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SOME PROPERTIES FOR FUNCTIONS OF VMO(2ω)
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Dedicated to Professor W.R. Wade on his sixtieth birthday

Abstract. A function of bounded mean oscillation (BMO) is said to have
vanishing mean oscillation or belong to VMO space if its mean oscillation is
locally small in a uniform sense. Though there is an extensive literature on
the BMO, very few mention is made on the properties for functions of VMO.

In this note, we discuss the connection between modulus of continuity and
the approximation of functions by Walsh polynomials in VMO space on the
dyadic group 2ω , VMO(2ω), the analogy between VMO(2ω) and C(2ω), the
estimate for certain type of convolution operators on VMO(2ω), the decom-
position theorem for functions in VMO(2ω) and the characterization of Walsh
series which happen to be the Walsh-Fourier series of a function in VMO(2ω).

1. Notation

Our results are stated in the situation that the dyadic group 2ω is the additive
subgroup of the ring of integers in the 2-series field K of formal Laurent series in
one variable over the finite field GF(2). We need to set some basic notation. It
is taken from Taibleson’s book [9] where the fundamentals are detailed. For the
additive subgroup K+ of the 2-series field K, we may choose a Haar measure dx.
Let d(αx) = |α|dx, α 6= 0 and call |α| the valuation of α.

Let P 0 = {x ∈ K : |x| ≤ 1} and P 1 = {x ∈ K : |x| < 1}. K is totally
disconnected, hence the value is discrete valued. Thus there is an element ℘ of P 1

of maximum value. Then an element x ∈ K is represented as

(1) x =
∞∑

k=j

ak℘k, ak ∈ GF(2),

which can contain a finite number of terms with negative powers of ℘. The ring of
integers P 0 =

{
x =

∑∞
k=0ak℘k

}
coincides with the dyadic group 2ω as an additive

group. For E a measurable subset of K, let |E| =
∫
K

ΦE(x)dx, where ΦE is the
characteristic function of E and dx is Haar measure normalized so |2ω| = 1. Then
|P 1| = |℘| = 2−1. Let P k = {x ∈ K : |x| ≤ 2−k} and Φk be its characteristic
function. For x = x0 +

∑−1
k=jak℘k, ak ∈ GF(2), x0 ∈ 2ω, set

(2) w(℘k) =

{
−1 k = −1,

1 k < −1,
w(x0) = 1.

Then w is a character on K+. For x, y ∈ K, let wy(x) = w(y · x). w is constant on
cosets of 2ω and if y ∈ P k then wy is constant on cosets of P−k.
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We assume that all functions are complex valued and measurable. If f ∈ L1(K)
the Fourier transform of f is the function f̂ defined by

(3) f̂(y) =
∫

K

f(u)wy(u)du.

Then we have (2kΦk )̂ = Φ−k and ((2kΦk)∗(2lΦl))̂ = Φ−(k∧l), where k∧l = min(k, l).
Let {u(n)}∞n=0 be a complete list of distinct coset representatives of 2ω in K+.

We define u(0) = 0, u(1) = ℘−1 and for n = b0+b1 ·2+b2 ·22+· · ·+bs ·2s (bi = 0 or 1),
u(n) = u(b0) + ℘−1u(b1) + · · ·+ ℘−su(bs). Then

{
wu(n)|P 0

}∞
n=0

=
{
wu(n)

}∞
n=0

is a
complete set of characters on 2ω. This is the Walsh-Paley system.

The Dirichlet kernels are the functions

Dn(x) =
n−1∑

k=0

wu(k)(x), n ≥ 1, D0(x) ≡ 0.

If f ∈ L1(2ω) the Walsh-Fourier coefficients {ck}∞k=0 = {f̂(u(k))}∞k=0 are given by
ck =

∫
2ω f(x)wu(k)(x)dx. The Walsh-Fourier series is given by

f(x) ∼
∞∑

k=0

ckwu(k)(x).

The n-th partial sum of the Walsh-Fourier series of f is denoted by Snf(x) and
is defined as Snf(x) =

∑n−1
k=0ckwu(k)(x). If f ∈ L1(2ω), x ∈ 2ω, n ≥ 0, then

S2nf(x) = 2n
∫

x+P n f(t)dt, as follows from the fact that D2n = 2nΦn.
S(2ω) is the collection of the test functions on 2ω. If φ ∈ S(2ω) then φ is a

“polynomial”, that is, φ(x) =
∑2n−1

k=0 φ̂(u(k))wu(k)(x) for some n ≥ 0. Ci denotes a
constant.

