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VARIOUS REPRESENTATIONS FOR THE SYSTEM OF
NON-MODEL HYPERBOLIC EQUATIONS

WITH REGULAR COEFFICIENTS

ADIB A.N., RADJABOV N.

Abstract. The authors have got new integral representations for the lin-
ear system of hyperbolic equations with regular coefficients in infinite re-
gions. Furthermore, they used these integral representations to investigate
new boundary value problems in infinite regions.

1. Introduction

Hyperbolic differential equations with singular coefficients or singular sur-
faces possess importance in diverse areas of mathematical physics and mathe-
matical engineering, including elasticity, hydrodynamics, thermodynamics and
other problems [3, 5, 4]. Furthermore, it is also well known that hyperbolic
differential equations with one or more singular lines occur in engineering and
physical processes. For example, the non-model hyperbolic equation of second
order with two singular lines is employed to describe the transformation spec-
trum of electric signals on long lines with variable parameters in the theory of
the electric flail [4, 7, 8, 6, 1, 2]. The problem of obtaining various solutions for
equations of hyperbolic type with singular coefficients is described in a number
of works (see the references). In [7], the equation

∂2U

∂t2
=

n∑
j=1

[
aj

∂2U

∂x2
j

+
ηj

Xj

∂U

∂xj

]
+ g(x, t),

where a positive constant, ηj positive constant, possesses various solutions
which may be represented in terms of solutions to the regular equation (see
[7]). Depending on the obtained results, a solution of the Cauchy problem
follows when boundary conditions are specified on the initial surface t = 0. In
[4] for the equation
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∂2U

∂t2
+

η

t

∂U

∂t
−

(
∂2U

∂x2
+

∂2U

∂y2

)
= f(x, y, t),

where η > 0 in region x > 0, t > 0,−∞ < y < ∞ the problem is solved subject
to

U(x, y) = 0,
∂U(x, y, t)

∂t

∣∣∣∣
t=0

= 0, U(0, y, t) = g(y, t),

x, y, t are arbitrary variables.

2. Main Results

Let D be the following infinite regions:

D = {(x, y) : −∞ < x < ∞,−∞ < y < ∞},
with the boundary:

Γ+
1 ={(x, y) : y = 0,−∞ ≤ x ≤ ∞},

Γ+
2 ={(x, y) : x = 0,−∞ ≤ y ≤ ∞}.

In D we consider the following system:

(1)
∂2Us

∂x∂y
+

n∑
j=1

{ajs(x, y)
∂Uj

∂x
+ bjs(x, y)

∂Uj

∂y
+ cj(x, y)Uj} = fs(x, y),

(1 ≤ s ≤ n), where a(x, y), b(x, y), c(x, y), fs(x, y) are given continuous func-
tions.

Case 1.

Theorem 1. Let the coefficients in system (1) satisfy: ass(x, y) ∈ C1
x(D),

bss(x, y), cs(x, y) ∈ C(D), 1 ≤ s ≤ n, ajs(x, y) ∈ C1
x(D), bjs(x, y) ∈ C1

y (D)
at j 6= s, j, s = 1, 2, . . . , n. Then any solution of system (1) within the class

C2(D) ∩ C(D) is:

Us(x, y)−
∫ ∞

y

ews
2(x,τ)−ws

2(x,y)dτ

∫ ∞

x

cs
1(t, τ)Us(t, τ)ews

1(t,τ)−ws
1(x,τ)dt

+

∫ ∞

y

ews
2(x,τ)−ws

2(x,y)dτ

∫ ∞

x

ews
1(t,τ)−ws

1(x,τ)×

×[−
n∑

j=1
j 6=s

(ajs(t, τ)
∂Uj

∂t
+ bjs(t, τ)

∂Uj

∂τ
+ cj(t, τ)Uj(t, τ))]dt

=gs(x, y), 1 ≤ s ≤ n,

(2)
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where gs(x, y) is the Volterra system integral equation of the second type in the
form:

gs(x, y) =Ψs(x)e−ws
2(x,y) +

∫ ∞

y

ews
2(x,τ)−ws

2(x,y)−ws
1(x,τ)Φs(τ)dτ

+

∫ ∞

y

ews
2(x,τ)−ws

2(x,y)dτ

∫ ∞

x

ews
1(t,τ)−ws

1(x,τ)fs(t, τ)dt,

(3)

(4) ws
1(x, y) =

∫ ∞

x

bss(t, y)dt, ws
2(x, y) =

∫ ∞

y

ass(x, τ)dτ,

and Ψs(x), Φs(y) are given continuous functions on Γ1, Γ2.

