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ITERATIVE CONVERGENCE OF RESOLVENTS OF MAXIMAL
MONOTONE OPERATORS PERTURBED BY THE DUALITY

MAP IN BANACH SPACES

SAFEER HUSSAIN KHAN

Abstract. For a maximal monotone operator T in a Banach space an iterative
solution of 0 ∈ Tx has been found through weak and strong convergence of
resolvents of these operators. Identity mapping in the definition of resolvents
has been replaced by the duality mapping. Solution after finite steps has also
been established.

1. Introduction

Let E be a real Banach space and E∗ its topological dual. Let T : E → E∗

be a maximal monotone operator. Then Jr defined by Jr = (I + rT )−1 for r > 0
is called resolvent of T . A well-known way to solve the inclusion 0 ∈ Tx through
weak and strong convergence of resolvents of the maximal monotone operators T
is to use the iteration scheme:

(1) x1 = x ∈ E, xn+1 = Jrnxn, n = 1, 2, 3, . . ..

where {rn} is a sequence of positive real numbers. The convergence of the iteration
scheme (1) in case of Hilbert spaces was studied by Rockafellar [13], Brézis and
Lions [3], Lions [9] and Pazy [11]. In Banach spaces the problem was carried out
by Bruck and Reich [6], Bruck and Passty [5] and Jung and Takahashi [7] among
others.

The purpose of this paper is to find the solution of 0 ∈ Tx in the following
manner. We replace the identity operator I by the duality mapping J in the
definition of Jr above and define Pr : E∗ → E as

Pr = (J + rT )−1
.

Since the duality mapping J is not linear, Pr is not nonexpansive as compared with
Jr above. In case of a Hilbert space, both the definitions coincide. With the help
of this Pr, we define

(2) Jr = Pr ◦ J

and

Tr =
J − J ◦ Jr

r
, r > 0

where the symbol ◦ stands for the usual composition of functions. At first, we shall
prove some of the properties of Tr. Afterwards, we shall give some weak and strong
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convergence theorems using this new Jr via the iteration scheme:



x0 = x ∈ E, xn+1 = Jrn
xn, ‖xn − Jrn

xn‖ ≤ εn, n = 0, 1, 2, . . .,

{rn} ⊂ (0,∞), rn →∞,

{εn} ⊂ (0,∞),
∑∞

n=1 εn < ∞.

At the end, following Rockafellar [13] we establish the solution of 0 ∈ Tx after a
finite number of steps.

2. Preliminaries and Notation

Let E be a real Banach space and E∗ its topological dual. The duality mapping
J : E → E∗ is defined as:

Jx =
{
y ∈ E∗ : 〈x, y〉 = ‖x‖2 = ‖y‖2} , x ∈ E.

An operator T : E → E∗ (generally multivalued) is called monotone if for any
x, y ∈ D(T ), u ∈ Tx, v ∈ Ty, we have 〈u− v, x− y〉 ≥ 0. T is termed as maximal
monotone if it is monotone and for (x, u) ∈ E×E∗ , the inequalities 〈u−v, x−y〉 ≥ 0
for all (y, v) ∈ G(T ) imply (x, u) ∈ G(T ), where G(T ) denotes the graph of T .

In the sequel, the symbol ⇀ stands for the weak convergence and the symbol
→ for the strong convergence. In a uniformly convex Banach space E, for any
sequence {xn} ∈ E satisfying xn ⇀ x and ‖xn‖ → ‖x‖, we have xn → x.

A Banach space E is said to satisfy Opial’s condition [10] if for any sequence
{xn} in E, xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ E with y 6= x.
We also know that for two nonnegative sequences {sn} and {tn} satisfying

sn+1 ≤ sn + tn for all n ≥ 1,

if
∑∞

n=1 tn < ∞ then limn→∞ sn exists.
For the sake of simplicity we omit the symbol ◦. Thus the definitions of Pr, Jr

and Tr can be rewritten as

(3)





Pr = (J + rT )−1
,

Jr = PrJ,

Tr = J−JJr

r , r > 0.

