
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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THE UNIT GROUP OF FS3

R.K. SHARMA, J.B. SRIVASTAVA, AND MANJU KHAN

Abstract. In this paper we give a complete characterization of the unit
group U (FS3) of the group algebra FS3 of the symmetric group S3 of
degree 3 over a finite field F . Moreover, over the prime field Z2 and Z3,
presentation of the unit groups of group algebras Z2S3 and Z3S3 in terms
of generators and relators have also been obtained.

1. Introduction

Let FG denote the group algebra of a group G over a field F. For a normal
subgroup H of G, the natural homomorphism g 7→ gH : G −→ G/H can be
extended to an F -algebra homomorphism from FG onto F [G/H] defined by∑
g∈G

agg 7→
∑
g∈G

aggH. Kernel of this homomorphism, denoted by ω(H), is an

ideal of FG generated by {h− 1 | h ∈ H}. Thus, FG/ω(H) ∼= F [G/H]. The
augmentation ideal, ω(FG), of the group algebra FG is defined by

ω(FG) =

{∑
g∈G

agg

∣∣∣∣∣ ag ∈ F,
∑
g∈G

ag = 0

}
.

Clearly, ω(G) = ω(FG). In general, ω(H) = ω(FH)FG = FGω(FH). Also
FG/ω(G) ∼= F implies that the Jacobson radical J(FG) ⊆ ω(FG). It is
known that, the natural homomorphism x 7→ x+J(FG) : FG −→ FG/J(FG)
induces an epimorphism: U (FG) −→ U (FG/J(FG)) with kernel 1 + J(FG)
so that U (FG)/(1 + J(FG)) ∼= U (FG/J(FG)).

This is also known that for any prime p and for any positive integer n, there
is a monic irreducible polynomial of degree n over Zp [7].

Here we shall use the presentation of S3 as

S3 = 〈σ, τ | σ3 = τ 2 = 1, τσ = σ2τ〉.
Thus, the elements of S3 are {1, σ, σ2, τ, στ, σ2τ}. The alternating group A3

of degree 3 is given by A3 = {1, σ, σ2}. The distinct conjugacy classes of S3
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are C0 = {1},C1 = {σ, σ2} and C2 = {τ, στ, σ2τ}. Hence, {Ĉ0, Ĉ1, Ĉ2} form a

basis of center Z(FS3) of FS3 (cf. Lemma 4.1.1 of [5]), where Ĉi denotes the
class sum.

We shall use V1 for the unit subgroup 1 + J(FS3).
The unit group of integral group ring ZS3 has been studied by Hughes and

Pearson [2] and by Allen and Hobby [1]. The unit group has been discussed
in terms of the bicyclic units by Jespers and Parmenter [3]. Sharma et al.
[6] studied chains of subgroups of the unit group U (ZS3). However, so far
it seems the structure of the unit group U (FS3), for char F = p > 0 is not
known.

This paper gives a complete characterization of the unit group U (FS3)
over a finite field F . Also we give the presentation of the unit groups of group
algebras Z2S3 and Z3S3 over the prime field Z2 and Z3 in terms of generators
and relators.

2. The Unit Group of FS3

In this Section, the following theorems gives a complete structure of the unit
group U (FS3) over an arbitrary finite field F .

Let char F = p and |F | = pn.

Theorem 2.1. If p = 2, then U (FS3)/V1
∼= GL(2, F )× F ∗ and V1 is central

elementary abelian 2-group of order 2n, where GL(2, F ) denotes the general
linear group of degree 2 over F .

Theorem 2.2. If p = 3 and Z(V1) is the center of V1, then Z(V1) and
V1/Z(V1) both are elementary abelian 3-groups.

Theorem 2.3. If p > 3, then

U (FS3) ∼= GL(2, F )× F ∗ × F ∗.

