(KQ)),
let us compute b;, b;,b;, modulo A*(KG) where (ip = 1,2). The results of our

computations will be written in a table, consisting of the coefficients of the decom-
position b;, b;,b;, with respect to the basis

{ (@=1)(c=1)"2(d=-1)"(f = 1) | ji+jo+2s+3js=3;
j17j2:0717273; j37j42071 }
of the ideal A3(KG)/A*(KG). The coefficients of b;,,b;,,b;, will be denoted
«;, Bi, Vi, respectively, and in the following we shall use these coefficients. We
shall divide the table into two parts (the second part written below the first part).

The coefficients corresponding to the first four basis elements will be in the first
part of the table, while the next three will be in the second one. Thus

(a-1° [ (a=12c—1) | (a—1)d—1) |(@=1)(c—1)
bibob1 | ofp 2010261 + affe | 2010261 —aife 210282 + o361
b1b3 a1 % 2010182 + azBf | —20267 — a1B182 | 2026182 + o133
ba by a%ﬁl 2a1 a0 Fo + a%,@’l —20{%,32 —ajasfB |2a1000s + a%ﬁl
babiby | a1 2015102 + azff | —20081082 — a28] | 20281682 + a153
bi ozzl)’ 30[%&2 —304%0@ Sala%
b%bz a?B 201281 + a2 B2 —3a1a281 201282 + a3 b1
bsb1 a1 32 2018102 + 287 —3a1 68102 2028182 + 183
bs B3 36362 =323, 38182
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(c = 1){d —1) (f = 1) (c—1)°
biboby | —2c1anfB2 —a3f1 | —a3B1 —arazfB2 | a3fB
b1b2 —3a281 62 —2a231 62 33
baby —3araz B2 —2a1a232 a2 B2
bobiby | —2028182 — 133 | —oufs — a2f1fB2 | a3
bi —3a10¢§ —2a10¢§ ag’
6562 —2a3B1 — arazfe | —onaef2 — B | o
bsb1 —2a135 — a2B1B2 | —a2B1B82 — a3 | af3
bs —303232 —23133 B3

17

We have obtained 8 elements, but the K-dimension of A%(KG)/A*(KG) equals
7. Since A # 0, we can establish that one of this elements either equals to zero
modulo ideal A*(KG) or coincides with another one.

It is easy to see that none of lines are equal to zero. Indeed, for example, if
biboby = 0 (mod A*(KG)) then from second column of the first part and fourth
column of the second part of the table we get that a28; = 0 and a33; = 0. Since
A # 0, this case is impossible by third column of the first part of this table. In a
similar manner we can proof this statement for all lines.

The assumption that two of lines are equal also a contradiction. For instance,
if b1baby = b1b3 (mod A*(KG)), then from second column of the first part and
fourth column of the second part of the table it follows that a1 (a1 — $1) = 0 and
asfa(ae — [2) = 0. Since A # 0, the third column of the first part of the table
leads to a contradiction.

Similar calculations for any two lines also lead to a contradiction, so we have got
that KG has no filtered multiplicative basis.

Case 2. Let G = Hy. Using (4) let us compute b;,b;, modulo A*(KG) where
(ir = 1,2,3). The results of our computations will be written in a table, consisting
of the coeflicients of the decomposition b;, b;, with respect to the basis

{ (=17 (-1 -

D7(d—1)7 | ji4jo+Js+20s = 2;

j17j27j32071:2; j4:O71 }

of the ideal A%(KQ)/A3(KQG):

(a=1)% |(a=1)(c—1) (a=1)(h—1) (c=1)?% [(c=1)(h—1) (h—=1)2 |(d—1)
b1b2 o181 |a1fB2 +oa2f1 [a183 +a3B1 [azB2 [a2fB3 +a3B2 [a3fs |[—axbh
baby (181 |a1B2 + 2B |a1B3 +a3fBr |a2fB2 |a2fB3 +a3fBe |a3fB3 | —a1f2
bibs |11 |aave +a2y1 |Qivs + a3y |@2y2  |Q2ys +asve |asys | —agema
b3b1 %1011 a1yz +a2v1 |a1ys +azyr |a2ye  |aeys +asve |asys | —aiye
babs | B1v1  |Bive + B2vr | Biys + B3y |B2yz  |B2vs + B3v2 |Bsvz | —Bemn
bgba | Biv1  |Bive + B2v1 |Biys + B3y |B2ye |B2vs + B3v2 [B3vs | —Bive
bi ai 2001 o 2001 a3 a§ 200003 ag —a a9
ba ﬁ% 26182 26183 B 23283 B —B162
by |7 27172 27173 Vs 27273 V3 —7172

We have obtained 9 elements, but the K-dimension of A2(KG)/A3(KQG) equals 7,
so we conclude that some lines of the table either are equal to zero modulo the ideal
A3(KG) or coincide with some other lines.



