Acta Mathematica Academiae Peadagogicae Nyiregyhdziensis
21 (2005), 5-11

www.emis.de/journals

ISSN 1786-0091

The contracted model of exploded real numbers
by I. Szalay
Szeged

ABSTRACT. In this paper we show that a set of complex numbers U, where Im 1 = % . |n‘n+1 R (n =0,+1,42,.. )
and

(Rew) - (Imwu) >0

is one of the suitable model of exploded real numbers. This model allows the conclusion that the set of exploded real numbers
exists.

LJ
In [1] we introduced the set of exploded real numbers R with the following postulates and requirements.

Postulate of extension:
The set of real numbers is a proper subset of exploded real numbers. For any real number x there exists
one exploded real number which is called exploded x or the exploded of z. Moreover, the set of exploded
x is called the set of exploded real numbers.
Postulate of unambiguity:
For any pair of real numbers x and y, their explodeds are equal if and only if x is equal to y.
Postulate of ordering:
For any pair of real numbers x and y, the exploded z is less than exploded y if and only if x is less than

Postulate of super-addition:
For any pair of real numbers = and y, the super-sum of their explodeds is exploded of their sum.
Postulate of super-multiplication:
For any pair of real numbers z and y, the super-product of their explodeds is the exploded of their
product.
Requirement of equality for exploded real numbers:
If x and y are real numbers then x as an exploded real number equals to y as an exploded real number
if they are equal in the traditional sense.
Requirement of ordering for exploded real numbers:
If z and y are real numbers then z as an exploded real number is less than y as an exploded real number
if « is less than y in the traditional sense.
Requirement of monotonity of super-addition:
If v and v are arbitrary exploded real numbers and w is less than v then, for any exploded real number
w, u superplus w is less than v superplus w.
Requirement of monotonity of super-multiplication:
If v and v are arbitrary exploded real numbers and u is less than v then, for any positive exploded real
number w, u super- multiplied by w is less than v super-multiplied by w.

Definition 1. The explosion of real numbers in a contracted sense: for any real number x, its exploded is

(1.1) T = (sgnz) (areath{|x\} + ;HCE[HQE—l!]—l)’ x € R.
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Clearly,

Imz = where n s an integer number and  (Re Z) - (Im 7 ) > 0.

N | =

n|+1’

Theorem 2. The mapping x — 7 is mutually unambiguous.

Proof. Obviously, if z =y = z = 7 (Re Z=Re y and Im 7 =1Im %/])
Conversely, we assume that z = y. Hence,

(2.1) (sgnx)areath{|z|} = (sgny) areath{|y|}
and

l=l]  _ [lyl]
22 S+~ R

By (2.2) the cases |z| > 1 and |y| < 1; 2| < 1 and |y| > 1 are not allowed so we have the following two cases

a) 0< |z, [yl <1
or

b) =], |yl > 1,
only.

In the case a) exception of z =y =0, |z|] <1 and y = 0; z = 0 and |y| < 1 is not allowed. (See (2.1).)
Otherwise we can see that {|z|} and {|y|} are positive numbers, so (2.1) gives that sgna = sgny.

In the case b) we have that % and “gﬁ’lj_l are positive numbers so, (2.2) gives that sgnz = sgny.

Collecting these, for all allowed cases of the pairs x,y we obtain

(2.3) sgnx = sgny.
Using (2.3) we can see that (2.2) yields
(2.4) ([} = {lyl].
Using (2.3) again by (2.1) we get
(2.5) {l=[} = {ly[}-
By (2.4) and (2.5) we have that |z| = |y| and finally (2.3) gives that z =y. B

Remark. Theorem 2 shows that the Postulate of unambiguity is fulfilled.

Theorem 3. If u is a complex number such that Imu = %|’ﬂ|n+1’ n=0,£1,42,... and (Reu) - (Imu) > 0,
then [ ]
I thReu = u.
2
Proof. It is easy to see that
I
(3.2) =

is valid. First let be n =1,2,3,.... Now we have that Reu > 0 and by (1.1)

 —] ) n .
n + th Rew = areath(thRew) + Il Reu+ilmu = u.



For n =0, u is a real number, so Reu = u. Using (1.1) we have:
th u = (sgnu)areath{|th u|} = (sgnu)areath|th u|=
= (sgnu) areath(th |u|) = (sgnu)|u| = w.
Finally, for n = —1, -2, —3 we have that Reu < 0 and by (1.1)

—————

n+thReu = —(areath(— thRewu) + % |n|nJ|r :

) =Reu+ilmu = u.