Proof. Let the coefficients in system (1) satisfy: ass(x, y) ∈ C1
x(D), bss(x, y),

cs(x, y) ∈ C(D), s = 1, 2, . . . , n, ajs(x, y) ∈ C1
x(D), and bss(x, y) ∈ C1

y (D) at
j 6= s. Then the system (1) can be written in the form:

[
∂

∂x
+ bss(x, y)

] [
∂

∂y
+ ass(x, y)

]
Us(x, y) = fs(x, y) + c1

s(x, y)Us(x, y)

−
n∑

j=s+1

[
ajs(x, y)

∂Uj(x, y)

∂x
+ bjs(x, y)

∂Uj(x, y)

∂y
+ cj(x, y)Uj(x, y)

]

−
n∑

j=s+1

[
ajs(x, y)

∂Uj(x, y)

∂x
+ bjs(x, y)

∂Uj(x, y)

∂y
+ cj(x, y)Uj(x, y)

]

≡Fs(x, y), 1 ≤ s ≤ n,

(5)

(6) c1
s(x, y) = −cs(x, y) +

∂ass(x, y)

∂x
+ ass(x, y)bss(x, y),

then we can put

(7)
∂Us(x, y)

∂y
+ ass(x, y)Us(x, y) = gs(x, y).

Substituting from equation (7) into equation (5), we get

(8)
∂gs(x, y)

∂x
+ bss(x, y)gs(x, y) = Fs(x, y).
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Solving equation (8), (7) and substituting the obtained results into equation
(5), we get the solutions of equations (2), (3) where

∫ ∞

x

ews
1(t,τ)−ws

1(x,τ)

n∑

j 6=s
j=1

ajs(t, τ)
∂Uj

∂t
dt =

=
n∑

j=1
j 6=s

[(ajs(x, τ)Uj(x, τ)− e−ws
1(x,τ)ajs(0, τ)Uj(0, τ))

−
∫ ∞

x

(
∂

∂t
(ews

1(t,τ)−ws
1(x,τ)ajs(t, τ)))Uj(t, τ)dt],

∫ ∞

y

ews
2(x,τ)−ws

2(x,y)dτ

∫ ∞

x

ews
1(t,τ)−ws

1(x,τ)bjs(t, τ)
∂Uj

∂τ
dt =

=

∫ s

x

ews
1(t,y)−ws

1(x,y)bjs(t, y)Uj(t, y)dt

−e−ws
2(x,y)

∫ ∞

x

ews
1(t,0)−ws

1(x,0)bjs(t, 0)Uj(t, 0)dt

−
∫ s

y

dτ

[
∂

∂τ
(ews

2(x,t)−ws
2(x,y)))ews

1(t,τ)−ws
1(x,τ)bjs(t, τ)

+
∂

∂τ
(ews

1(t,τ)−ws
1(x,τ)bjs(t, τ)ews

2(x,τ)−ws
2(x,y))

]
Uj(t, τ)dt.

Then we can get

Us(x, y)−
∫ ∞

y

dτ

∫ ∞

x

{ews
2(x,τ)−ws

2(x,y)+ws
1(t,τ)−ws

1(x,τ)cs
1(t, τ)Us(t, τ)

+
n∑

j 6=s
j=1

(cj(t, τ)Uj(t, τ)ews
2(x,τ)−ws

2(x,y)+ws
1(t,τ)−ws

1(x,τ)

− ∂

∂t
(ews

1(t,τ)−ws
1”(x,τ)ajs(t, τ))ews

2(x,τ)−ws
2(x,y)Uj(t,τ)

−[
∂

∂t
(ews

2(x,τ)−ws
2(x,y))ews

1(t,τ)−ws
1(x,τ)bjs(t, τ)

+ews
2(x,τ)−ws

2(x,y) ∂

∂t
(ews

1(t,τ)−ws
1(x,0)bjs(t, τ))]Uj(t, τ)}dτ
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−
∞∫

y

ews
2(x,τ)−ws

2(x,y)

n∑

j 6=s
j=1

(ajs(x, τ)Uj(x, τ)− e−ws
1(x,τ)ajs(0, τ)Uj(0, τ))]dτ

−
∞∫

x

n∑

j 6=s
j=1

ews
1(t,y)−ws

1(x,y)bks(t, y)Uj(t, y)− e−ws
2(x,y)+ws

1(t,0)−ws
1(x,0)bjs(t, 0)Uj(t, 0))dt

=gs(x, y), 1 ≤ s ≤ n.