Proof of the Theorem 2.1. We define a matrix representation of S3,

ρ : S3 −→M(2, F )⊕ F

by the assignment

σ 7→
( (

0 1
1 1

)
, 1

)

and

τ 7→
((

1 1
0 1

)
, 1

)

Thus, ρ can be extended to an F -algebra homomorphism

ρ∗ : FS3 −→M(2, F )⊕ F.
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Let x = α0 + α1σ + α2σ
2 + α3τ + α4στ + α5σ

2τ ∈ Ker ρ∗, where αi’s ∈ F .
Therefore, ρ∗(x) = 0 gives the following system of equations:

α0 + α2 + α3 + α5 = 0

α1 + α2 + α3 + α4 = 0

α1 + α2 + α4 + α5 = 0

α0 + α1 + α3 + α5 = 0

α0 + α1 + α2 + α3 + α4 + α5 = 0

By solving this system of equations we get all αi’s are same. Thus,

Ker ρ∗ = {α(1 + σ + σ2 + τ + στ + σ2τ) | α ∈ F}.
If Ŝ3 is the sum of all elements in S3, then Ŝ3

2
= 0, because F is a field of

characteristic 2. It follows that Ker ρ∗ is a nilpotent ideal of FS3. Hence,
Ker ρ∗ ⊆ J(FS3). Since, ρ∗ is onto, we have ρ∗(J(FS3)) ⊆ J(M(2, F ) ⊕
F ) = 0 and hence J(FS3) ⊆ Ker ρ∗. Hence, J(FS3) = Ker ρ∗ = FŜ3 and so
FS3/J(FS3) ∼= M(2, F )⊕F . It follows that U (FS3)/V1

∼= U (FS3/J(FS3)) ∼=
GL(2, F )× F ∗.

Further, assume f(X) is a monic irreducible polynomial of degree n over
the field Z2. Then Z2[X]/〈f(X)〉 ∼= F . Assume ξ is the residue class of
X mod 〈f(X)〉. So the structure of V1 is

V1 =
n−1∏
i=0

〈1 + ξix | x = Ŝ3〉,

a central subgroup of order 2n. ¤
Proof of the Theorem 2.2. Since A3 is a normal subgroup of S3 and [S3 : A3] =
2, which is invertible in F, we have J(FS3) = J(FA3)FS3 (cf. Lemma 7.2.7 of
[5]). Further, since char F = 3 and A3 is a 3-group, we get J(FA3) = ω(FA3)
(cf. Lemma 8.1.17 of [5]). Consequently,

J(FS3) = ω(FA3)FS3 = ω(A3).

Hence,

FS3/J(FS3) = FS3/ω(A3) ∼= F [S3/A3] ∼= FC2
∼= F ⊕ F.

Thus,
U (FS3)/V1

∼= U (FS3/J(FS3)) ∼= F ∗ × F ∗.
Now, V1 = 1 + J(FS3) = 1 + ω(A3) = 1 + ω(FA3)FS3 and ω(FA3)

3 = 0, then
ω(A3)

3 = 0. Thus, every non identity element of V1 is of order 3. For α ∈ F
and x = 1 + σ + σ2, let uα = 1 + αx and vα = 1 + αxτ . Both uα and vα are
central elements of FS3 as well as elements of V1. Take U = {uα | α ∈ F}
and V = {vα | α ∈ F}. Since, uαuβ = uα+β, and vαvβ = vα+β, it follows that
both U and V are central subgroups of V1. Further, since all the elements in
U and V are distinct we have |U | = |V | = 3n. If possible, let u ∈ U ∩ V , i.e.
u = uα = vβ for some α, β ∈ F . Thus, we have α(1+σ +σ2) = β(1+σ +σ2)τ ,
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which implies that α = β = 0 and so U ∩ V = {1}. Then U × V ⊆ Z(V1),
which gives us that |Z(V1)| ≥ 32n.

Assume wα = 1 + α(σ − 1) and tα = 1 + α(σ − 1)τ are two noncommuting
elements in V1 \ Z(V1), where

w2
α = 1 + 2α(σ − 1) + α2(1 + σ + σ2) = w2αuα2 ,

t2α = 1 + 2α(σ − 1)τ + 2α2(1 + σ + σ2) = t2αu2α2 .

