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A POINTWISE APPROXIMATION OF ISOLATED TREES IN A
RANDOM GRAPH

K. NEAMMANEE

Abstract. In this paper, we give a pointwise approximation of the number
of isolated trees of order k in a random graph by Poisson distribution. The
technique we used here is the Stein’s method.

1. Introduction

A random graph is a collection of points, or vertices, with lines, or edges, con-
necting pairs of them at random. The study of random graphs has a long history.
Starting with the influential work of Erdős and Rényi in the 1950s and 1960s [7-9],
random graph theory has developed into one of the mainstays of modern discrete
mathematics, and has produced a prodigious number of results, many of them
highly ingenious, describing statistical properties of graphs, such as distribution of
component sizes, existence and size of a giant component, and typical vertex-vertex
distances.

Random graphs are not merely a mathematical toy; they have been employed
extensively as models of real world networks of various types, particularly in epi-
demiology. The passage of a disease through a community depends strongly on the
pattern of contacts between those infected with the disease and those susceptible
to it. This pattern can be depicted as a network, with individuals represented by
vertices and contacts capable of transmitting the disease by edges. A large class of
epidemiological models known as susceptible/infectious/recovered (or SIR) model
[4,17,19] makes frequent use of the so-called fully mixed approximation, which is
the assumption that contacts are random and uncorrelated, i.e., that they form a
random graph.

Random graphs however turn out to have severe shortcomings as models of such
real world phenomena. Although it is difficult to determine experimentally the
structure of the network of contacts by which a disease is spread [14], studies have
been performed of other social networks such as networks of friendships within a
variety of communities [5,10,13], networks of telephone calls [1,2], airline timeta-
bles [3], the power grid [22], the structure and conformation space of polymers [16],
metabolic pathways [11,15], and food webs [23]. There are many situations in which
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the theory tells us that the distribution of a random variable may be approximated
by Poisson distribution. In the random graph theory, one application of the ap-
proximation by Poisson distribution arises naturally when counting the number of
occurrences of individually rare and unrelated events within a large ensemble. In
this paper, we choose to count the number of isolated trees of order k in a random
graph with n vertices and give a non-uniform bound of the Poisson approximation
to this number.

Let G(n, p) be a random graph with n vertices 1, 2, . . . , n, in which each possible
edge {i, j} is present independently with probability p. A tree is, by definition, a
connected graph containing no cycles and a tree in G(n, p) is isolated if there is no
edge in G(n, p) with one vertex in the tree and the other outside of the tree. Let

Dn,k = {(i1, i2, · · · , ik)|1 ≤ i1 < i2 < . . . < ik ≤ n}
be the set of all possible combinations of k vertices. For each i ∈ Dn,k, we define

Xi =





1 if there is an isolated tree in G(n, p) that spans the vertices
i = (i1, i2 . . . , ik),

0 otherwise,

and set
Wn,k =

∑

i∈Dn,k

Xi.

Clearly Wn,k is the number of isolated trees of order k in G(n, p) and the Xi’s are
not independent unless k = 1. For the small value of probability p, that is when
k2p → 0 and k2

n → 0, Stein ([21], chapter 13) proved that the distribution of Wn,k

can be approximated by Poisson distribution with parameter

λ = EWn,k =
(

n

k

)
P (Xi = 1) = kk−2pk−1(1− p)k(n−k)+(k

2)−k+1

and the uniform error bound is given by

|P (Wn,k ∈ A)− P (Poiλ ∈ A)| ≤ B√
k

(1 + cn)e1−cn(cne1−cn)k−1(1.1)

for all A ⊆ N ∪ {0}, n ∈ N, and k ≤ n, where Poiλ is a Poisson random variable
with parameter λ, B is a constant independent of A, and

cn = −n log(1− p).

It is evident from (1.1) that the error bound tend to zero as cn decreases to zero
provided k ≥ 2. Observe that the bound in (1.1) is a uniform bound that works
for any possible number of trees in the graph. In this paper, we shall introduce a
non-uniform bound of the Poisson approximation, i.e. a better error bound once
the number of trees is specified.

Throughout the paper, let us fix the number of trees w0 ∈ {1, 2, . . . ,
(
n
k

)} and
denote for convenience

∆(n, k, w0) ≡
∣∣∣P (Wn,k = w0)− e−λλw0

w0!

∣∣∣

where λ = EWn,k. The following theorems are our main results.