In the sequel, T will always stand for a maximal monotone operator, J for the
duality map as defined above and Pr, Jr and Tr will be as defined in (3).

Before going to the weak and strong convergence theorems, we deal with some
fundamental properties of Tr.

Proposition 1. Trx ∈ TJrx, r > 0.

Proof. Let r > 0 be arbitrary. Then for any x ∈ E,

Jrx = (J + rT )−1
Jx

or Jx = (J + rT )Jrx

or
Jx− JJrx

r
∈ TJrx

or Trx ∈ TJrx.

¤

Proposition 2. 0 ∈ Tx if and only if Trx = 0. In particular, we have T−10 =
F (Jr), the set of fixed points of Jr, r > 0.
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Proof. Let r > 0 and x ∈ E. Then

0 ∈ Tx iff 0 ∈ rTx

iff Jx ∈ (J + rT )x

iff x =
(
(J + rT )−1J

)
x

iff x = Jrx

iff Jx = (JJr)x

iff 0 = (J − JJr)x
iff 0 = rTrx

iff 0 = Trx.

¤

3. Weak convergence of resolvents

Our purpose in this section is to prove a weak convergence theorem for resolvents
of maximal monotone operators as follows.

Theorem 1. Let E be a uniformly convex Banach space which satisfies Opial’s
condition. Let x0 = x ∈ E and {xn} be defined as xn+1 = Jrnxn with ‖xn −
Jrnxn‖ ≤ εn for all n = 0, 1, 2, . . ., where {rn} ⊂ (0,∞) such that rn → ∞ and
{εn} ⊂ (0,∞) such that

∑∞
n=1 εn < ∞. If T−10 6= φ then {xn} converges weakly

to a solution of 0 ∈ Tx.

Proof. Let u ∈ T−10. Then

‖xn+1 − u‖ ≤ ‖xn+1 − xn‖+ ‖xn − u‖
≤ εn + ‖xn − u‖.

Since
∑∞

n=1 εn < ∞ therefore limn→∞ ‖xn−u‖ exists and hence {‖xn‖} is bounded.
Thus there exists M > 0 such that ‖xn‖ ≤ M for all n = 0, 1, 2, . . .. We prove that
{xn} has a unique weak subsequential limit in T−10. For, let p and q be the weak
limits of the subsequences {xni} and {xnj} of {xn}, respectively. We prove that
p = q ∈ T−10. Since

‖Trnxn‖ =
1
rn
‖Jxn − JJrnxn‖

≤ 1
rn

(‖Jxn‖+ ‖JJrnxn‖)

=
1
rn

(‖xn‖+ ‖Jrnxn‖)

=
1
rn

(‖xn‖+ ‖xn+1‖)

≤ 2M

rn

→ 0 as rn →∞,

and T is monotone, therefore

(4) 〈x− Jrni
xni , y − Trni

xni〉 ≥ 0

for all ni = 0, 1, 2, . . ., x ∈ E and y ∈ Tx.
We shall now show that xni ⇀ p implies Jrni

xni ⇀ p as ni → ∞. Let f ∈ E∗.
We know that xni ⇀ p if and only if

〈f, xni〉 → 〈f, p〉.
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Then

〈f, xni
〉 = 〈f, Jrni

xni
〉+ 〈f, xni

− Jrni
xni

〉
≤ 〈f, Jrni

xni〉+ ‖f‖‖xni − Jrni
xni‖

≤ 〈f, Jrni
xni

〉+ ‖f‖εni

so that
lim inf
ni→∞

〈f, xni〉 ≤ lim inf
ni→∞

〈f, Jrni
xni〉+ ‖f‖ lim

ni→∞
εni

or
lim inf
ni→∞

〈f, xni
〉 ≤ lim inf

ni→∞
〈f, Jrni

xni
〉

because f is bounded. Thus we obtain

(5) 〈f, p〉 ≤ lim inf
ni→∞

〈f, Jrni
xni〉.

Similarly,

(6) lim sup
ni→∞

〈f, Jrni
xni〉 ≤ 〈f, p〉.

By (5) and (6), we find that

lim
ni→∞

〈f, Jrni
xni〉 = 〈f, p〉

and in turn
Jrni

xni ⇀ p.