Theorem 3 and (1.2) yield
Corollary 4. The complex number w is an exploded real number in a contracted sense, if and only if
Imu = %In\%’ n=0,+1,£2 ..., and (Rew) - (Imwu) > 0.

=
We denote the set of exploded real numbers, in a contracted sense, by R.

1 n
2|n|+1

R = {ue C:u=Reu+ilmu, Imu = ,n is integer and (Rew) - (Imwu) > 0.}

Definition 5. For any set S C R, the exploded S is: E] ={ueC: u= 7 such that z € S}. Considering
the open interval (—1,1) by Definitions 1 and 5 we obtain

—
Corollary 6. (-1,1) = R.
So, we can see that the Postulate of extension is fulfilled.

Definition 7. The compression of exploded real numbers: for any exploded real number u, its compressed
is

Imu

—
7.1 U=———+41th Reu, € R.
(7.1) =] % ~[Tmyl + eu, U R
By (3.1) and (7.1) we have the identity
— —
(7.2) (uy =u, uwe R.

Definition 8. For set S C ﬁ, the compressed of S is: é: {r e R:2z =¥, such that u € S}.
Theorem 9. For any real number x the identity

(9.1) (‘T):am z€R

—

holds.
Definitions 5 and 8 with (7.2) and (9.1) yield

Corollary 10.

(]
(10.1) () _s scr
—/
and
— LJ
(10.2) (*:91) =S5, SCR.



—_
R
Definition 11. For any x,y € R we say that T < 5 ifIm 7 < Im@I orifImz = ImiI then Re 7 < ReZ.

=
R
>

A (]

Definition 12. For any z,y € R we say that T E if E z.

A =[]

Theorem 13. For any x the inequality T gE/I holds if and only if z < y.

Proof.

—_

R
Necessity. Let us assume E;chat 7 < gE/I By Definition 11 we consider two cases:
Case 1. Im z < Im y, that is, by (1.1) we have

(13.1) (sgn ) m[lxl] < (sgny)

(=[]

Now, if z > y then considering the monotonity of the function f(x) = (sgnz) -~ we have that f(z) > f(y)

(l=l]+1
which contradicts (13.1).@507 T <y. o
Case 2. Imz =Im y and Re ¥ < Re y. Now we have (2.2) and

(13.2) (sgnx) areath{|z|} < (sgny) area th{|y|}

moreover, z and y are not integer numbers. If z = 0 then y > 0, if y = 0 then < 0. Otherwise, area th{|z|},
areath{|y|} > 0. Inequality sgnz > sgny is not allowed.

If sgnx < sgny then = < y, obviously.

If sgnz = sgny = 1, then (2.2) yields that [z] = [y] and (13.2) gives that {z} < {y},s0 0 <z <.

If sgnz = sgny = —1, then (2.2) yields that [Jz|] = [Jy|] and the identity [|x|] = —([z] + 1) shows that
[z] = [y]. Inequality (13.2) gives that {|z|} > {|y|}. Hence, by identity {|z|} = —({z} — 1) we have that
{z} < {y}. So, z < y < 0 is obtained.
Collecting the cases we have

(13.3) x <y.
Sufficiency. Let us assume that < y. Considering the monotonity of the function f(x) = (sgnx) ”gﬁg_l,
we have
(|]] [lyl]
(13.4) (sgnx < (sgny
e+ 1 < ST
or
[lI] [lyl]
13.5 sgnx = (sgny .
159 1 = B
=
R

In case of (13.4), Definition 11 and (1.1) show that z < .
In case of (13.5) the cases |z| > 1 and |y| < 1; |z| < 1 and |y| > 1 are not allowed. So, we have the following
two cases

a) 0< |zl fyl <1
or

b) =], [yl > 1,
only.



In the case a) if # = 0 then y > 0, if y = 0 then « < 0. Otherwise, 0 < |z|, Jy] < 1. Clearly,
[lz]] = [lyl]] =0, so {|z|} = |z|, {|ly|} = |y|- The inequality = < y implies that sgnz < sgny.
If sgnz < sgny then —1 <x <0< y<1. So,

(sgnz)areath{|z|} < 0 < (sgnz)areath{|y|}

and Definition 11 by (1.1) gives that 7 < 7.
Ifsgnx =sgny=1then 0 <z <y < 1. So,

0 < (sgnz)areath{|z|} < (sgny)areath{|y|}

and Definition 11 by (1.1) gives that 7 < .
If sgnz =sgny = —1, then —1 <z <y < 0. Hence, 0 < |y| < |z| <1 and 0 < {|y|} < {|=|} < 1. So

0 > (sgny) areath{|y|} > (sgnz)areath{|z|} > —1

and Definition 11 by (1.1) gives that = < 7.
In the case b) (13.5) yields
([} = {lyl]-

Integer x and y are not allowed.