Theorem 1.1. Suppose 2k < n and w0 6= 0. Then
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1. ∆(n, k, w0) ≤ λ min
{ 1

w0
,
1
λ

}
min

{
2,

λk2

n

(
1 + cne

k2
n (cn−1)

)}
, and

2. ∆(n, k, 0) ≤ min
{

1, λ
}

min
{

2, λ
}
.

In order to gain a better understanding of these results, some asymptotic behav-
iors of ∆(n, k, w0) and λ as n goes to infinity are summarized in the following two
theorems.

Theorem 1.2. Let δ > 1, k ≤ O(n
δ
2 ), and p = O

( 1
nδ

)
. Then, for δ∗ ∈ (1, δ), we

have

1. λ ≤ 1
k

5
2
O

( 1
n(δ∗−1)(k−1)−1

)
,

2. ∆(n, k, w0) ≤ 1
w0k3

O
( 1

n2(δ∗−1)(k−1)−1

)
, and

3. ∆(n, k, 0) ≤ 1
k3

O
( 1

n2(δ∗−1)(k−1)−1

)
,

where lim
n→∞

O(g(n))
g(n)

= c for some c > 0.

Theorem 1.3. Let β ∈
(
0,

1
2

)
, k ≤ O(nβ), and p = O(

1
nδ

) for some δ > 0. Then

1. for w0 > 2 and δ > 1,
∆(n, k, w0)

λw0
→ 0 as n →∞ and

2. for δ > 2, w0!∆(n, k, w0) → 0 as w0 →∞.

Some remarks are in order.
1. When the probability p is small compared to a positive power of n, i.e., p =

O
( 1

nδ

)
for δ > 1, both the error bound and λ tend to zero as n approaches infinity.

2. If p = O
( 1

nδ

)
for some δ > 1, then we are dealing with a Poisson distribution

with parameter λ smaller than O
( 1

n(δ∗−1)(k−1)−1

)
for all δ∗ ∈ (1, δ). Theorem

1.3(1) says that as n increases without limit, the error bound ∆(n, k, w0) tend to

zero faster than the Poisson probability
e−λλw0

w0!
.

3. Theorem 1.3(2) confirms that the Poisson probability,
e−λλw0

w0!
, tends to zero

slower than the error bound ∆(w0, k, w0) as w0 goes to infinity.
Throughout the paper, C stands for an absolute constant with possibly different

values at different places.

2. Proof of the Main Results

The main result in Theorem 1.1 will be proved by Stein’s method for Poisson
distribution. Stein [20] introduced a new technique of computing a bound in normal
approximation by using differential equation and Chen [6] applied Stein’s idea to
the Poisson case. The Stein’s equation for Poisson distribution with parameter λ
is given by

λf(w + 1)− wf(w) = h(w)−Pλ(h)(2.1)

where f and h are real-valued functions defined on N∪{0} and Pλ(h) = E[h(Poiλ)].



92 K. NEAMMANEE

For each subset A of N ∪ {0}, define hA : N ∪ {0} → R by

hA(w) =

{
1 if w ∈ A,

0 if w /∈ A.

For convenience, we shall write hω for h{ω} and denote Cω = {0, 1, 2, . . . , ω}. For
each ω0 ∈ N ∪ {0}, it is well known [21, p.87] that the solution Uλhω0 of (2.1) is of
the form

Uλhw0(w) =





(w − 1)!
w0!

λw0−wPλ(1− hCw−1) if w0 < w,

− (w − 1)!
w0!

λw0−wPλ(hCw−1) if 0 < w ≤ w0,

0 if w = 0.

(2.2)

Some properties of Uλhw0 needed to prove Theorem 1.1.

Lemma 2.1. Let w0 ∈ N and Uλhw0 be the solution of (2.1) with h = hw0 . Then

1. |Uλhw0 | ≤ min
{ 1

w0
,
1
λ

}
and

2. |Vλhw0 | ≤ min
{ 1

w0
,
1
λ

}

where Vλhw0(w) = Uλhw0(w + 1)− Uλhw0(w).

Proof. To prove 1., we shall first derive that |Uλhw0(w)| ≤ 1
w0

by splitting w into

two cases according to the definition of Uλhw0(w).
When w > w0, it follows straightforwardly that

0 < Uλhw0(w) =
(w − 1)!

w0!
λw0−we−λ

∞∑

k=w

λk

k!