Hence (4) together with Jrni
xni ⇀ p and Trni

xni → 0 as ni → ∞ provides us
with

〈x− p, y〉 ≥ 0

for all x ∈ E and y ∈ Tx. Since T is maximal therefore 0 ∈ Tp. Again in the same
fashion, we can prove that 0 ∈ Tq. Next, we prove that p = q. To this end, if p
and q are distinct then Opial’s condition yields

lim
n→∞

‖xn − p‖ = lim
ni→∞

‖xni − p‖
< lim

ni→∞
‖xni − q‖

= lim
n→∞

‖xn − q‖
= lim

nj→∞
‖xnj − q‖

< lim
nj→∞

‖xnj − p‖
= lim

n→∞
‖xn − p‖,

confuting our supposition p 6= q. This completes the proof. ¤

4. Strong convergence of resolvents

First, in this section, we prove a strong convergence theorem by using complete
continuity of the duality mapping. Complete continuity is defined as follows. Let X
and Y be two Banach spaces. A mapping S : X → Y is called completely continuous
if it is continuous from the weak topology of X to the strong topology of Y , i.e.

xn ⇀ x ⇒ xn → x.

Now we prove our strong convergence theorem as follows.The method of proof
is partially due to Kartsatos [8].
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Theorem 2. Let E be a uniformly convex Banach space satisfying Opial’s condi-
tion. Suppose that J is completely continuous. Let x0 = x ∈ E and {xn} be defined
as xn+1 = Jrn

xn with
‖xn − Jrn

xn‖ ≤ εn

for all n = 0, 1, 2, . . ., where {rn} ⊂ (0,∞) such that rn → ∞ and {εn} ⊂ (0,∞)
such that

∑∞
n=1 εn < ∞. If T−10 6= φ then {xn} converges strongly to a solution

of 0 ∈ Tx.

Proof. xn ⇀ x0 ∈ T−10 follows from Theorem 1. Thus, in view of uniform convex-
ity of E, it is sufficient to prove that ‖xn‖ → ‖x0‖ to reach our goal. To this end,
notice that

rnTrn
xn = Jxn − JJrn

xn ∈ rnTJrn
xn = rnTxn+1.

Thus for some y∗n ∈ Txn+1, rny∗n = Jxn − JJrn
xn. Since y∗n ∈ Txn+1, 0 ∈ Tx0

and T is monotone therefore we have

0 ≤ rn〈y∗n − 0, xn+1 − x0〉
= 〈Jxn − JJrn

xn, xn+1 − x0〉
= 〈Jxn − Jxn+1, xn+1 − x0〉
= 〈−Jxn+1, xn+1 − x0〉+ 〈Jxn, xn+1 − x0〉
= −〈Jxn+1 − Jx0, xn+1 − x0〉+ 〈Jxn − Jx0, xn+1 − x0〉
= −(〈Jxn+1, xn+1〉+ 〈Jx0, x0〉 − 〈Jxn+1, x0〉
− 〈Jx0, xn+1〉) + 〈Jxn − Jx0, xn+1 − x0〉

≤ −(‖xn+1‖ − ‖x0‖)2 + 〈Jxn − Jx0, xn+1 − x0〉
= −(‖xn+1‖ − ‖x0‖)2 + 〈Jxn, xn+1 − x0〉 − 〈Jx0, xn+1 − x0〉.

That is,
(‖xn+1‖ − ‖x0‖)2 ≤ 〈Jxn, xn+1 − x0〉 − 〈Jx0, xn+1 − x0〉.

Here we make use of complete continuity of J to assure that the right hand side of
the above inequality vanishes so that

lim sup
n→∞

(‖xn+1‖ − ‖x0‖)2 ≤ 0

which means that ‖xn‖ → ‖x0‖ thereby showing that xn → x0 as desired. ¤

Next we prove our strong convergence theorem using Lipschitz continuity of T−1.
Lipschitz continuity is defined as follows.