2. Properties of VMO(2ω) functions

Let f ∈ L1(2ω). By a ball we mean a set B = {y ∈ 2ω : |x− y| ≤ 2−k} = x + P k

for some x ∈ 2ω and k ∈ N. If f ∈ L1(2ω), write fB = 1
|B|

∫
B

f(x)dx for the average
of f over B. If

(4) sup
B

1
|B|

∫

B

|f(x)− fB |dx = ‖f‖∗ < ∞,

where the supremum is over all balls B, then we say f is of bounded mean oscillation,
f ∈ BMO(2ω). It is clear that L∞(2ω) ⊂ BMO(2ω) and for f ∈ L∞(2ω), ‖f‖∗ ≤
2‖f‖∞. BMO(2ω) is the dual space to H1(2ω). That is, each continuous linear
functional ` on H1(2ω) can be realized as a mapping

(5) `(g) =
∫

2ω

f(x)g(x)dx, g ∈ H1(2ω),

when suitably defined, where f is a function in BMO(2ω). This pairing allows to
realize H1(2ω) as the dual of VMO(2ω). (See [7], [8] and [12].)

For 0 < δ < 1, write

(6) Mδ(f) = sup
|B|≤δ

1
|B|

∫

B

|f(x)− fB |dx.

Then f ∈ BMO(2ω) if and only if Mδ(f) is bounded and ‖f‖∗ = limδ→1 Mδ(f).
BMO(2ω) is a Banach space with norm M1(f) + |f̂(0)| or M1(f) + ‖f‖1.

We say that f has vanishing mean oscillation, f ∈ VMO(2ω), if

(7) f ∈ BMO(2ω), and M0f = lim
δ→0

Mδ(f) = 0.
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VMO(2ω) contains every continuous functions on 2ω, C(2ω). The unbounded func-
tion log |x| belongs to BMO(2ω). However, log |x| is not VMO(2ω). The function
log | log |x|| is in VMO(2ω), although that is not immediately evident. VMO(2ω) is
a closed subspace of BMO(2ω), so it contains the BMO-closure of C(2ω).

The following theorem shows several characterization of VMO(2ω). (See [10] for
the dyadic group case, [5] and [6] for the classical case).

The space VMO(2ω) is translation invariant. For y ∈ 2ω, we let τy denote the
operator of translation by y; that is, (τyf)(x) = f(x− y) for any function f on 2ω.

Theorem 2.1. For f a function in BMO(2ω), the following conditions are equiv-
alent:

(i) f is in VMO(2ω);
(ii) lim|h|→0 ‖τhf − f‖∗ = 0;
(iii) limn→∞ ‖2nΦn ∗ f − f‖∗ = 0;
(iv) f is in the BMO-closure of C(2ω).

Next lemma is a simple but useful fact. (See [6].)

Lemma 2.2 (Inequality of Young type). If f is a function in BMO(2ω) and φ is
an integrable function on 2ω, then φ ∗ f is in VMO(2ω) and ‖f ∗ φ‖∗ ≤ ‖φ‖1‖f‖∗.
If, in addition, φ is continuous function on 2ω, then φ∗ f is in continuous function
on 2ω.

Proof. Put f ∗ φ(t) = h(t). Then, we have
1
|B|

∫

B

|h(t)− hB |dt ≤ ‖φ‖1 1
|B|

∫

B

|(τuf)(t)− (τuf)B |dt.

Hence, ‖h‖∗ ≤ ‖φ‖1‖τuf‖∗ = ‖φ‖1‖f‖∗.
For any ε > 0, there exists a polynomial T such that ‖φ−T‖1 < ε. Then, f ∗T ∈

C(2ω) and for small |B|,
1
|B|

∫

B

|f ∗ (φ− T )(t)− (f ∗ (φ− T ))B |dt ≤ ‖φ− T‖1‖f‖∗ < ε‖f‖∗.

We obtain, by Theorem 2.1., f ∗ φ ∈ VMO(2ω). ¤
To study the analogy between VMO(2ω) and C(2ω), we introduce the analogue

in VMO(2ω) of the Lipschitz classes. Let ρ(δ) be a positive, continuous, non-
decreasing function on (0, ∞) satisfying limδ→0 ρ(δ) = 0, and ρ(2δ) ≤ C1ρ(δ).

A continuous function f on 2ω is said to belong to the class Lipρ(δ) if it satisfies
ω(f, δ) = O(ρ(δ)), where ω(f, δ) = sup{‖τhf − f‖∞ : |h| ≤ δ}.

We shall say f in BMO(2ω) belongs to BMO(ρ(δ)) provided Mδ(f) = O(ρ(δ)).
We have VMO(2ω)=∪ρ(δ)BMO(ρ(δ)).

Theorem 2.3. If ρ satisfies the condition
∫ 1

0

ρ(t)
t

dt < ∞,

then BMO(ρ(δ))⊂Lip(σ(δ)), where

σ(δ) =
∫ δ

0

ρ(t)
t

dt.

In particular, BMO(δα)=Lip(δα), 0 < α ≤ 1.