18 Zsolt Balogh

Since A # 0, it is clear that b7 # 0 and b;b; # 0 (mod A3(KG)). According
to the last tree lines of the table if b7 = b2 (mod A*(KG)), then either b; = b; or
b; = —b; (mod A*(KG)), so we have that bibs = baby, b1bs = b3by and babs # bgbs
(mod A3(KG)), because the other cases are similar to this one.

Simple computations show that if either y # 0 or #; # 0, then KG is a
commutative algebra which is a contradiction, so we can assume that oy = 7 = 0.

From the 8th column we have asy; = 0. Since A # 0 we conclude that as = 0 and
we have a basis of A(KG)/A%(KG):

by (h—1) (mod A%(KGQG));
by =(c—1)+Bs(h—1) (mod A*(KG));
by =(a—1)+72(c—1)+v3(h—1) (mod A%2(KQ)).
Let us compute b;, b;,b;, modulo A*(KG) where 5, = 1,2,3 with respect to the
basis
{ (a—1)"(c—=1)2(h—1)3(d—1)* | j1+7j2+j3+2j1=3;
J1:J2,5 = 0,1,2,3; ja=0,1 }

of the ideal A3(KG)/A*(KQ).

Assume that p = 3. Since the dimension of A%(KG)/A*(KG) is 10, so we
conclude that

b3by = b1b3, babs = bsb3, b3by = bzbobs (mod A*(KQ)),

and b3 =0, b3 =0 (mod A*(KQG)). From these congruences give that 83 = v, =
Y3 = 0.

Now suppose that p > 3. In this case the dimension of A3(KG)/A*(KQ) is 15,
so we conclude that

b3by = bib3, b2by = bsbybs (mod A*(KGQ)),

and we also get that #3 = v, = vy3 = 0.
Assume that KG has a filtered multiplicative basis. Since KG = K[G; x G3,
where

Gi=( ac | a?=c=1, (a,¢)=d,(c,d)=(a,d)=1 )

and Go=( h | h”=1 ), and we have established that
b1 (h—1) (mod A%(KQ));
b2 (c—1) (mod A%(KGQG));
bs =(a—1) (mod A%(KG)),

with by € KG1q, by, b3 € KGo, so we conclude that K Gy also has filtered multi-

plicative basis, which is a contradiction by [3].

Let K be a field of characteristic 2. If |G| < 2°, then KG has a filtered multi-

plicative basis (see [2,3]) if and only if G and K satisfy the conditions of Theorem
1, so the proof of the theorem is complete.



On existing of filtered multiplicative bases in group algebras 19

5. Proof of Theorem 2. Let
G={( ab | =" ==1, (a,b)=¢, (a,¢)=1, (bye)=1 ),
and put
bi =u=(1+a), b3=v=(1+b) (mod A*(KQ)).
Using the identity:

(1+b0)(1+a)=1+a)(1+b)+ (1+c) (mod A*(KQ)),

we get that the set { b} = wv, b2 = wvu, b3 = u?, b3 = v? } is a basis of
A%(KG)/A3(KQG) and

by =uvu = (1+a)?>(1+b)+ (1 +a)(1+c) (mod A*(KQG));

b2 =u*v = (14 a)*(1+0b) (mod A*(KQ));

by =u® = (1 +a)® (mod A3(KQG));

b3 = uv® = (1 +a)(1 +b)* (mod A*(KGQ));

by =vuv = (1+a)(1+b)*+ (1 +b)(14c) (mod A*(KG));

b =0 = (14+0)* (mod A*(KQ));
is a basis for A3(KG)/A*(KG) and its determinant Az = 1. We shall construct
a basis of A'(KG)/A™(KG) by induction. Assume that b} |, b2 |, --- bl b0,

is a basis for A"~ (KG)/A'(KG). Evidently, the determinant A;_; of this basis is
not zero. Simple computations show that the determinant A; of the elements b] =

ubgfl, forj ={1,2,--- ,n} and b?“ = b?:llv, b?” = bl v isequal to Ai_l-‘ é (1) +
0, so we got n + 2 linearly independent elements. Since dim A'(KG)/A™™ (K@) is

also n + 2 we have obtained that K'G has a filtered multiplicative basis.
6. Proof of Theorem 3. Let G be the group

Ge=1{( ab | > =*=2=d*>=1,(a,b) =¢, (a,¢) =d,
(CL?d):(bac):(bad):<cad):1 )7

with n > 1. Let us compute the Lazard-Jennings series of this group:
M(G) =G, My(G)=(a®c,d), Ms(G)=(d), MG)=1).
We conclude that pu(c) = 2 and pu(d) = 3. Using the identity

(1+b)(1+a)=1+a)(1+b)+(1+c) (mod A*(KGQ)), (5)
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it follows that

bib2 = a11(1 + a)? + (1 B2 + a281)(1 + a)(1 +b) + a281(1 + ¢) (mod A3(KQ));
baby = a161(1 +a)? + (182 + a281)(1 + a)(1 +b) + a162(1 + ¢) (mod A3(KQ));
b2 =a?(1+a)? +araz(l +c¢) (mod A3(KG));
b2 = B2(1 +a)? + B1B2(1 + ¢) (mod A3(KQ)).

