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ON π-IMAGES OF METRIC SPACES

YING GE

Abstract. In this paper, we prove that sequence-covering, π-images of
metric spaces and spaces with a σ-strong network consisting of fcs-covers
are equivalent. We also investigate π-images of separable metric spaces.

1. Introduction

A study of images of metric spaces is an important question in general topol-
ogy ([2, 7, 9, 10, 16]). In recent years, π-images of metric spaces cause attention
once again ([4, 13, 18, 19]). It is known that a space is a strong-sequence-
covering (resp. sequentially-quotient), π-image of a metric space if and only if
it has a σ-strong network consisting of cs-covers (resp. cs∗-covers) (see [13], for
example). Note that strong-sequence-covering mapping =⇒ sequence-covering
mapping =⇒ (if the domain is metric) sequentially-quotient mapping and that
cs-cover =⇒ fcs-cover =⇒ cs∗-cover. It is natural to raised the following ques-
tion.

Question 1.1. Can sequence-covering, π-images of metric spaces be charac-
terized as spaces with a σ-strong network consisting of fcs-covers?

On the other hand, whether sequentially-quotient, π-images of metric spaces
and sequence-covering, π-images of metric spaces are equivalent? This question
is still open (see [13, Question 3.1.14] or [19, Question 4.4(2)], for example).
This leads us to consider the following question.

Question 1.2. Are sequentially-quotient, π-images of separable metric spaces
and sequence-covering, π-images of separable metric spaces equivalent?

In this paper, we give a positive answer for Question 1.1. We also investigate
π-images of separable metric spaces, and answer Question 1.2 affirmatively.
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Throughout this paper, all spaces are assumed to be Hausdorff, and all
mappings are continuous and onto. N denotes the set of all natural numbers,
{xn} denotes a sequence, where the n-th term is xn. Let X be a space and
let A be a subset of X. We say that a sequence {xn} converging to x in X
is eventually in A if {xn : n > k}⋃{x} ⊂ A for some k ∈ N. Let P be a
family of subsets of X and let x ∈ X.

⋃P , st(x,P) and (P)x denote the
union

⋃{P : P ∈ P}, the union
⋃{P ∈ P : x ∈ P} and the subfamily

{P ∈ P : x ∈ P} of P respectively. For a sequence {Pn : n ∈ N} of covers
of a space X, we abbreviate {Pn : n ∈ N} to {Pn}. A point b = (βn)n∈N of a
Tychonoff-product space is abbreviated to (βn), where βn is the n-th coordinate
of b. If f : X −→ Y is a mapping, then f(P) denotes {f(P ) : P ∈ P}.

2. π-Images of Metric Spaces

Definition 2.1. Let f : X −→ Y be a mapping.
(1) f is called a strong-sequence-covering mapping ([11]) if for every con-

vergent sequence S in Y , there exists a convergent sequence L in X such that
f(L) = S.

(2) f is called a sequence-covering mapping ([6]) if for every sequence S
converging to y in Y , there exists a compact subset K of X such that f(K) =
S

⋃{y}.
(3) f is called a sequentially-quotient mapping ([1]) if for every convergent

sequence S in Y , there exists a convergent sequence L in X such that f(L) is
a subsequence of S.

(4) f is called a compact-covering mapping([15]) if for every compact subset
C of Y , there exists a compact subset K of X such that f(K) = C.

(5) f is called a π-mapping ([16]), if for every y ∈ Y and for every neigh-
borhood U of y in Y , d(f−1(y), X − f−1(U)) > 0, where X is a metric space
with a metric d.

Definition 2.2. Let P be a cover of a space X.
(1) P is called an fcs-cover of X ([5]) if for every sequence S converging to

x in X, there exists a finite subfamily P ′ of (P)x such that S is eventually in⋃P ′.
(2) P is called a cs∗-cover ([13]) if for every convergent sequence S in X,

there exist P ∈ P and a subsequence S ′ of S such that S ′ is eventually in P .

Definition 2.3. (1) Let P = ∪{Px : x ∈ X} be a cover of a space X, where
Px ⊂ (P)x. P is called a network of X ([15]), if for every x ∈ U with U open
in X, there exists P ∈ Px such that x ∈ P ⊂ U , where Px is called a network
at x in X.