We get

(9) Ks(x, y; t, τ) = ews
2(x,τ)−ws

2(x,y)+ws
1(t,τ)−ws

1(x,τ)cs
1(t, τ),

Kjs(x, y;t, τ) = ews
2(x,τ)−ws

2(x,y)+ws
1(t,τ)−ws

1(x,τ)cj(t, τ)

− ∂

∂t
(ews

1(t,τ)−ws
1(x,τ)ajs(t, τ))ews

2(x,τ)−ws
2(x,y)

− ∂

∂τ
(ews

2(x,τ)−ws
2(x,y))ews

1(t,τ)−ws
1(x,τ)bjs(t, τ)

+ews
2(x,τ)−ws

2(x,y) ∂

∂τ
(bjs(t, τ))

=ews
2(x,τ)−ws

2(x,y)+ws
1(t,τ)−ws

1(x,τ)×

×
[
cj(t, τ)− ∂ajs(t, τ)

∂t
− ajs(t, τ)bjs(t, τ)− ass(x, τ)bjs(t, τ)

+
∂bjs(t, τ)

∂t
+

(
∂ws

1(t, τ)

∂τ
− ∂ws

1(x, τ)

∂τ

)
bjs(t, τ)

]
,

(10)

(11) K
(1)
js (x, y; τ) = ews

2(x,τ)−ws
2(x,y)ajs(x, τ),

(12) K
(2)
js (x, y; τ) = ews

2(x,τ)−ws
2(x,y)−ws

1(x,τ)ajs(0, τ),

(13) K
(3)
js (x, y; τ) = ews

1(t,y)−ws
1(x,y)bjs(t, y),

(14) K
(4)
js (x, y; τ) = ews

1(t,0)−ws
2(x,y)−ws

1(x,0)bjs(t, 0).

Then the problem takes the solution of Volterra system integral equation of
the second type in the form:
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gs(x, y) =Us(x, y)

−
∫ ∞

y

dτ

∫ ∞

x

[Ks(x, y; t, τ)Us(t, τ) +
n∑

j=1
j 6=s

(Kjs(x, y; t, τ)Uj(t, τ)]dt

−
∫ ∞

y

(
n∑

j=1
j 6=s

(K
(1)
ks (x, y; τ)Uj(x, τ))−K

(2)
js (x, y; τ)Uj(0, τ))dτ−

−
∫ ∞

x

[
n∑

j=1
j 6=s

(K
(3)
js (x, y; t)Uj(t, y)−K

(4)
js (x, y; t)Uj(t, 0))]dt, 1 ≤ s ≤ n

(15)

The proof is complete. ¤
Remark 1. The solution gs(x, y) of equation (15) in the neighborhood of Γ+

1

can be represented in the form:

Us(0, y)−
∫ ∞

y

[
n∑

j=1
j 6=s

(K
(1)
js (0, y; τ)Us(0, τ)−K

(2)
js (0, y; τ)Uj(0, τ))]dτ = gs(0, y),

(16) gs(0, y) = Ψs(0)e−ws
1(0,τ) +

∫ ∞

y

ews
2(0,τ)−ws

2(0,y)Φs(τ)dτ.

From equation (11), (12) we get

K
(1)
js (0, y; τ) = K

(2)
js (0, y; τ),

then
Us(0, y) = gs(0, y)

Similarly, the solution gs(x, y) of equation (15) in the neighborhood of Γ+
2 can

be represented in the form:

(17) Us(x, 0)−
n∑

j=1
j 6=s

∫ ∞

x

[K
(3)
js (x, 0; t)−K

(4)
js (x, 0; t)]Uj(t, 0)dt = gs(x, 0),

(18) gs(x, 0) = Ψs(x), 1 ≤ s ≤ n.

Then we can put

K(3)
gs (x, 0; t) =ews

1(t,0)−ws
1(x,0)bjs(x, 0),

K(4)
gs (x, 0; t) =ews

1(t,0)−ws
1(x,0)bjs(t, 0) = K

(3)
js (x, 0; t).

We get
Us(x, 0) = gs(x, 0) = Ψs(x).
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Problem P1. Find a solution of system (1) within the class C2(D) ∩ C(D ∪
Γ1 ∪ Γ2) under the boundary conditions:

Us(0, y) =as(y), y ∈ Γ2,

Us(x, 0) =bs(x), x ∈ Γ1, 1 ≤ s ≤ n,

as(0) =bs(0).