We have obtained 4 elements, but the K-dimension of A?(KG)/A3(KG) equals
3. Since A # 0, we get that biby # bgbl,b%,bg and b1bs, boby #Z 0 and b% = b%
(mod A3(K@G)). Thus either b2 = 0 or b3 = 0 (mod A3(KQG)). It is easy to see
that the second case is similar to the first one, so we consider the second one. Let
(1 =0 and we can put a; = #3 = 1 and

u="b = (1+a)+ az(l+b) (mod A*(KQ));
v="by = (1+0b) (mod A*(KQ)).
Using (5) and the identity
(1+c)(1+a)=1+a)1+c)+(1+d) (mod A*KG)),
straightforward computations show that

wou? = (14+a)?(1+b) +ax(l+a)(1+b)(1+c)+ (1+a)(1+d) (mod A5(KG));

v =1 4+a)1+0)+1+a)?(1+c)+ax(l+a)1+b)(1+c)+
(1+a)(1+d) (mod AS(KG));

vuvu = (1+b)(1+d)+ (1 +a)(1+b)(1+c) (mod A5(KQG));

wou = (14+a)2(1+0)+(1+a)?2(1+c)+as(l+a)(l+b)(1+c)+
az(1+b)(1+d) (mod A®(KQG));

wvuv = (14+a)(1+b)(1+c) (mod A®(KQG));

vu?v = (14 b)(1+d) (mod A5(KQ));

wv =1 4+a)2(1+0) +ax(l+a)(1+b)(1+c)+ax(l+b)(1+d) (mod A3(KQG)).

We have obtained 7 different element, but this is a contradiction because

dim(AYKG)/AY(KG)) = 5.

6. Proof of Theorem 4.

Let G be a nonabelian 2-group of order 2°. According to [3] if G is one of the
following groups {G5,G7,Gs, Gg, G109, G11}, then G has a cyclic subgroup of index
p? and K G has filtered multiplicative basis, but if G is one of the following groups:

G0 =SD16 x Cy;

Ga1 =Q16 X Cy;

G =( abc |[a®=b"=c'=1,a"=0%=¢c% (a,b) =d" (a,c) = (b,c) = 1);
Gus =( a,bc |a®=b*=c*=1,(a,b) =a’ (a,c) =a*, (bc)=1);

G =( a,b,c |CL8 =2 =1,b% = a, (a,c) = at, (a,b) = ab, (b,c) = 1),



On existing of filtered multiplicative bases in group algebras 21

then K'G has no filtered multiplicative basis.
If G is one of the following groups:

Gi=( ab | a*=0"=1, (a,0)=0a" )
Gar =M D1 % Cy;
Gag=( a,bc | a®=0>=c*=1, (bc)=a", (a,b)=(a,c)=1 ).

then they are powerful groups and by [3] K G has no a filtered multiplicative basis.
If G is one of the following groups:

Gi7 =M D3y, G1g = D32, Gig = SD32, Gag = @32,

then G is a metacyclic group and K'G has a filtered multiplicative basis if and only

According to [2] and [3] we get that for the following direct products KG has a
filtered multiplicative basis: G22 = H16 X 02, G25 = Dg X 04, G26 = Qg X 04, G39 =
D16 X CQ,G46 = Dg X CQ X CQ,G47 = Qg X CQ X CQ,G48 = (D8Y04) X CQ.

If G = G, then for n = m = 2 Theorem 2 asserts that KG has a filtered
multiplicative K-basis.

Let G be the group

Go={( ab | a*=0b*=1,(a,b)=c, (a,c) =d,
(a,d) = (b,c) = (b,d) = (¢,d) =1 ).

For n = 2 the group in Theorem 3 is isomorphic to Gg, so the group algebra KGg
has no filtered multiplicative K-basis.

Now, we shall consider the following 7 cases.

Case 1. Let G be the group

Gozs=1{ abc | a*=b"=c*=1, (a,¢c) = (b,c) =1, (a,b) =a® ).
Using the identity

(1+b)(1+a)=1+a)(l+b)+(1+a)* (mod A3(KQ)),
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let us compute b;, b;, modulo A*(KG) where (i, = 1,2,3). The results of our com-
putation will be written in a table, consisting of the coefficients of the decomposition
bi, b;, with respect to the basis

{ I4+a)"Q+b)2(1+c)® | ji+i+is=2

j17j2:07152; j3:071 }

of the ideal A%(KG).