The analogue of this theorem in the classical case was shown S. Spanne ([5]).
We omit the proof of this theorem.

We consider the translation invariant singular integrals on VMO(2ω). G.I. Gaudry
and I.R. Inglis proved the next theorem ([3] and [4]), which is obtained without the
intervention of the space H1(2ω).
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Theorem 2.4. Suppose K ∈ L1(2ω). If

(i) |K̂(u(n))| ≤ C2, for |u(n)| ≥ 2n−1,
(ii)

∫
2ω\P n |K(x− y)−K(x)|dx ≤ C2 for |y| ≤ 2−n,

then, for all f ∈ L∞(2ω), ‖K ∗ f‖∗ ≤ C3‖f‖∗, where C3 depends on C2 only.

Corollary 2.5. If f ∈ C(2ω), then K ∗ f ∈ VMO(2ω).

Proof. For a continuous function f and any ε > 0, there exists a polynomial T ∈
S(2ω) such that ‖f − T‖∞ < ε. Then K ∗ T ∈ S(2ω) and ‖K ∗ f −K ∗ T‖∗ < C3ε.
Hence, we have, by Theorem 2.1., K ∗ f ∈ VMO(2ω). ¤

J.B. Garnett and P.W. Jones ([2]) and J.-A. Chao ([1]) proved the following
characterization of BMO regular martingales similar to the construction Carleson’s.

Theorem 2.6. Let f ∈ BMO(2ω). Then there exist a g ∈ L∞(2ω) with

‖g‖∞ ≤ C4‖f‖∗,
a sequence of balls {Bi} and a corresponding sequence of complex numbers {bi}
such that

∑
Bi⊂B |bi| ≤ C4‖f‖∗|B| for any given ball B, and

f = g +
∑

i

bi
ΦBi

|Bi| + C5

for a constant C5.

Theorem 2.7. (i) Let f ∈ VMO(2ω) and f(0) = 0. Then there exist a g ∈ C(2ω)
with ‖g‖∞ ≤ C6‖f‖∗, a sequence of balls {Bi} and a corresponding sequence of
complex numbers {bi} such that 1

|B|
∑

Bi⊂B |bi| → 0 as |B| → 0 for any given ball

B, and f = g +
∑

i bi
ΦBi

|Bi| .
(ii) Let g ∈ C(2ω) and {Bi} be a sequence of balls. Assume that to each Bi,

there is a associated constant bi satisfying 1
|B|

∑
Bi⊂B |bi| → 0 as |B| → 0. Then,

if f = g +
∑

i bi
ΦBi

|Bi| + C7 for a constant C7, f ∈ VMO(2ω).

Proof. (i) Since f ∈ BMO(2ω), using Theorem 2.6., write f = g0 +
∑

i0
bi0

ΦBi0
|Bi0 |

,
where ‖g0‖∞ ≤ C4‖f‖∗, and

∑
Bi0⊂B |bi0 | ≤ C4‖f‖∗|B| for any ball B. By Theo-

rem 2.1., there is a ball Bj0 such that ‖f − f ∗ ΦBj0
|Bj0 | ‖∗ < ‖f‖∗/2, Let

G0 = g0 ∗
ΦBj0

|Bj0 |
and

B0 =
∑

i0

|bi0 |
ΦBi0

|Bi0 |
∗ ΦBj0

|Bj0 |
=

∑

i0

|bi0 |
ΦBi0∧j0

|Bi0∧j0 |
,

then

G0 ∈ C(2ω), ‖G0‖∞ ≤ ‖g0‖∞ ≤ C4‖f‖∗,

‖B0‖∞ ≤
∑

i0:Bi0⊂Bj0

|bi0 |
|Bj0 |

≤ C4‖f‖∗,

and so that ‖f −G0 −B0‖∗ < ‖f‖∗/2.

Repeating the above argument with f − f ∗ ΦBj0
|Bj0 | , we obtain

f − f ∗ ΦBj0

|Bj0 |
= g1 +

∑

i1

bi1

ΦBi1

|Bi1 |
,
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with ‖g1‖∞ ≤ C4‖f − f ∗ ΦBj0
|Bj0 |

‖∗ < C4‖f‖∗/2, and

∑

Bi1⊂B

|bi1 | ≤ C4‖f − f ∗ ΦBj0

|Bj0 |
‖∗|B| < C4‖f‖∗|B|/2.

There exists a ball Bj1 such that

‖(f − f ∗ ΦBj0

|Bj0 |
)− (f − f ∗ ΦBj0

|Bj0 |
) ∗ ΦBj1

|Bj1 |
‖∗ < ‖f‖∗/22.