(2) Let {Pn} be a sequence of covers of a space X and every Pn+1 is an
refinement of Pn. P =

⋃{Pn : n ∈ N} is called a σ-strong network ([8]), if
{st(x,Pn)} is a network at x in X for every x ∈ X.
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(3) A σ-strong network P =
⋃{Pn : n ∈ N} is called a σ-strong network

consisting of (countable) fcs-covers (resp. cs∗-covers) if Pn is a (countable)
fcs-cover (resp. cs∗-cover) for every n ∈ N.

(4) A σ-strong network P =
⋃{Pn : n ∈ N} is called a σ-point-countable

strong network if Pn is point-countable for every n ∈ N.

Theorem 2.4. For a space X, the following are equivalent.
(1) X is a sequence-covering, π-image of a metric space.
(2) X has a σ-strong network consisting of fcs-covers.

Proof. (1)=⇒(2): Let M be a metric space with a metric d, and let f : M −→
X be a sequence-covering, π-mapping. We write B(a, ε) = {b ∈ M : d(a, b) <
ε} for every a ∈ M , where ε > 0. For every n ∈ N, put Bn = {B(a, 1/n) : a ∈
M}, and put Pn = f(Bn), then Pn is a cover of X.

Claim 1. P =
⋃{Pn : n ∈ N} is a σ-strong network of X.

It is clear that Pn+1 is a refinement of Pn for every n ∈ N. We only need
to prove that {st(x,Pn)} is a network at x in X for every x ∈ X. Let x ∈ U
with U open in X. Since f is a π-mapping, there exists n ∈ N such that
d(f−1(x),M − f−1(U)) > 1/n. Pick m ∈ N such that m > 2n. It suffices
to prove that st(x,Pm) ⊂ U . Let a ∈ M and let x ∈ f(B(a, 1/m)) ∈ Pm.
We claim that B(a, 1/m) ⊂ f−1(U). In fact, if B(a, 1/m) 6⊂ f−1(U), then
pick b ∈ B(a, 1/m) − f−1(U). Note that f−1(x)

⋂
B(a, 1/m) 6= ∅, pick c ∈

f−1(x)
⋂

B(a, 1/m) 6= ∅, then d(f−1(x),M − f−1(U)) ≤ d(c, b) ≤ d(c, a) +
d(a, b) < 2/m < 1/n. This is a contradiction. So B(a, 1/m) ⊂ f−1(U), thus
f(B(a, 1/m)) ⊂ ff−1(U) = U . This proves that st(x,Pm) ⊂ U .

Claim 2. Pn is an fcs-cover of X for every n ∈ N.
Let n ∈ N. Suppose S is a sequence converging to x in X. Since f is

sequence-covering, there exists a compact subset K in M such that f(K) =
S

⋃{x}. Note that f−1(x)
⋂

K is compact in M . There exists a finite subset
M ′ of M such that f−1(x)

⋂
K ⊂ ⋃

a∈M ′ B(a, 1/n). We can assume that
f−1(x)

⋂
B(a, 1/n) 6= ∅ for every a ∈ M ′. Put B = {B(a, 1/n) : a ∈ M ′} and

B =
⋃B, then K − B is compact in M . Put P ′ = {f(B(a, 1/n)) : a ∈ M ′}.

Then P ′ is a finite subfamily of (Pn)x. We prove that S is eventually in
⋃P ′

as follows. If not, there exists a subsequence {xk} of S converging to x such
that xk 6∈

⋃P ′ for every k ∈ N. Thus there exists ak ∈ K − B such that
f(ak) = xk for every k ∈ N. Since K − B is compact in M , there exists a
subsequence {aki

} of {ak} such that the sequence {aki
} converges to a point

a ∈ K − B. Thus f(a) 6= x. This contradicts the continuity of f . So S is
eventually in

⋃P ′. This proves that Pn is an fcs-cover of X.
By the above, X has a σ-strong network P =

⋃{Pn : n ∈ N} consisting of
fcs-covers.

(2)=⇒(1): Let X have a σ-strong network P =
⋃{Pn : n ∈ N} consisting

of fcs-covers. For every n ∈ N, put Pn = {Pα : α ∈ Λn}, and Λn is endowed
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with discrete topology. Put

M = {a = (αn) ∈ Πn∈NΛn : {Pαn} is a network at some xa inX}.

Then M , which is a subspace of the product space Πn∈NΛn, is a metric space
with metric d described as follows.