(1 + a)? (14+a)1+b) |QA+a)dA+¢) |[A+b)(1+c) [(1+0)?
biba [a181 + a2081 |a1f2 + agf1 |a1f83 + azf1 [a2f83 + a3B2 |a2[2
baby |11 +a1f2 |a1f2 + a1 |o1f3 + a3f1 |a203 + a3fB2 |azf2
b1bs |a1v1 + a2y1 a1y + agy1 |13 + azyr |agyz + azye |a2ye
b3b1 |11 +a1v2 |12 + a1 |a1v3 + a3yl |a2v3 + azye [asve
bobs | Bim1 + B2v1 [Bive + Bevi |Bivs + Bsm | B2vs + B3v2 | B2e
bgba | Biv1 + B1v2 |Bive + B2y |Bivs + B3y B2y + B3z | B2z
bi ozi + aoaz |0 0 0 oe§
b% ﬁ% + ﬂ2ﬁ3 0 0 0 /B%
bq Y{ + 7273 0 0 0 5

Since A # 0, it is easy to see that the first six lines not equal neither zero nor the
last three lines. Note that the dimension of A?(KG)/A?(KG) equal to 5 and KG
is not a commutative algebra. From the fact b7 = b2 = 0 (mod A*(KG)), i # j it
implies that b; linearly depends on b;, so we shall consider two interesting cases.

In the first case b3 = 0, b3 = b3 # 0 (mod A?(KG)) and we get that by =
az(14+c) (mod A%(KG)) and by property (I) of the filtered multiplicative K-basis,
b3 = b3. From the condition b3 = b3 (mod A3(KG)) we have that B2 = 5 # 0 and
(B1 +7)(B1 + 71 +72) = 0. Since A # 0 so f1 = 1 + 72 and we conclude that
ba=A+1)(1+a)+(1+b)+pu(l+c) and bs = A(1+a)+ (1+b) +n(1+c), where
A= %, = % and n = 3—2 The fact b3 = b3 gives that 1 + a? + ab + a®b = 0,
which is impossible.

In the second case b? = b3 = b3 # 0 (mod A3(KG)) and we can assume that
blbg = bgbl, b1b3 = bgbl (mod AS(KG)) and b3b2 §é bgbg (mod AB(KG)) Since
biby = boby and bibs = bsb; (mod A3(KG)) we have that a8 = a1 and asy; =
a172. From the fact that b3 = b3 = b2 # 0 (mod A?(KG)) the sixth column asserts
that as = B3 = 75 and the second column give that oy = 31 = 71, so we conclude
that bsby = babs (mod A3(KG)), which is a contradiction. These facts give that
K G has no filtered multiplicative basis.

Case 2. Let G be the group

Gas =

a,b,c | a =c° =

Using the identity

(14+c)(1+b)=1+b)(1+c)+ (1 +a)? (mod A3(KQ)),
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let us compute b;, b;, modulo A*(KG) where (i, = 1,2,3). The results of our com-
putation will be written in a table, consisting of the coefficients of the decomposition

bi, b;, with respect to the basis

{ A+a)"(1+0)21+¢)® | ji4ja+is=2;

j17j2:071>2; j3:071 }

of the ideal A%(KG).

(1 + a)? (14+a)1+b) |A+a)1+c) |[A+b)(1+c) |[(1+0)?
bibs 181 + a3fe |a1f2 + az2f1 [a1fB3 + azfB1 [a2f83 + az3B2 |azf2
bab1 | 181 + a2f3 |a1f2 + agf1 |a1f83 + azf1 |a2f3 + azfB2 | a2
bi1bs |a1v1 +azye |a1y2 + agy1 |a1y3 + a3v1 |a2y3 + azye |azy2
b3b1 |o1y1 + a2ys |aiye + aoy1 |a1y3 + azy1r |a2y3 + aszye |asys
babs |B171 + B3y |Biv2 + B2vi [Biys + B3v1 | B2v3 + B3v2 | B2
b§b2 Biv1 + B2y |Bivz + B2y |Bivs + Bsvi B2y + B3z | B2z
b% a% + asasz |0 0 0 a§
ba ﬁ% + /BQﬁB 0 0 0 6%
bz Y + v2vs |0 0 0 V3

It is obvious that the first six lines not equal neither zero nor the last three lines.
Since the dimension of A?2(KG)/A3(KG) equals 5 and KG is not commutative we
have either b1b2 = bzbl, b1b3 7_é bgbl, bzbg 7_é b3b2 (mod AS(KG)) or blbg = b2b1,
bibs = bgby, babs # bzby (mod A3(KQ)), because the other cases are analogous to
these.

In the first case we get that b? = b3 = b2 = 0 (mod A3(KG)), so A = 0 which
is impossible. In the second case consider the following subcases:

a) b3 =03 =63 #£0 (mod A3(KG));
b) b7 = b3 =0 and by # 0 (mod A*(KG));
c) b7 =b? # 0 and b} =0 (mod A*(KG)).