(19)

Solution of Problem P1. Substitute the conditions Us(x, 0), Us(0, y) in the
integral representations (17), (16) we can get

Ψs(x) =bs(x),∫ ∞

y

ews
2(0,τ)−ws

2(0,y)Φs(τ)dτ =as(y)− bs(0)e−ws
2(0,y),

∫ ∞

y

ews
2(0,τ)Φs(τ)dτ =ews

2(0,y) − bs(0),

then

Φs(y) =e−ws
2(0,y) d

dt
[ews

2(0,y)as(y)− bs(0)] or

Φs(y) =e−ws
2(0,y)[ews

2(0,y)ass(0, y)(as(y)− bs(0)) + ews
2(0,y)a1

s(y)],

Φs(y) =ass(0, y)[as(y)− bs(0)] + as(y).

(20)

We get

Φs(0) = ass(0, 0)as(0) + a1
s(0), as(0) = bs(0).

Substituting the obtained functions Ψs(x), Φs(y) into the integral representa-
tion (15) and using the condition (19) of problem P1 we get the solution of
Volterra system integral equation of the second type in the form:

Us(x,y)−
∞∫

y

dτ

∞∫

x

[Ks(x, y; t, τ)Us(x, t) +
n∑

j=1
j 6=s

Kjs(x, y; t, τ)Uj(t, τ)]dt

−
∞∫

y

n∑
j=1
j 6=s

K
(1)
js (x, y; τ)Uj(x, τ)dτ −

∞∫

x

n∑
j=1
j 6=s

K
(3)
js (x, y; t)Uj(t, y)dt

=Gs(x, y), 1 ≤ s ≤ n,

(21)

Gs(x, y) =gs(x, y)

−
n∑

j=1
j 6=s

(∫ ∞

y

K
(2)
js (x, y; τ)aj(τ)dτ +

∫ ∞

x

bj(t)K
(4)
js (x, y; t)dt

)
.(22)

The system (21) is solvable and its uniqueness solution can be obtained by
using the kernels (9), (10), (11).

The proof of the following Theorem is completed.
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Theorem 2. Let the coefficients of system (1) satisfy the conditions of Theo-
rem 1, ass(0, y) ∈ C2(Γ2), as(y) ∈ C2(Γ2) and bs(x) ∈ C1(Γ1). Then Problem
P1 has a unique solution in the form:

Us(x, y) =g(x, y) +

∫ ∞

y

∫ ∞

x

Γ1(x, y; t, τ)g(t, τ)dtdτ

+

∫ ∞

y

Γ2(x, y; τ)g(x, τ)dτ +

∫ ∞

x

Γ3(x, y; t)g(t, y)dt

−
∫ ∞

y

Γ4(x, y; τ)g(0, τ)dτ −
∫ ∞

x

Γ5(x, y; τ)g(t, 0)dt

(23)

where g(x, y) = (g1(x, y), g2(x, y), g3(x, y), . . . , gn(x, y)) and U(x, y) = (U1(x, y),
U2(x, y), U3(x, y), . . . , Un(x, y)), Γ1, Γ2, are the kernels of the formula (21).

The formula (23) of the functions Gs(x, y) can be obtained by using the
inequalities (22), (3), (4), (20), (19).

Problem P2. Find a solution of system (1) within the class C2(D) ∩ C(D ∪
Γ1 ∪ Γ2) under the boundary conditions:

Us(x, 0) =gs(x),

∂Us

∂y

∣∣∣∣
x=0

=fs(y)
(24)

where fs(y), gs(x) are continuous functions on Γ+
2 , Γ+

1 .
Solution of Problem P2. From equation (2), we have

∂Us

∂y

∣∣∣∣
x=0

=
∂gs(x, y)

∂y

∣∣∣∣
x=0

,

∂gs(x, y)

∂y
=− e−ws

2(x,y)ass(x, y)

[
Ψs(x) +

∫ ∞

y

ews
2(x,0)−ws

1(x,τ)Φs(τ)dτ

+

∫ ∞

y

ews
2(x,τ)

∫ ∞

x

ews
1(t,τ)−ws

1(x,τ)fs(t, τ)dt

]

+e−ws
2(x,y)

[
Φs(y)ews

2(x,y)−ws
1(x,y) + ews

2(x,y)

∫ ∞

x

ews
1(t,y)−ws

1(x,y)fs(t, y)dt

]
.