=
(w − 1)!

w0!
e−λ

(λw0

w!
+

λw0+1

(w + 1)!
+

λw0+2

(w + 2)!
+ · · ·

)

=
(w − 1)!

w0!
e−λ

w!

(
λw0 +

λw0+1

(w + 1)
+

λw0+2

(w + 1)(w + 2)
+ · · ·

)

=
1
w

e−λ
(λw0

w0!
+

λw0+1

w0!(w + 1)
+

λw0+2

w0!(w + 1)(w + 2)
+ · · ·

)

≤ 1
w0

e−λ
(λw0

w0!
+

λw0+1

(w0 + 1)!
+

λw0+2

(w0 + 2)!
+ · · ·

)

≤ 1
w0

.

For w ≤ w0, the bound of Uλhw0(w) is obtained as follows:

0 <
(w − 1)!

w0!
λw0−wPλ(hCw−1)

=
(w − 1)!

w0!
e−λ

(
λw0−w

0!
+

λw0−w+1

1!
+ · · ·+ λw0−1

(w − 1)!

)

=
(w − 1)!

w0!
e−λ

{
[(w0 − 1)− w + 1]!λ(w0−1)−w+1

[(w0 − 1)− w + 1]!
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+
2 · 3 · · · [(w0 − 1)− w + 2]!λ(w0−1)−w+2

[(w0 − 1)− w + 2]!

+ · · ·+ w(w + 1) · · · (w0 − 1)λ(w0−1)

(w0 − 1)!

}

≤ (w − 1)!
w0!

e−λ (w0 − 1)!
(w − 1)!

{
λ(w0−1)−w+1

[(w0 − 1)− w + 1]!

+
λ(w0−1)−w+2

[(w0 − 1)− w + 2]!
+ · · ·+ λ(w0−1)

(w0 − 1)!

}

=
1
w0

e−λ

{
λ(w0−1)−w+1

[(w0 − 1)− w + 1]!
+

λ(w0−1)−w+2

[(w0 − 1)− w + 2]!

+ · · ·+ λ(w0−1)

(w0 − 1)!

}

≤ 1
w0

.

Combining the two cases gives

|Uλhw0(w)| ≤ 1
w0

.(2.3)

Similarly, we show that |Uλhw0 | ≤
1
λ

by considering two cases. If w > w0,

0 < Uλhw0(w) =
1
λ

(w − 1)!
w0!

e−λ

(
λw0+1

w!
+

λw0+2

(w + 1)!
+

λw0+3

(w + 2)!
+ · · ·

)

=
1
λ

e−λ

(
λw0+1

w0!w
+

λw0+2

w0!w(w + 1)
+

λw0+3

w0!w(w + 1)(w + 2)
+ · · ·

)

≤ 1
λ

e−λ

(
λw0+1

(w0 + 1)!
+

λw0+2

(w0 + 2)!
+

λw0+3

(w0 + 3)!
+ · · ·

)

≤ 1
λ

.

For w ≤ w0,

0 <
(w − 1)!

w0!
λw0−wPλ(hCw−1)

=
1
λ

(w − 1)!
w0!

e−λ

{
[w0 − w + 1]!λw0−w+1

[w0 − w + 1]!
+

2 · 3 · · · [w0 − w + 2]λw0−w+2

[w0 − w + 2]!

+ · · ·+ w(w + 1) · · ·w0λ
w0

w0!

}

≤ 1
λ

(w − 1)!
w0!

e−λ w0!
(w − 1)!

{
λw0−w+1

[w0 − w + 1]!
+

λw0−w+2

[w0 − w + 2]!
+ · · ·+ λw0

w0!

}
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=
1
λ

e−λ

{
λw0−w+1

[w0 − w + 1]!
+

λw0−w+2

[w0 − w + 2]!
+ · · ·+ λw0

w0!

}

≤ 1
λ

.

The above two inequalities demonstrate that

|Uλhw0(w)| ≤ 1
λ

.(2.4)

Therefore, by (2.3) and (2.4), 1. is proved.
Formula of Vλhw0 is easily derived from that of Uλhw0 in (2.2), that is

Vλhw0(w) =





λw0−w−1 (w − 1)!
w0!

[wPλ(1− hCw
)− λPλ(1− hCw−1)] if w ≥ w0 + 1,

λw0−w−1 (w − 1)!
w0!

[wPλ(1− hCw) + λPλ(1− hCw−1)] if w = w0,

−λw0−w−1 (w − 1)!
w0!