Since A # 0 the subcase a) is impossible. Consider the subcase b), and for
example put b7 = b3 = 0 and b3 # 0 (mod A3(KG)). We get that ay = 32 = 0 and
a1 = 1 = 0 by second and sixth columns, so A = 0 which is a contradiction. The
other cases also lead to contradictions.

Assume that b7 = b2 # 0 and b7 = 0 (mod A*(KG)), for instance b7 = b5 # 0
and b2 = 0 (mod A3(KG)). According to second and sixth columns ag = (B2 # 0
and (a1 + 31)? = as(as + B3). Since biby = bob; the second column gives that
asfz = asf3, so A = 0 which is a contradiction. Thus KG has no a filtered
multiplicative basis.

Case 3. Let

a,bc | a®*=bv*=c*=1, (a,c) =d, (bc) =e,
= (b,d) = (b,e) = (¢,d) = (c,e) = (d,e) =1 ).

G = Ga7 =(
(a,b) = (a,d) = (a,e)

Since
M;3(G) = (1)

Ml(G) = G7 MQ(G) = <d7 6>7
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we obtained that p(d) = u(e) = 2. Let us compute b;, b;, modulo A%(KG) where
(i = 1,2,3). The results of our computation will be also written in a table,
consisting of the coefficients of the decomposition b;, b;, with respect to the basis
J1+J2+I3+2)4+2)5 =2
j17j27j3:0>1; j47j5:071 }

{ A4+a)" 1 +b)2(1+ )21 +d)*(1+e)5 |

of the ideal A2(KG). Using the identities:

(14+c)1+a)=1+a)(l+c)+(1+d) (mod A3(KQG));
(14+c)(1+b)=1+b)(1+c¢)+(1+e) (mod A3(KQ)),

we get

Q1+a)14+0b) |[O4+a)1+4+e) |[A+b)A+c) |[(1+d) |[(1+¢e)
biba |a1f2 + a2fB1 [a183 + a3fB1 [a2083 + a3B2 [as3B a3 B2
bob1 |12 + a2 |a1f3 + azf1 |a2f3 + a3fB2 |a1f3  |a283
bibs |a1ve + aem1 a1y + a3y |a2ys + asye |asy sy
b3b1 |a1y2 + a1 |a1y3 + a3y |a2y3 + azy2 |a1ys Q273
babs | Biv2 + Bavi | Bivs + B3vi | B2vs + B3z | Bam B372
b3ba |B1v2 + Bam1 |B1y3 + B3 | B2vs + B3v2 | P13 273
bi 0 0 0 o103 aga3
b% 0 0 0 8183 B203
bz 0 0 0 Y1773 Y273

It is easy to see that the first six lines not equal neither zero nor the last three
lines. Since the dimension of A?(KG)/A3(KG) equals 5 and KG is not commu-
tative we have either blbg = bzbl, blbg §é bgbl, b2b3 7_é b3b2 (mod Ag(KG)) or
biby = baby, bibs = bsby, babs # bsby (mod A3(KG)), because the other cases are
similar to these.

In the first case we get that b3 = b3 = b3 = 0 (mod A3(KG)) and a3z = B3 =
71 = 72 = 0. Let us compute b;,b;,b;, modulo A*(KG) where (i = 1,2,3).
Since the dimension of A%(KG)/A*(KG) equal to 7 but we have got 8 different
elements, this case is impossible. In the second case b1bys = byb; and bbby =
bsby (mod A3(KG)). Assume that az = 0. Fifth and sixth columns give that
B3 = v3 = 0 which is impossible, so as, 33,73 # 0. These columns gives that
by = Bzaz'b (mod A%(KG)) which is a contradiction, therefore KG has no a
filtered multiplicative basis.

Case 4. Let G be one of the following groups:

Gy =( a,bc | a*=b"=c=1, (a,c) =a? (bc)=d,

(a,b) = (a,d) = (b,d) = (c,d) =1 );
Gag =( a,bc | a*=b*=1, a®>=c% (a,¢) =d? (bc)=d,

(a,b) = (a,d) = (b,d) = (¢,d) =1 );
Gso=( a,bc | a*'=v=c=1, (a,c) =d, (bc)=d’
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If GG is either Gag or Gog then we have

(I1+e)(1+a)=1+a)(l+e)+(1+a)? (mod A*(KQ));
(14+¢)+(1+d) (mod A*(KG)).

If G = G350 then we have

a)=(1+a)(1+¢)+ (1 +d) (mod A3(KQ));
1+¢)+ (1 +a)* (mod A3(KQ)).