We get

∂gs(x, y)

∂y

∣∣∣∣
x=0

= −e−ws
2(0,y)ass(0, y)[Ψs(0)+

∫ ∞

y

ews
2(0,τ)Φs(τ)dτ ]+Φs(y) = fs(y),

or

−ass(0, y)[Ψs(0) +

∫ ∞

y

ews
2(0,τ)Φs(τ)dτ)] + ews

2(0,y) + Φs(y) = fs(y)ews
2(0,y).

Also we get

Us(x, 0) =Φs(x) = gs(x),

Ψs(x) =gs(x).
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We can get the function Φs(y) from the integral equation

ews
2(0,y)Φs(y)− ass(0, y)

∫ ∞

y

ews
2(0,τ)Φs(τ)dτ) =fs(y)ews

2(0,y) − ass(0, y)gs(0),

ews
2(0,y)Φs(y) =Φ1

s(y),

fs(y)ews
2(0,y) − ass(0, y)gs(0) =Fs(y), 1 ≤ s ≤ n,

(25) Φ1
s(y)− ass(0, y)

∫ ∞

y

Φ1
s(τ)dτ = Fs(y),

Φ1
s(0) = Fs(0) = fs(0)− ass(0, 0)gs(0), or

Φs(0) = fs(0)− ass(0, 0)gs(0).

By solving equation (25), we can get

Φs(y) =fs(y)− ass(0, y)gs(0)e−ws
2(0,y)

+ass(0, y)

∫ ∞

y

fs(τ)

ass(0, τ)
− e−ws

2(0,τ)gs(0)dτ.
(26)

Substituting the obtained functions Ψs(x), Φs(y) of equations (25), (26) into
the integral representation (15) and then solving the obtained system, we get
the solution of Problem P2.

Theorem 3. Let in system (1) the coefficients a(x, y), b(x, y), c(x, y), f(x, y)
satisfy the conditions of Theorem 1 and in Problem P2: fs(y) ∈ C1(Γ2), gs(x) ∈
C2(Γ1). Then problem P1 has a unique solution which is given by the formulae
(23), (3), (25), (26).

The values of the kernels Γ1 − Γ5 can be obtained from equation (23) and
then substituting into the integral representation (15).

Cases II.

Theorem 4. Let the coefficients in system (1) satisfy: bss(x, y) ∈ C1
y (D),

ass(x, y), cs(x, y) ∈ C(D), s = 1, 2, . . . , n; ajs(x, y) ∈ C1
x(D), bjs(x, y) ∈ C1

y (D)
at j 6= s, j, s = 1, 2, . . . , n. Then any solution of the system (1) within the class
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C2(D) ∩ C(D) is:

Us(x, y)−
n∑

j=1
j 6=s

∫ ∞

y

dτ

∫ ∞

x

K
(1)
js (x, y; t, τ)Uj(t, τ)dt

+
n∑

j=1
j 6=s

∫ ∞

x

[K
(2)
js (x, y; t)Uj(t, y)−−K

(3)
js (x, y; t)Uj(t, 0)]dt

+
n∑

j=1
j 6=s

∫ ∞

y

[K
(4)
js (x, y; τ)Uj(x, τ)−K

(5)
js (x, y; τ)Uj(0, τ)]dτ

=g(1)
s (x, y),

(27)

where g
(1)
s (x, y) is the Volterra system integral equation of the second type, and

the Kernels of equation (27) are:

K
(1)
js (x, y; t, τ) =

∂

∂t
[ews

1(t,y)−ws
1(x,y)+ws

2(t,τ)−ws
2(t,y)]

+ews
1(t,y)−ws

1(x,y)−ws
2(t,y) ∂

∂τ
[ews

2(t,τ)bjs(t, τ)]

+ews
1(t,y)−ws

1(x,y)+ws
2(t,τ)−ws

2(t,y)cjs(t, τ),

K
(2)
js (x, y; t) =ews

1(t,y)−ws
1(x,y)bjs(t, y),

K
(3)
js (x, y; t) =ews

1(t,y)−ws
1(x,y)bjs(t, 0),

K
(4)
js (x, y; τ) =ews

2(t,τ)−ws
2(x,y)ajs(x, τ),

K
(5)
js (x, y; τ) =ews

2(0,τ)−ws
2(0,y)−ws

1(x,y)ajs(0, τ).