An operator S−1 : E∗ → E is said to be Lipschitz continuous at origin, with
modulus a > 0, if there is a unique solution x′ to 0 ∈ Sx (i.e. S−10 = {x′}), and
for some τ > 0, we have

‖x− x′‖ ≤ a‖y‖ whenever x ∈ S−1y and ‖y‖ ≤ τ.

Note that this condition guarantees the uniqueness of the solution. This condition
turns out to be very natural in applications to convex programming. For details,
see [12, 13].

Theorem 3. Let E be a uniformly convex Banach space and let T−1 be Lipschitz
continuous at origin with modulus a > 0. Suppose that x0 = x ∈ E and {xn}
defined by xn+1 = Jrnxn satisfies

(7) ‖xn − Jrnxn‖ ≤ εn

for all n = 0, 1, 2, . . ., where {rn} ⊂ (0,∞) such that rn → ∞ and {εn} ⊂ (0,∞)
such that

∑∞
n=1 εn < ∞. If T−10 6= φ then {xn} converges strongly to a unique

solution of 0 ∈ Tx.
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Proof. Since T−1 is Lipschitz continuous at origin, so by definition, the inclusion
0 ∈ Tx has a unique solution, say x′. As in Theorem 1, Trn

xn → 0. Choose a
positive integer n0 such that

‖Trnxn‖ ≤ τ for all n ≥ n0

where τ is same as in the definition of Lipschitz continuity. We also have from
Proposition 1 that

Jrn
xn ∈ T−1(Trn

xn), n = 0, 1, 2, . . . .

Thus by Lipschitz continuity, we have

(8) ‖Jrnxn − x′‖ ≤ a‖Trnxn‖, n = 0, 1, 2, . . .

which enables us to write
‖Jrn

xn − x′‖ → 0.

Finally, using the triangle inequality

‖xn − x′‖ ≤ ‖xn − Jrn
xn‖+ ‖Jrn

xn − x′‖,
we obtain

‖xn − x′‖ → 0.

Eventually, {xn} converges strongly to a unique solution of 0 ∈ Tx. ¤

Following [13], we establish the solution of 0 ∈ Tx after a finite number of steps.
By Int(D) we mean the interior of a set D. In this connection we prove the following
theorem.

Theorem 4. Let E be a uniformly convex Banach space. Suppose that there exists
x′ ∈ E such that 0 ∈ Int(Tx′). Let x0 = x ∈ E and {xn} defined by xn+1 = Jrnxn

for all n = 0, 1, 2, . . . be bounded where {rn} ⊂ (0,∞) such that rn → ∞. Then
there exists a positive integer n0 such that xn = x′ for all n ≥ n0.

Proof. We first show that T−1 : E∗ → E is single-valued and constant on a neigh-
bourhood of 0. That is, we prove that

(9) T−1y = x′ if ‖y‖ < ε.

Let ε > 0 be chosen so that ‖y‖ < ε implies y ∈ Int(Tx′). Taking any x, y ∈ Tx,
and y′ with ‖y′‖ < ε, we have by monotonicity of T that

〈x− x′, y − y′〉 ≥ 0.

This yields
〈x− x′, y′〉 ≤ 〈x− x′, y〉.

So that
sup
‖y′‖<ε

〈x− x′, y′〉 ≤ 〈x− x′, y〉 whenever y ∈ Tx

implies
ε‖x− x′‖ ≤ ‖x− x′‖‖y‖ whenever y ∈ Tx

and hence if x 6= x′,
ε ≤ ‖y‖ whenever y ∈ Tx.

This means that if ‖y‖ < ε and x ∈ T−1y then x = x′. Virtually, T−1 : E∗ →
E is single-valued and constant on a neighbourhood of 0. Next we know from
Proposition 1 that

Jrnxn ∈ T−1(Trnxn), n = 0, 1, 2, . . . .
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Thus, as in Theorem 1, Trn
xn → 0 so that for all ε > 0 there exists a positive

integer n0 such that ‖Trn
xn‖ < ε for all n ≥ n0. Using (9) with y = Trn

xn, we
obtain

x′ = T−1(Trnxn)
or

x′ = Jrnxn

Hence xn = x′ for all n ≥ n0 as desired. ¤
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