Using the last four identities let us compute b;,b;, modulo A3(KG) where (i =
1,2,3). The results of our computation will be written in a table as above, consisting
of the coeflicients of the decomposition b;, b;, with respect to the basis

{ A4+a)(1+0)721+e)*A+d)* | j1+jo+is+2a=2

j17j27j3:07152; j4:05]- }

of the ideal A3(KG):

(1 + a)? (1+a)(1+b) |[A+a)(1+c) [A+b)A+c) |(1+4d)
b1ba 161 + A, B) |o1fB2 + a2fB1 |a183 + azf1 |83 + azfB2 |Q(a, B
bab1 |a1f81 + A(B,a) |a1f2 + agf1 |a183 + azfi |a2f83 + azfe | QB o
b1b3 |a1v1 + Aa,y) |a1y2 + a2y |a1y3 + a3y |a2y3 + a3y | Q(o,y
b3b1 |a1v1 + A(y, ) |a1y2 + aey1 |a1y3 + a3y |a2y3 + a3y | Q(y, «
babs G171 + A ﬁ:’Yg Biva + Bay1 | Bivs + B3vr B2z + B3z | /3,7;
bsba |B1v1 + A(7,8) |Bive + B2y Bz + B3v1 | B2vs + B3y |Q2(v, B
bi ai + A(a,@) |0 0 0 Qa, @)
b% 55 + A(B,8) |0 0 0 Q(8, B)
b3 |y + Alv,y) [0 0 0 Q(v,7)

where if G = Gag then A(d,€) = d3€1, Q(5,€) = d3€q, if G = Gag then A(d,€) =
5361 + 5363, Q(5, 6) = 5362 and if G = Gg() then A(& E) = 5362, Q((S, 6) = 5361.

It is clearly that the first six lines not equal neither zero nor the last three lines.
Since the dimension of A?2(KG)/A3(KG) equal to 5 and KG is not commutative
we have either b1b2 = bgbl, blbg 7_é bgbl, b2b3 §é b3b2 (mod A3(KG)) or blbg = bgbl,
bibs = bgby, babs # bzby (mod A3(KQ)), because the other cases are analogous to
these.

In the first case we get that b? = b3 = b3 = 0 (mod A*(K@G)), so A = 0 which
is impossible. In the second case bibs = bob; and bibs = bsb; (mod A3(KQ)).
Assume that ag = 0. Second and sixth columns give that 33 = v3 = 0 which
is impossible, so ag, 83,73 # 0. Consequences of columns 2 and 6 are that by =
Bzaz by (mod A?(KG)) which is a contradiction. Thus these group algebras have
no filtered multiplicative bases.
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Case 5. Let GG one of the following groups:

a* =bv*=c* =1, (b,c) = ad®*b?, (a,c) =d® (a,b) =1 );
a,b,c a* =b* =1, ¢ = a®*b?, (b,c) = a®b?, (a,c) =a?, (a,b) =1);

{ |
{ |
( abe | at=b"=c=1, (bc)=d? (a,¢) =a?b? (a, b)zl )i
{ |
{ |

a,b,c

b
b

(a
a, b, c a4:b4202:1,(,c): 27 (CL,) CL,( ) >;
b2

b
at =v*=1, ¢ =d? (byc) =% (a,c) =d? (a, )_1 ).

Let us compute b;, b;, modulo A*(KG), (i), = 1,2, 3). The results of our compu-
tations will be written in a table, as before, with respect to the basis

a,b,c

{ I+a)*(1+b0)720+c) | ji+ja+is =2
j17j27j3:0a172 }

of the ideal A3(KG). If G = G3; then

(1+c)(14a)=(1+a)1+c)+ (1+a)® (mod A*(KG)):;
(1+c)1+b)=10+b)(1+c)+ 1 +4a)?+ (1+b)? (mod A3(KQ)),

if G = G32 then

1+c)(14+a)=04+a)(l+c)+ 1+ a)2 (mod A3(KG));
(14+c)14+b)=14+b)(1+c)+ 1 +a)?+ (1+b)? (mod A3(KG));
(14+¢)>=(14+a)®+ (14+b)? (mod A*(KQ)),

if G = G33 then

(1+c)(1+a)=0+a)(l+c)+(1+a)*+(1+b)? (mod A*(KQ));
(14+c)(1+b) =1 +b)(1+c)+ (1 +a)* (mod A*(KQ)),

if G = (34 then

a)(14¢) + (14 a)? (mod A*(KQ));
b)(1+c¢)+ (14 b)? (mod A*(KG)),

(I+c)(1+a)=(
(I+c)(1+0)=(
if G = G35 then
(14+c)1+a)=1+a)(l+c)+(1+a)? (mod A3(KQ));
(14+c)(1+b)=1+b)(1+c¢)+ (1+0b)? (mod A3(KQG));
(1+0)?=(1+a)
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(1 + a)? (14+a)1+b) |[A+a)(14+c) |A+b)(1+c) | (1 + b)?
b1ba [a1f1 + A, B) [a1f2 + a281 [a1f3 + a3B1 [aefB3 + azfe [aefe + (o, B
baby |11+ A(B,a) |a1f2 + a2B1 |a183 + a3f1 |a2f3 + azf2 |azfB2 + Q(6, o
b1bs |a1v1 + Ay, a) |a1y2 + azy1r |a1vs + azyr |a2y3 + azye |a2y2 + (7, a
b3b1 |o1y1 + Ao, y) |aaye + aey1 |a1y3 + azyr |a2ys + azye |azy2 + Q(o,y
babs |B1im1 + A %ﬂ; B1ve + Bam1 | B1ys + B3mr | Bevs + B3y | B2y + Q2 %ﬂ;
bsba |Bim + A(B,y) [Bive + B2y |Biys + Bsv | B2y + Bsve | B2z + LB,y
bi ai + A(a,) |0 0 0 a§ + Qa, @)
b5 [ + A(vy) [0 0 0 5+ Q)
where A(6,€) and Q(J, €) is the following:
A(d,€) Q(,€)