Proof. Let the coefficients in system (1) satisfy: bss(x, y) ∈ C1
y (d), ass(x, y),

cs(x, y) ∈ CD, 1 ≤ s ≤ n, ajs(x, y) ∈ C1
x(D), and bjs(x, y) ∈ C1

y (D) at j 6= s.
Then the system (1) can be written in the form:

[
∂

∂y
+ ass(x, y)

] [
∂

∂x
+ bss(x, y)

]
Us(x, y) =

=fs(x, y) + cs
2(x, y)Us(x, y)

−
s−1∑
j=1

[
ajs(x, y)

∂Uj(x, y)

∂x
+ bjs(x, y)

∂Uj(x, y)

∂y
+ cj(x, y)Uj(x, y)

]

−
n∑

j=s+1

[
ajs(x, y)

∂Uj(x, y)

∂x
+ bjs(x, y)

∂Uj(x, y)

∂y
+ cj(x, y)Uj(x, y)

]

≡F (1)(x, y),

(28)
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(29) cs
2(x, y) = −(x, y)−1cs(x, y) + x−1∂bss(x, y)

∂y
+ (x, y)−1ass(x, y)bss(x, y)

Solving the system (28) we get

Us(x, y)−
∫ ∞

x

{ews
1(t,y)−ws

1(x,y)dt

∫ ∞

y

cs
2(t, τ)ews

2(t,τ)−ws
2(t,y)Us(t, τ)dτ

+

∫ ∞

x

ews
1(t,y)−ws

1(x,y)dt

∫ ∞

y

ews
2(t,τ)−ws

2(t,τ)×

×




n∑
j=1
j 6=s

(
ajs(t, τ)

∂Uj

∂t
+ bjs(t, τ)

∂Uj

∂t
+ cj(t, τ)Uj(t, τ)

)

 dτ

=g(1)
s (x, y),

(30)

g(1)
s (x, y) =Φ1

s(y)e−ws
1(x,y) +

∫ ∞

x

ews
1(t,y)−ws

1(x,y)−ws
2(t,y)Ψ(1)

s (t)dt+

+

∫ ∞

x

ews
1(t,y)−ws

1(x,y)dt

∫ ∞

y

ews
2(t,τ)−ws

2(t,y)fs(t, τ)dτ, 1 ≤ s ≤ n

(31)

Also, we have

∫ ∞

y

dτ




∫ ∞

x

(ews
1(t,y)−ws

1(x,y)+ws
2(t,τ)−ws

2(t,y))
n∑

j=1
j 6=s

ajs(t, τ)
∂Uj

∂t
dt


 =

=

∫ ∞

y

{
n∑

j=s

e−ws
1(x,y)[(ews

1(x,y)+ws
2(x,τ)−ws

2(x,y)ajs(x, τ)Uj(t, τ)

−ews
2(0,τ)−ws

2(0,y)ajs(0, τ)Uj(0, τ))

−
∫ ∞

x

∂

∂t
(ews

1(t,y)+ws
2(t,τ)−ws

2(t,y)ajs(t, τ))Uj(t, τ)dt]}dτ,

and
∫ ∞

y

ews
2(t,τ)(

n∑
j=1
j 6=s

bjs(t, τ)
∂Uj

∂τ
)dτ =

=
n∑

j=1
j 6=s

[ews
2(t,y)bjs(t, y)Uj(t, y)− bjs(t, 0)Uj(t, 0)−

∫ ∞

y

Uj(t, τ)
∂

∂τ
[ews

2(t,τ)bjs(t,τ)dτ ].

Substituting the obtained integral values into equation (30), we get the solution
of the integral system in the form (27). ¤
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Remark 2. From equation (27) we get the following integral equations

(32) Us(x, 0)+
∞∑

j=1
j 6=s

∫ ∞

x

K
(2)
js (x, 0; t)Uj(t, 0)−K

(3)
js (x, 0, t)Uj(t, 0)dt = g(1)

s (x, 0),

(33) Us(0, y) +
∞∑

j=1
j 6=s

∫ ∞

y

K
(4)
js (0, y; τ)−K

(5)
js (0, y; τ)Uj(0, τ)dτ = g(1)

s (0, y),

where

K
(2)
js (x, 0; t) =ews

1(t,0)−ws
1(x,0)bjs(t, 0) = K

(3)
js (x, 0, t),

K
(4)
js (0, y; τ) =ews

2(0,τ)−ws
2(0,y)ajs(0, τ) = K

(5)
js (0, y; τ),

Us(x, 0) =g(1)
s (x, 0),

Us(0, y) =g(1)
s (0, y).