Let a = (αn), b = (βn) ∈ M . If a = b, then d(a, b) = 0. If a 6= b, then
d(a, b) = 1/min{n ∈ N : αn 6= βn}.

Define f : M −→ X by choosing f(a) = xa for every a = (αn) ∈ M , where
{Pαn} is a network at xa in X. It is not difficult to check that f is continuous
and onto.

Claim 1. f is a π-mapping.
Let x ∈ U with U open in X. Since {Pn} is a σ-strong network of X,

there exists n ∈ N such that st(x,Pn) ⊂ U . Then d(f−1(x),M − f−1(U)) ≥
1/2n > 0. In fact, if a = (αn) ∈ M such that d(f−1(x), a) < 1/2n, then
there is b = (βn) ∈ f−1(x) such that d(a, b) < 1/n, so αk = βk if k ≤ n.
Notice that x ∈ Pβn ∈ Pn, Pαn = Pβn , so f(a) ∈ Pαn = Pβn ⊂ st(x,Pn) ⊂
U , hence a ∈ f−1(U). Thus d(f−1(x), a) ≥ 1/2n if a ∈ M − f−1(U), so
d(f−1(x),M − f−1(U)) ≥ 1/2n > 0. This proves that f is a π-mapping.

Claim 2. f is a sequence-covering mapping.
Let S = {xn} be a sequence converging to x in X. For every n ∈ N, since

Pn is an fcs-cover, there exists a finite subfamily Fn of (Pn)x such that S is
eventually in

⋃Fn. Note that S−⋃Fn is finite. There exists a finite subfamily
Gn of Pn such that S − ⋃Fn ⊂ ⋃Gn. Put Fn

⋃Gn = {Pαn : αn ∈ Γn},
where Γn is a finite subset of Λn. For every αn ∈ Γn, if Pαn ∈ Fn, put
Sαn = (S

⋃{x}) ⋂
Pαn , otherwise, put Sαn = (S −⋃Fn)

⋂
Pαn . It is easy to

see that S
⋃{x} =

⋃
αn∈Γn

Sαn and {Sαn : αn ∈ Γn} is a family of compact
subsets of X. Put K = {(αn) ∈ Πn∈NΓn :

⋂
n∈N Sαn 6= ∅}. Then

(i) K ⊂ M and f(K) ⊂ S
⋃{x}: Let a = (αn) ∈ K, then

⋂
n∈N Sαn 6= ∅.

Pick y ∈ ⋂
n∈N Sαn , then y ∈ ⋂

n∈N Pαn . Note that {Pαn : n ∈ N} is a network
at y in X if and only if y ∈ ⋂

n∈N Pαn . So a ∈ M and f(a) = y ∈ S
⋃{x}.

This proves That K ⊂ M and f(K) ⊂ S
⋃{x}.

(ii) S
⋃{x} ⊂ f(K): Let y ∈ S

⋃{x}. For every n ∈ N, pick αn ∈ Γn such
that y ∈ Sαn . Put a = (αn), then a ∈ K and f(a) = y. This proves That
S

⋃{x} ⊂ f(K).
(iii) K is a compact subset of M : Since K ⊂ M and Πn∈NΓn is a compact

subset of Πn∈NΛn. We only need to prove that K is a closed subset of Πn∈NΓn.
It is clear that K ⊂ Πn∈NΓn. Let a = (αn) ∈ Πn∈NΓn−K. Then

⋂
n∈N Sαn = ∅.

There exists n0 ∈ N such that
⋂

n≤n0
Sαn = ∅. Put W = {(βn) ∈ Πn∈NΓn :

βn = αn for n ≤ n0}. Then W is open in Πn∈NΓn and a ∈ W . It is easy to
see that W

⋂
K = ∅. So K is a closed subset of Πn∈NΓn.

By the above (i), (ii) and (iii), f is a sequence-covering mapping.
By the above, X is a sequence-covering, π-image of a metric space. ¤
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Lemma 2.5. Let P be a point-countable cover of a space X. Then P is an
fcs-cover if and only if P is a cs∗-cover.