It can be verified that wαZ(V1)wβZ(V1) = wα+βZ(V1). Therefore, we get that
{wαZ(V1) | α ∈ F} is a subgroup of V1/Z(V1). If possible, let wαZ(V1) =
wβZ(V1). Then wαw2

β ∈ Z(V1), i.e. wαw2β ∈ Z(V1). But, wαw2β = wα+2β

(mod Z(V1)). Hence, wαw2
β ∈ Z(V1) implies α = β. This shows that all the

elements in {wα | α ∈ F} (mod Z(V1)) are distinct. Thus, the number of
elements in {wαZ(V1) | α ∈ F} are 3n. Also, since tαtβ = tα+βu2αβ, by using
the similar argument we get {tαZ(V1) | α ∈ F} is a subgroup of V1/Z(V1) with
order 3n. Note that wαZ(V1) and tβZ(V1) commute with each other.

Since, ω(FA3) is F -linear combination of (σ−1) and (σ2−1), we have ω(A3)
is F -linear combination of (σ− 1), (σ2− 1), (σ− 1)τ and (σ2− 1)τ so that any
element 1 + x in V1, for x ∈ ω(A3), can be written as

1 + x = 1 + α0(σ − 1) + α1(σ
2 − 1) + α2(σ − 1)τ + α3(σ

2 − 1)τ,

where αi’s ∈ F . Now,

1 + α1(σ
2 − 1) = 1 + 2α1(σ − 1) + α1(1 + σ + σ2)

= (1 + 2α1(σ − 1))(1 + α1(1 + σ + σ2))

= w2α1uα1 ,

and so,

(1 + α0(σ − 1))(1 + α1(σ
2 − 1))

= 1 + α0(σ − 1) + α1(σ
2 − 1) + 2α0α1(1 + σ + σ2)

= (1 + α0(σ − 1) + α1(σ
2 − 1))u2α0α1 .

Thus, (1 + α0(σ − 1) + α1(σ
2 − 1)) = wα0w2α1uα1uα0α1 . Further,

(1 + α0(σ − 1) + α1(σ
2 − 1))(1 + α2(σ − 1)τ)

= (1 + α0(σ − 1) + α1(σ
2 − 1) + α2(σ − 1)τ)×

× (1 + α0α2(1 + σ + σ2)τ)(1 + 2α1α2(1 + σ + σ2)τ)

= (1 + α0(σ − 1) + α1(σ
2 − 1) + α2(σ − 1)τ)vα0α2v2α1α2 .

Thus, (1+α0(σ−1)+α1(σ
2−1)+α2(σ−1)τ) = wα0w2α1uα1uα0α1tα2v2α0α2vα1α2 .

In similar way one can show that any element of V1 can be expressed as a linear
combination of wα (mod Z(V1)), tα (mod Z(V1)), for α ∈ F .
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If possible, let wαZ(V1) = tβZ(V1) for some α, β ∈ F . Then wαt2β ∈ Z(V1),
i.e. wαt2β ∈ Z(V1). But,

wαt2β = (1 + α(σ − 1))(1 + 2β(σ − 1)τ)

= (1 + α(σ − 1) + 2β(σ − 1)τ) (mod Z(V1))

Then wαt2β ∈ Z(V1) when α = β = 0. Thus,

{wαZ(V1) | α ∈ F} ∩ {tαZ(V1) | α ∈ F} = Z(V1).

Hence, the order of V1/Z(V1) is 32n, so that the order of Z(V1) is 32n.
Let f(X) be a monic irreducible polynomial of degree n in Z3[X]. Therefore,

Z3[X]/〈f(X)〉 ∼= F . Further, since order of each uα, vα is 3, Z(V1) is an
elementary abelian 3-group and the structure of Z(V1) is given as

Z(V1) =
n−1∏
i=0

〈1 + αix〉 ×
n−1∏
j=0

〈1 + αjxτ〉,

where α is residue class of X modulo 〈f(X)〉.
The presentation of V1/Z(V1) is given by

V1/Z(V1) =
n−1∏
i=0

〈(1 + αi(σ − 1)Z(V1)〉 ×
n−1∏
j=0

〈(1 + αj(σ − 1)τ)Z(V1)〉.