From equation (31), we get

g(1)
s (0, y) =Φ1

s(y),

g(1)
s (x, 0) =Φ1

s(0)e−ws
1(x,0) +

∫ ∞

x

ews
1(t,0)−ws

1(x,0)Ψ(1)
s (t)dt.

Theorem 5. Let the coefficients of system (1) satisfy the conditions of The-

orem 1. Then any solution of system (1) within the class C2(D) ∩ C(D)
contains 2n arbitrary functions of one variable (n-functions of the variable x
and n-functions of the variable y) can be represented in the form:

U(x, y) =g(x, y) +

∫ ∞

y

∫ ∞

x

Γ
(1)
1 (x, y; t, τ)g(t, τ)dtdτ

+

∫ ∞

x

Γ
(1)
2 (x, y; t)g(t, y)dt +

∫ ∞

x

Γ
(1)
3 (x, y; τ)g(t, τ)dτ

+

∫ ∞

x

Γ
(1)
4 (x, y; t)g(t, 0)dt +

∫ ∞

y

Γ
(1)
5 (x, y; τ)g(0, τ)dτ,

(34)

where Φ1(y), Φ2(y), . . . , Φn(y); Ψ1(x), Ψ2(x), . . . , Ψn(x) are arbitrary continu-

ous functions of the variables x and y, Γ
(1)
1 −Γ

(1)
5 are the kernels of system (15),

g = g(Φ1, Φ2, . . . , Φn; Ψ1, Ψ2, . . . , Ψn) = (g1, g2, . . . , gn), U = (U1, U2, . . . , Un).
Moreover Φs(y) ∈ C1(Γ2), Ψn(x) ∈ C2(Γ1).

Theorem 6. Let the coefficients of system (1) satisfy the conditions of Theo-

rem 4. Then any solution of system (1) within the class C2(D)∩C(D) contains
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2n arbitrary functions of one variable can be represented in the form:

U(x, y) =g(1)(x, y) +

∫ ∞

x

dt

∫ ∞

y

Γ
(2)
1 (x, y; t, τ)g(1)(t, τ)dtdτ

+

∫ ∞

x

Γ
(2)
2 (x, y; t)g(1)(t, y)dt +

∫ ∞

y

Γ
(2)
3 (x, y; τ)g(1)(x, τ)dτ

+

∫ ∞

x

Γ
(2)
2 (x, y; t)g(1)(t, 0)dt +

∫ ∞

y

Γ
(2)
5 (x, y; τ)g(1)(0, τ)dτ,

(35)

where Φ
(1)
s (y), Ψ

(1)
s (x), 1 ≤ s ≤ n are arbitrary continuous functions of the

Variables x and y, Γ
(1)
1 − Γ

(1)
5 are the Kernels of system (27), g1 = g(Φ

(1)
1 ,

Φ
(1)
2 , . . . , Φ

(1)
n ; Ψ

(1)
1 , Ψ

(1)
2 , . . . , Ψ

(1)
n ) = (g

(1)
1 , g

(1)
2 , . . . , g

(1)
n ), U = (U1, U2, . . . , Un).

Moreover, Φ
(1)
s (y) ∈ C2(Γ2), Ψ

(1)
s (x) ∈ C1(Γ1).

Remark 3. The obtained integral representations can be used to solve various
boundary value problems.
For solving Problem P1, we use the representation of the form (35), and the

functions Φ
(1)
s (y), Ψ

(1)
s (x) can be obtained from equation (33). From (33) we

get

Us(x, 0) =g(1)
s (x, 0),

Us(0, y) =g(1)
s (0, y).

Then

g(1)
s (x, 0) =Φ1

s(0)e−ws
1(x,0) +

∫ ∞

x

ews
1(t,0)−ws

1(x,0)Ψ(1)
s dt,

g(1)
s (0, y) =Φ1

s(y),

(36)

(37) Φ1
s(y) = as(y)

as(0)e−ws
1(x,0) +

∫ ∞

x

ews
1(t,0)−ws

1(x,0)Ψ(1)
s (t)dt = bs(x).

We get ∫ ∞

x

ews
1(t,0)Ψ(1)

s (t)dt = bs(x)ews
1(x,0) + as(0).