If sgnx = sgny = 1, then the identity {|z|} = = — [|z|] by # < y implies that g;ﬂ} < {|y|}- Hence,
(sgn z) areath{|z|} < (sgny)(areath{|y|}). So, Definition 11 by (1.1) gives that z < y.

The case sgnx = 1 and sgny = —1 is not allowed.

If sgnz = —1 and sgny = 1 then (sgnx)areath{|z|} < (sgny)(areath{]y|}). So Definition 11 by (1.1)
gives that = < y.

If sgnz = sgny = —1, then identity {|z|} = —z — [|z|]]. So, inequality < y implies —x > —y > é
Hence, {lz|} > {ly|}- So, (sgnz)areath{|z|} < (sgny)areath{|y|} and Definition 11 by (1.1) gives that
<uvy.

Remark. Theorem 13 shows that the Postulate of ordering is fulfilled.
_
R
Theorem 14. If z,y € R then z < y <=z < y.
R
Proof. Identity (7.2) and Theorem 13 show that 2 < y <= Z < ¥. By (7.1) we have that % =th 2 and

g = th y. Using the strict monotonity of the function th we have that £ < ZE/I =z <y.

Remark. Theorem 14 shows that the Requirement of ordering is fulfilled.
=

R
Remark 15. By Theorem 14 we may use u < v instead of u < v for any u,v € %} Theorem 13 with
identity (7.2) gives

Theorem 16. (Monotonity of compression) For any u,v € ]:2] the inequality ¥ < U holds if and only if

u < v. Moreover, Theorem 13 yields the following corollaries:
Corollary 17. The relation ”<” is irreflixive, anti- symmetrical and transitive.
O [}

Corollary 18. (Trichotomity)) For any z,y € R from among relations 7 < y, # = y and > g one
and only one is true.

Definition 19. (Super-addition) For any x,y € R, the super-sum of 7 and gEj is

[

(19.1) z —Qé— Y= (Sgn(w+y))(areath{|w+y|}+ ;m>

9



By Definition 1 the identity
(19.2) T —i—[—é— Z =z+y, zy€cR (See Postulate of super — addition)

is obvious.

Definition 20. (Super-multiplication) For any x,y € R, the super-multiplication of 7 and g? is
20.1 7 —()— Y = (sgn(z - areath{|z - —1-1M
(20.1) 73§ = (eula y))areath{fe -y} + 5

By Definition 1 the identity
(20.2) T 7??, y=xy, zyecR (See Postulate of super — multiplication)

is obvious.

Remark 21. Using identities (19.2) and (20.2) we find that the field (R,+,-) is isomorphic with the
algebraic structure (1:31, —i—]—é—,—iﬁ—); so the latter is also a field with the operations super-addition and

super-multiplication. By (19.1) we can see that the additive unit element of ]:{1 is 6] = 0. The additive
inverse element of T is —z for which, by (1.1), the identity

(21.1) I =-%, z€R

holds. By (20.1) we can see that the multiplicative unit element of ?{I is ? = i'. The multiplicative inverse

element of 7 #0is E

8

Remark 22. By (7.1) we have that for any u € ]:{I the identity
=
(22.1) —u=-u, UER

holds. Moreover, denoting # = u and § = v, the identities (19.2) and (20.2) by (9.1) yield the identities

—

(22.2) u—F-v=uyv(wveR)
and

(22.3) u—-v= ﬁ(u,ve R),
respectively.

Definition 23. The exploded real number w is called positive if u > 0 and negative if u < 0. (These are
extensions of the familiar positivity and negativity of real numbers.)

Theorem 24. (Monotonity of super-addition) Let u,v and w be arbitrary exploded real numbers. If v < v
then
u—éié—w < v—i—}é— w.

Proof. Using (22.2), Theorem 16, Theorem 13 and (22.2) again, we have that




Theorem 25. (Monotonity of super-multiplication) Let u,v be arbitrary and w positive exploded real
numbers. If u < v then u fo w < v ,;Eé, w.

Proof. First, we mention that by Theorem 16 and Definition 23 with Definition (7.1) ¥ > g =0is
obtained. Moreover, using (22.3), Theorem 16, Theorem 13 and (22.3) again, we have that

—

—
U—wa: u.,.w < v.,w :v—wa.
-} = O -

L
Remark 26. Considering Remark 21, Theorem 24 and Theorem 25 we can see that ( R, —§—]—§— , —Q—) is an
ordered field.
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