Let G1 = g1 ∗
ΦBj1
|Bj1 |

and

B1 =
∑

i1

|bi1 |
ΦBi1

|Bi1 |
∗ ΦBj1

|Bj1 |
=

∑

i1

|bi1 |
ΦBi1∧j1

|Bi1∧j1 |
.

Then G1 ∈ C(2ω), ‖G1‖∞ + ‖B1‖∞ ≤ C4‖f‖∗ and

‖f −G0 −B0 −G1 −B1‖∗ < ‖f‖∗/22.

Iterating we obtain sequences {Gn} ⊂ C(2ω) and {Bn} with the following prop-
erties:

‖Gn‖∞ + ‖Bn‖∞ ≤ C4‖f‖∗/2n−1,(a)

‖f −
n∑
1

(Gk + Bk)‖∗ ≤ ‖f‖∗/2n+1.(b)

By (a), the function g =
∑

n Gn ∈ C(2ω) and 1
|B|

∑
Bi⊂B |bi| → 0 as |B| → 0

and from (b), f = g +
∑

i bi
ΦBi

|Bi| .

(ii) Let b(x) =
∑

i bi
ΦBi

|Bi| and B = a + P l. We shall show that

I =
1
|B|

∫

B

|b(t)− b(a)|dt → 0

as |B| → 0.

I = 2l

∫

a+P l

∣∣∣∣∣
∑

i

bi

|Bi| (ΦBi(t)− ΦBi(a))

∣∣∣∣∣ dt

= 2l

∫

a+P l

∣∣∣∣∣∣
∑

i:a+P l⊂Bi

+
∑

i:Bi⊂a+P l

∣∣∣∣∣∣
dt.

In fact, if Bi and Bj are two nondisjoint balls on 2ω, then either Bi ⊂ Bj or
Bj ⊂ Bi. If a + P l ⊂ Bi, then ΦBi(x) = ΦBi(a) = 1 and I = 0.

If Bi ⊂ a + P l, then

I = 2l

∫

a+P l

|
∑

i:Bi⊂a+P l

bi

|Bi| (ΦBi(t)− ΦBi(a))|dt

≤ 2l
∑

i:Bi⊂a+P l

|bi|
|Bi|

∫

Bi

|ΦBi(t)− ΦBi(a)|dt ≤ 2l+1
∑

i:Bi⊂a+P l

|bi| → 0

as l →∞. This proves (ii). ¤

Let consider the Walsh series W (x) =
∑∞

n=0 anwu(n)(x), whose coefficients are
arbitrary numbers. We can show those Walsh series W (x) which happen to be the
Walsh-Fourier series of a function in VMO(2ω).



230 JUN TATEOKA

Theorem 2.8. Let W (x) be a Walsh series. Then W (x) is the Walsh-Fourier
series of a VMO function if and only if ‖S2n(W )− S2m(W )‖∗ → 0 as n,m →∞.

Proof. If part. Since VMO(2ω) is a Banach space, any Cauchy sequence is con-
vergent to a limit function f . We shall show f ∈ VMO(2ω). Since VMO(2ω)
is embedded continuously into L2(2ω), we also have ‖S2n(W ) − S2m(W )‖2 → 0
as n,m → ∞, so that W (x) is the Walsh-Fourier series of an L2(2ω) function f
and we have S2n(W )(x) → f(x) a.e. and ‖S2n(W ) − f‖2 → 0. Consequently,∫

B
S2n(W )(t)dt → ∫

B
f(t)dt as n →∞ for any ball B, that is, (S2n(W ))B → (f)B

as n → ∞. An application of Fatou’s lemma to |S2n(W ) − S2m(W )| over the ball
B shows

1
|B|

∫
|f − fB | ≤ lim

n→∞
1
|B|

∫
|S2n(W )(t)− (S2n(W ))B |dt.

Since, for |B| small, S2m(W )(t) = (S2m(W ))B , we have

1
|B|

∫
|f − fB | ≤ lim

n→∞
1
|B|

∫
|S2n(W )(t)− S2m(W )(t)− (S2n(W )− S2m(W ))B |dt

≤ lim
n→∞

‖S2n(W )− S2m(W )‖∗
and we obtain f ∈ VMO(2ω).

On the other hand, we can use the integral formula

S2nW (t) =
∫

(τuf)(t)D2n(u)du.

Let Dn,mW (t) = S2nW (t)− S2mW (t). Then, for |B| small,

1
|B|

∫

B

|(Dn,mW )(t)− (Dn,mW )B |dt

≤ 1
|B|

∫

B

∫
|((τuf)(t)− (τuf)B)(D2n(u)−D2m(u))du|dt

≤
∫

(D2n(u) + D2m(u))
1
|B|

∫

B

|(τuf)(t)− (τuf)B |dtdu → 0

as |B| → 0.
This proves ‖S2n(W )− S2m(W )‖∗ → 0 as n,m →∞. ¤
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