G31 |d3e1 + d3e2 d3€2

G32 |03€1 + d3€2 + 03€3 | d3€2 + €3

Gz |d3e1 + d3e2 d3€1

G3q |03€1 d3€2

G3s |d3e1  + d3e3 d3€2

Evidently the first six lines not equal neither zero nor the last three lines. Since
the dimension of A?(KG)/A3(KG) equal to 5 and KG is not commutative, we
have either b1b2 = bgbl, b1b3 7_é bgbl, bzbg ?é b3b2 (mod A3(KG)) or b1b2 = bgbl,
bibs = bzby, babs # b3by (mod A3(K@G)), because the other cases are similar to
these.

In both of cases we can see that biby = bgb; (mod A3(KG)). Assume that
a3z = 0. Second and sixth columns give that g3 = 3 = 0 which is impossible, so
a3, 33,73 are not zero. Columns 2 and 6 imply by depends on b; modulo A%(KQG)
which is a contradiction so these group algebras have no filtered multiplicative
bases.

Case 6. Let G =Gy beand put u=(14+a)+ (1 +¢),v=(1+0b)+ (1+4d),
w=(1+b+(1+c)+(1+d)and z=(1+a)+ (1+b)+ (1+c) (mod A2(KQ)).

Using the identities:

(1+b)(1+a)=1+a)(l+Db)+(1+a)? (mod A3(KQ));
(14+d)(1+c)=14c)1+d)+ (14 a)® (mod A3(KG));
(14+a)=14+b?=14c)?=(14+d)? (mod A*(KQ));

we get that
o {uv,uw,uz, zu, vw, vz, wz} is a basis of A2(KQ)/A?(KG);
o {uzu, vvw, vzu, wau, vuz, uzW, VWz, zuz} is a basis for A3(KG)/AYKG);
o {vuzu, wuzu, zuzu, vZUz, W2UZ, UVWZ, VWzU} is a basis of A*(KG)/A%(KG);
o {vzuz,wzuz, vwuzu, vwzuz} is a basis of A5(KG)/AS(KQG),
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and the element vwzuzu is a basis for A*(KG).
Case 7. Let

G=G50=< a,b,c,d | a4=l)2262:d4:17 a2:d2,
(a,d) = (b.c) = (c,d) =a®, (a,0) = (a,¢) = (b,d) =1 ).

Using the identities:

(1+d)(1+a)=(1+a)(l+d) + (1+a)® (mod A*(KG));

(1+c)(1+b) =1 +b)(14c)+ (1+a)?® (mod A*(KG));

1+d)(1+c)=1+c)(1+d) + (14+a)?® (mod A*(KG));
(1+a)*=(14+d)* (mod A*(KQG)),

let us compute b;,b;, modulo A3(KG) where i, = 1,2,3,4}. The results of our
computations we shall write in a table, similar to previous cases with respect to the

basis

{ A+a)" (@ +0)7A+)A+d)* | jitje+is+is=2
jl = 071727 j27j37j4 = 051 }

of the ideal A%(KG):

(1+a)(1+b) [(1+a)(14c) [(14+a)(1+d) [(14b)(14¢) [(14b)(14d) [(1+e)(1+d) |[(14a)?