[wPλ(hCw)− λPλ(hCw−1)] if w ≤ w0 + 1.

Similar arguments as in Neammanee [18] produce the desired bound for Vλhw0 in
2. ¤

Proof of Theorem 1.1. Proof of 1. is divided into two steps.
Step 1. We claim that

∆(n, k, w0) ≤ λ min
{ 1

w0
,
1
λ

}
min{2, E|Wn,k −Wn−k,k|}.

In fact, for each i ∈ Dn,k,

E[Xif(Wn,k)] = E{E[Xif(Wn,k)|Xi]}
= E[Xif(Wn,k)|Xi = 0]P (Xi = 0)

+ E[Xif(Wn,k)|Xi = 1]P (Xi = 1)

= E[f(Wn,k)|Xi = 1]P (Xi = 1)

= P (Xi = 1)E[f(W ∗
n−k,k + 1)],

where W ∗
n−k,k ∼ (Wn,k −Xi)|Xi = 1 is the number of isolated trees of order k in

the graph G(n − k, p) obtained from G(n, p) by dropping the vertices i1, i2 . . . ik
and all the edges containing any of these vertices. By the fact that W ∗

n−k,k has
identical distribution as Wn−k,k, we easily deduce

E[Wn,kf(Wn,k)] =
∑

i∈Dn,k

E[Xif(Wn,k)]

=
∑

i∈Dn,k

P (Xi = 1)E[f(Wn−k,k + 1)]

= λE[f(Wn−k,k + 1)].

(2.5)

Once we set h = hw0 in (2.1) and apply (2.5) to the left hand side of (2.1), it follows
immediately that

∣∣∣P (Wn,k = w0)− e−λ λw0

w0!

∣∣∣ = |E[λUλhw0(Wn,k + 1)−Wn,kUλhw0(Wn,k)]|
≤ λE|Uλhw0(Wn,k + 1)− Uλhw0(Wn−k,k + 1)|
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≤ λ[2 sup
w
|Uλhw0(w + 1)|]

≤ 2λ min
{ 1

w0
,
1
λ

}

where Lemma 2.1(1) was used in the last inequality.
By writing Uλhw0(Wn,k+1)−Uλhw0(Wn−k,k+1) as the sum of 1-step increments

and applying Lemma 2.1(2),
∣∣∣P (Wn,k = w0)− e−λ λw0

w0!

∣∣∣ ≤ λE|Uλhw0(Wn,k + 1)− Uλhw0(Wn−k,k + 1)|
≤ λE| sup

w
[Uλhw0(w + 1)− Uλhw0(w)]

× [(Wn,k + 1)− (Wn−k,k + 1)]|

≤ λ min{ 1
w0

,
1
λ
}E|Wn,k −Wn−k,k|.

Hence ∆(n, k, w0) ≤ λ min{ 1
w0

,
1
λ
}min{2, E|Wn,k −Wn−k,k|}.

Step 2. It now suffices to find a bound of E|Wn,k −Wn−k,k| for n ≥ 2k.
By [21] (p. 140, 142), this expectation can be estimated by

E|Wn,k −Wn−k,k| = E(Wn,k −Wn−k,k)+ + E(Wn−k,k −Wn,k)+

≤ k2

n
EWn,k +

[
1− (1− p)k2

]
EWn−k,k

=
(k2

n
+

[
1− (1− p)k2

]EWn−k,k

λ

)
λ

and for n > 2k, we have

EWn−k,k

λ
< e

k2
n (cn−1).

Therefore

E|Wn,k −Wn−k,k| ≤
(k2

n
+

[
1− (1− p)k2

]
e

k2
n (cn−1)

)
λ

=
(k2

n
+ e

k2
n (cn−1) − e−

k2
n

)
λ

=
(k2

n
+ (e

k2cn
n − 1)e−

k2
n

)
λ

≤ λk2

n

(
1 + cne

k2
n (cn−1)

)

where we have used the fact that ex − 1 ≤ xex for x ≥ 0 in the last inequality.
It follows readily from step 1. and step 2. that

∆(n, k, w0) ≤ λmin
{ 1

w0
,
1
λ

}
min

{
2,

λk2

n

(
1 + cne

k2
n (cn−1)

)}
.