Solving the above equation, we get

(38) Ψ(1)
s (t) = [b1

s(x) + bss(x, 0)bs(x)].

Then the proof of the following Theorem is complete.

Theorem 7. Let the coefficients of system (1) satisfy the conditions of Theo-
rem 4. The functions as(y), bs(y) satisfy the conditions of Theorem 3, bss(x, 0) ∈
C1(Γ1). Then Problem P1 has a unique solution which is given by the formulas
(35), (31), (36), (37).
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Problem P3. Find a solution of system (1) within the class C2(D) ∩ C(D ∪
Γ1 ∪ Γ2) under the boundary conditions:

Us(0, y) =f (1)
s (y),

∂Us

∂x

∣∣∣∣
x=0

=g(1)
s (x),

where f
(1)
s (y), gs(1)(x) are given continuous functions on Γ2, Γ1.

Solution of Problem P3. From equation (30), we have

Us(0, y) =Φ(1)
s (y),

∂Us

∂x

∣∣∣∣
y=0

=
∂g

(1)
s (x, y)

∂x

∣∣∣∣
y=0

,

but

∂g
(1)
s (x, y)

∂x
|y=0 =− bss(x, 0)e−ws

1(x,0)[Φ(1)
s (0) +

∫ ∞

x

ews
1(t,0)Ψ(1)

s (t)dt] + Ψ(1)
s (x)

=g(1)
s (x).

Then

(39) Φ(1)
s (y) = f (1)

s (y),

ews
1(x,0)Ψ(1)

s (x)− bss(x, 0)

∫ ∞

x

ews
1(t,0)Ψ(1)

s (t)dt = g(1)
s (x)ews

1(x,0) +f (1)
s (0)bss(x, 0).

Solving this integral equation we get

Ψ(1)
s (x) =g(1)

s (x) + f (1)
s (0)bss(x, 0)e−ws

1(x,0)

+bss(x, 0)e−ws
1(x,0)

∫ ∞

x

(g(1)
s (t) + f (1)

s (0)bss(t, 0)e−ws
1(x,0))dt.

(40)

Theorem 8. Let in the system (10) the functions ajs(x, y), bjs(x, y), cj(x, y),

fs(x, y) satisfy the conditions of Theorem 4 and in Problem P3: f
(1)
s (x, y) ∈

C2(Γ2), g
(1)
s ∈ C1(Γ1). Then problem P3 has a unique solution which can be

obtained by using the formulas (35), (31), (38), (39).

Remark 4. Let in system (1)

ajs(x, y) =
a0

js(x, y)

|x− y|αjs
, bjs(x, y) =

b0
js(x, y)

|x− y|βjs
,

cj(x, y) =
c0
j(x, y)

|x− y|γj
, fs(x, y) =

f 0
s (x, y)

|x− y|δj
,

where αjs < 1, βjs < 1, γj < 1, δj < 1, 1 ≤ s, j ≤ n.
From equation (4), we get the continuous functions ws

1(x, y), ws
2(x, y). The

continuous functions
∂ws

1(t,τ)

∂τ
,

∂ws
2(x,τ)

∂x
satisfy the condition bss(x, y) = 0 (|x −
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y|αs), αs > βss when x → y. Then the integral equation (15) is Volterra integral
equation of the second type.

Theorem 9. Let in the system

∂2Us

∂x∂y
+

n∑
j=1

{
a0

js(x, y)

|x− y|αjs

∂Uj

∂x
+

b0
js(x, y)

|x− y|βjs

∂Uj

∂y
+

c0
js(x, y)

|x− y|γj
Uj

}
=

f 0
s (x, y)

|x− y|δj
,

where αjs < 1, βjs < 1, γj < 1, δj < 1, 1 ≤ s ≤ n, 1 ≤ s ≤ n, the coefficients
satisfy:

(1) bjs(x, y) of the variable y have continuous derivative of the first order,
continuous of the variable x.

(2) ajs(x, y) at j 6= s have continuous derivative of the variable y, contin-
uous of the variable x.

(3) c0
s(x, y), f 0

s (x, y) are continuous functions in D̄.

Then any solution of system (1) within the class C2(D) can be written in the
form (34), where

ajs(x, y) =
a0

js(x, y)

|x− y|αjs
, bjs(x, y) =

b0
js(x, y)

|x− y|βjs
,

cj(x, y) =
c0
j(x, y)

|x− y|γj
, fs(x, y) =

f 0
s (x, y)

|x− y|δs
.
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