bibg [ATZ(a,8) [AT5(a,8) [AT(a,8) A% (a,8) [A%%(a,8) [ (a,B) [Qa, stasBztasBrtasfBs
baby [AL2(a,8) [ALS3(a,B) |AE(a,B) |A%3(a,8) A% (a,B) |A%%(a,B) [Qa,pta2Bstorfatasfsy
bibs A2 (ay) [AL3(ay) AR (ay) A3 (any) |a%%(ay) (A3 (ay)  [Qa,ytasvetaartaays
b3by A1’2(0‘7’Y) AI’S(O‘7'Y) A1’4(O‘7'Y) AQ’B(O‘/\/) A274(O‘7’7) A3'4(o‘77) Qa,'y+a273+0¢1'74+0‘374
bibg A2 (a,8) |AL3(a,8) |ALE(a,8) [A%3(a,8) |A%%(a,8) [A%*(a,8) |Qa.stazdatasdtaads
baby |[AY2(a,8)  |AL3(a,8) |abE(a,8)  [A%3(a,0) |A%%(a,8) [A3H(a,8) [Qa,sta2d3tardataszds
bobs [AL2(8,y) |AL3(8,) [ALY(B) A3 |26 [A3By) (s, +B3v2+B471+Bavs
baba [AL2(8,y) |AL3(B,) [ALA(By) |Aa23(B,y) [A2A(B,) |A3(BY) Qg4 +B2v3+B1Va+B374
bobs |[AL2(8,6) |AL3(B,8) |abd(s,8) [AZ3(B,0) |aA%4(8,8) [A34(8,6) [Q5,5+B302+B461+8403
baby [A12(8,6) |AL3(B,8) [AL4(B,6) |a%3(B,6) |AZ%(B,8) |A%%(B,6) [Qp,s+B203+B104+P304
baby [AL2(7,8) |ALB(,8)  |aALA(v,8)  |AZ3(4,8) [A%A(v,8) |A%A(4,8) Q5 +7302+7401+7403
babg |AL2(5,8) [AL3(4,8)  |ALA(4,8)  [AZ3(4,8) [AZ4(v,8) |A%A(1,8) Q5 +7203+7184+7304

bi 0 0 0 0 0 0 Qo,at+azaztajagtazay
b% 0 0 0 0 0 0 Q3 3+B283+B1B84+B3064
bg 0 0 0 0 0 0 Qy v +r273+7174+7Y37V4
by 0 0 0 0 0 0 5,56+0203+0104+5304

where Qa,ﬁ = Oélﬂl + 04454 and Ai’j (O&,ﬁ) = a,ﬂj + Oéjﬁi.
It is easy to see that the first twelve lines not equal neither zero nor the last four

lines.

Since A% (g,n) is a subdeterminant of A and A # 0, by expansion theorem of
determinant b;b; cannot be equivalent other else byb; (mod A*(KG)) apart from
the case when k = j and [ = 1.
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Assume that {u = by, v = by, w = b3,z = by (mod A%(KG))} and the coefficients
of u,v,w, z will be denoted by «;, 5;, Vi, d;, respectively.

Since the dimension of A?(KG)/A3(KG) is equal to 7 and this group algebra is
not commutative, we have that

U = 0uU, UW = wu, UZ=2u, VW =wv, Uz = 20,
2 2

6
wz # 2w, u?=1v>=w?=2*>=0 (mod A*(KQ)), (6)

and the other cases are analogous to this one.
Assume that KG has a filtered multiplicative basis and {u, v, w, z} form a basis
of A(KG)/A%(KQ), satisfies (6) and

{wv, uw, vz, vw, vz, wz, zw} is a basis for A*(KG)/A3(KG);
{uvw, woz, uwz, uzw, vwz, vew, wzw, 2wz} is a basis of A*(KG)/A*(KG);
{uvwz, wwzw, vwzw, uzwz, Vwzw, vzwz, wzwz )} is a basis of A*(KG)/A®(KG);

{uvwzw, wzwz, uwzwz, vwzwz} is a basis for A’ (KG)/A%(KG);

{uvwzwz} is a basis for  AS(KGQ).
(7)

Suppose that ay = 0 and there exists b € {v,w, z} such that b is congruent
with e1(1 4+ a) +e2(1 +b) +e3(1 +¢) +e4(1 +d) (mod A?(KG)) and g4 = 0. The
facts u> = v = 0 and ub = bu (mod A3(KG)) give that azes + asez = 0 and
a? + apaz = 3 + e9e3 = 0. It is very simple to prove that either by = 0 or by = b;
(mod A?(KG)), which is impossible.

Now, we shall consider two subcases.

Subcase 1. Suppose that ay = 0 and g4 = 74 = 1. For ay = 0 it follows that
A = 0, so we can also assume that as = 1. According to eighth column of the
previous table

o + ag = 0;

B1+ B3+ 1= 65+ Ba33; (8)
Y1 +73+1:ﬁ+7273;

Since vw = wv (mod A?(KQ)) we get B3v2 +71 +7v3+ 1= 283+ 1 + 3+ 1 and
using (8) it follows that

(B1 4+ 71)* = (B2 + 72) (B3 + 73)- 9)

Also eighth column of the previous table and uv = vu, uw = wu (mod A3(KG))
give that aff3s + 83 = ady2 + 73, 50

ai (B2 +72) = 3 + 73 (10)
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Thus (9) and (10) give the equation 51 +v1 = a1 (82 + 72).

Since a? = a3 we have established v +w = (82 + v2)u (mod A3(KG)) which is
a contradiction.

Subcase 2. Suppose that a4, (84 # 0 and without loss of generality we can
assume that ay = 84 = 1. Simple computations show that {u = by +bg, v = by, w =
b3,z = by (mod A?(KG))} form a basis of A(KG)/A?(KQG), satisfies conditions (6)
and (7), but it is a contradiction to subcase 1, so this group algebra has no filtered
multiplicative basis. This completes the proof of the theorem.
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