The bound of ∆(n, k, 0) in 2. is obtained in the same fashion as that of ∆(n, k, w0)
except that the inequalities

1. |Uλh0| ≤ min
{

1,
1
λ

}

2. |Vλh0| ≤ min
{

1,
1
λ

}
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are used instead of Lemma 2.1. With a few obvious adjustments, proof of Lemma
2.1 work equally well for Uλh0 and Vλh0. ¤

Proof of Theorem 1.2. From Theorem 1.1 and the fact that

(2.6) cn = O
( 1

nδ−1

)
when p = O

( 1
nδ

)

we see that

(2.7) ∆(n, k, w0) ≤ C
λ2k2

nw0

and

(2.8) ∆(n, k, 0) ≤ C
λ2k2

n
.

Under the settings, we would naturally like an estimate of λ in terms of n and k.
By (19)–(22) in p. 141 of [21], λ can be factored as

(2.9) λ = α(k)β(k, p)γ(n, k, p)

where α(k) =
kk+ 1

2 e−k

k!
, β(k, p) = k−

5
2 ekpk−1(1− p)−( k2+3k

2 )+1 and

γ(n, k, p) = nke−kcn

k−1∏

j=1

(
1− j

n

)
.

The Stirling’s formula ([12] p.54),
√

2πkk+ 1
2 e−ke

1
12k+1 < k! <

√
2πkk+ 1

2 e−ke
1

12k ,

easily derives the inequalities

(2.10)
1√

2πe
1

12k

< α(k) <
1√

2πe
1

12k+1
.

Finally, by (2.6), (2.9)–(2.10) and the fact that k ≤ O(n
δ
2 ),

λ ≤ Cnk

k
5
2

ek(1−cn)pk−1

=
Cn

k
5
2

(cne1−cn)k−1e1−cn

( p

− log(1− p)

)k−1

≤ Cn

k
5
2

(cne1−cn)k−1e1−cn

≤ n

k
5
2
O

( e

nδ−1

)k−1

≤ 1
k

5
2
O

( 1
n(δ∗−1)(k−1)−1

)
(2.11)

where we have used the facts that lim
n→∞

( p

− log(1− p)

)k−1

= 1 in the second in-

equality and lim
n→∞

e

nβ
= 0 for all β > 0 in the last inequality. And the theorem

follows from (2.7)–(2.8) and (2.11). ¤
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Proof of Theorem 1.3. Let us first observe that
k−1∏

j=1

(
1− j

n

)
= exp

[
− k(k − 1)

2n
− θk3

3n2

]
(2.12)

for k <
n

2
with 0 < θ < 1. So, after substituting (2.12) into (2.9) and noting the

fact that lim
n→∞

k2

n
= 0, we obtain

λ ≥ Cn

k
5
2

(cne1−cn)k−1e1−cn

=
C

k
5
2
ek−1O

( 1
n(δ−1)(k−1)−1

)
.

With this lower bound of λ, (2.7) becomes

0 ≤ ∆(n, k, w0)
λw0

≤ 1
w0e(w0−2)(k−1)

O
( 1

n(w0−2)[(δ−1)(k−1)−1+ 5β
2 ]+1−2β

)

=
( n(w0−2)−1+2β

w0e(w0−2)(k−1)

)
O

( 1

n(w0−2)[(δ−1)(k−1)+ 5β
2 ]

)

≤ 1
w0

O
( 1

n(w0−2)[(δ−1)(k−1)+ 5β
2 ]

)
.

(2.13)

Obviously, the right hand side converges to 0 as n goes to infinity. Again by
Stirling’s formula ([12],p.52), k! ∼ √

2πkk+ 1
2 e−k, an upper bound of the number of

isolated trees can be computed. That is,

w0 ≤
(

n

k

)
=

n!
(n− k)!k!

∼
√

2π
( n

n− k

)n+ 1
2
(n− k

k

)k

≤ Cn(1−β)k

≤ Cn(δ−1)(k−1)

for k sufficiently large. This immediately implies that, for k large enough,

(ω0 − 1)! ≤ Cn(ω0−2)(δ−1)(k−1).

Thus, we conclude from this bound and (2.13) that

0 ≤ w0!∆(n, k, w0) ≤ w0!
∆(n, k, w0)

λw0

≤ (w0 − 1)!O
( 1

n(w0−2)[(δ−1)(k−1)+ 5β
2 ]

)

≤ 1
n

5
2 β(w0−2)

which converges to zero as ω0 increases to infinity. ¤
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