Proof. Necessity holds by Definition 2.2. We only need to prove sufficiency.
Let P be a point-countable cs∗-cover of X. Let S = {xn} be a sequence

converging to x in X. Since P is point-countable, put (P)x = {Pn : n ∈ N}.
Then S is eventually in

⋃
n≤k Pn for some k ∈ N. If not, then for any k ∈ N, S is

not eventually in
⋃

n≤k Pn. So, for every k ∈ N, there exists xnk
∈ S−⋃

n≤k Pn.
We may assume n1 < n2 < · · · < nk−1 < nk < nk+1 < · · · . Put S ′ = {xnk

},
then S ′ is a sequence converging to x in X. Since P is a cs∗-cover, there exists
m ∈ N and a subsequence S ′′ of S ′ such that S ′′ is eventually in Pm. This
contradicts the construction of S ′. ¤

Recall a mapping f : X −→ Y is an s-mapping, if f−1(y) is a separable
subset of X for every y ∈ Y . Combining [13, Theorem 3.3.12] and [19, Lemma
2.2(2)], we have the following corollary.

Corollary 2.6. Let X be a space. Then the following are equivalent.
(1) X is a sequence-covering, s and π-image of a metric space.
(2) X is a sequentially-quotient, s and π-image of a metric space.
(3) X has a σ-point-countable strong network consisting of fcs-covers.
(4) X has a σ-point-countable strong network consisting of cs∗-covers.

Proof. (1) =⇒ (2): it is clear.
(2) =⇒ (4): It holds by [13, Theorem 3.3.12].
(4) =⇒(1): It holds by [19, Lemma 2.2(2)].
(3) ⇐⇒ (4): It holds by Lemma 2.5. ¤

3. π-Images of Separable Metric Spaces

Now we discuss sequence-covering (resp. sequentially-quotient), π-images of
separable metric spaces.

Definition 3.1. Let X be a space, and let x ∈ X. A subset P of X is called
a sequential neighborhood of x ([3]) if every sequence {xn} converging to x in
X is eventually in P .

Definition 3.2. Let P = ∪{Px : x ∈ X} be a cover of a space X. P is called
an sn-network of X ([14]), if Px satisfies the following (a),(b) and (c) for every
x ∈ X, where Px is called an sn-network at x in X.

(a) Px is a network at x in X;
(b) if P1, P2 ∈ Px, then P ⊂ P1

⋂
P2 for some P ∈ Px;

(c) every element of Px is a sequential neighborhood of x.

Remark 3.3. In [12], a sequential neighborhood of x and an sn-network is
called a sequence barrier at x and a universal cs-network respectively.
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Theorem 3.4. For a space X, the following are equivalent.
(1) X is a sequence-covering, π-image of a separable metric space;
(2) X is a sequentially-quotient, π-image of a separable metric space;
(3) X has a σ-strong network consisting of countable fcs-covers;
(4) X has a σ-strong network consisting of countable cs∗-covers.

Proof. The proofs of (1)⇐⇒(3) and (2)⇐⇒(4) are as the proof of Theorem
2.4. (3)⇐⇒(4) from Lemma 2.5. ¤

Ge proved that for a regular space X, conditions in Theorem 3.4 are equiva-
lent to that X has a countable sn-network ([4]). The following example shows
that ”regular” can not be omitted here.

Example 3.5. A space with a countable sn-network is not a sequentially-
quotient, π-image of a metric space.

Proof. Let R be the set of all real numbers, and let τ be the Euclidean topology
on R. Put X = R with the topology τ ∗ = {{x}⋃

(D
⋂

U) : x ∈ U ∈ τ}, where
D is the set of all irrational numbers. That is, X is the pointed irrational
extension of R. Then X is Hausdorff, non-regular, and has a countable base
([17, Example 69]), so X has a countable sn-network. Lin showed that X is
not a symmetric space ([13, Example 3.13(5)]), so X is not a quotient, π-image
of a metric space ([18]). Note that every sequentially-quotient mapping onto a
first countable space is quotient ([1]). Thus X is not a sequentially-quotient,
π-image of a metric space. ¤

However, by the proofs of [14, Theorem 4.6 (3)=⇒(2)] and [4, Theorem
2.7(3)=⇒(1)], we have the following results without requiring the regularity of
the spaces involved.

Proposition 3.6. For a space X, the following are true.
(1) If X is a sequentially-quotient, π-image of a separable metric space, then

X has a countable sn-network.
(2) If X has a countable closed sn-network, then X is a compact-covering,

compact image of a separable metric space.

The author would like to thank the referees for their valuable amendments
and suggestions.
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