¤
Proof of the Theorem 2.3. Since p - |S3|, by Maschke’s theorem FS3 is a semi-
simple Artinian algebra over F . Then by Wedderburn structure theorem we
get

FS3
∼=

r⊕
i=1

M(ni, Di),

where Di’s are finite dimensional division algebras over F . Since F is a finite
field, Di’s are finite division algebras, and hence they are fields. In this case
denote Di by Fi. Thus,

FS3
∼=

r⊕
i=1

M(ni, Fi),

where Fi’s are finite field extension of F .
Since, dimF (FS3) = 3, FS3 is noncommutative, and not simple, the possible

structures of the group algebra FS3 are given by

FS3
∼= M(2, F )⊕ F ⊕ F or

FS3
∼= M(2, F )⊕ F2,

where F2 is a quadratic extension of F . No other case is possible. Since,
if M(2, F2) occurs in the right hand side in the place of M(2, F ), but then
dimF (M(2, F2)) = 8, a contradiction. Therefore, only M(2, F ) will occur in
the right hand side. Since dimF (FS3) = 6, we get M(2, F ) to be a direct
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summand of FS3 of codimension 2. So only two cases as mentioned above
may arise.

We will prove that second case is not possible. If possible, let second case
holds. In this case U (FS3) ∼= GL(2, F ) × F ∗

2 . In F ∗
2 , there is an element

of order p2n − 1, i.e. there is an element in the center of U (FS3) of order

p2n−1. Now, Z(FS3) is F -linear combination of Ĉ0, Ĉ1 and Ĉ2, so any element

x ∈ Z(FS3) can be written as x = α0Ĉ0 + α1Ĉ1 + α2Ĉ2, where αi ∈ F . Since,
p > 3, we get either 3|(pn−1) or 3|(pn +1). In both the cases it can be verified

that (Ĉ1)
pn

= Ĉ1 and (Ĉ2)
pn

= Ĉ2. This gives xpn
= (α0 + α1Ĉ1 + α2Ĉ2)

pn
=

α0 + α1Ĉ1 + α2Ĉ2 = x. Hence, xpn
= x for all x ∈ Z(FS3). But then

U (Z(FS3))) is a group of exponent (pn − 1), a contradiction. Hence, second
case does not arise. Thus,

FS3
∼= M(2, F )⊕ F ⊕ F.

Hence,
U (FS3) ∼= GL(2, F )× F ∗ × F ∗.

¤

3. Unit Groups of Z2S3 and Z3S3

In this section we give presentation of the unit group U (ZpS3) for the prime
field Zp, when p = 2, 3.

Theorem 3.1. The unit group U (Z2S3) is isomorphic to D12, the dihedral
group of order 12. In particular, if S3 = 〈σ, τ | σ3 = τ 2 = 1, τσ = σ2τ〉 then
U (Z2S3) = 〈ω, τ | ω6 = τ 2 = 1, τω = ω5τ〉, where ω = 1 + σ2 + τ + στ + σ2τ .

Proof. Any element of even length in Z2S3 cannot be a unit, since any such
element belongs to the augmentation ideal ω(Z2S3). Elements of length 1 are
trivial units in Z2S3. Let x = g1 + g2 + g3 ∈ Z2S3, be an element of length
3. Then x = g1(1 + g−1

1 g2 + g−1
1 g3) is a unit if and only if 1 + g−1

1 g2 + g−1
1 g3

is a unit. Hence, we can assume that any element of length 3 is of the form
x = 1 + g1 + g2 for some non-identity elements g1, g2 ∈ S3. The following two
cases arise:

Case 1. Elements g1 and g2 commute with each other. First, note that,
x2 = (1 + g1 + g2)

2 = 1 + g2
1 + g2

2. Since σ and σ2 are the only elements of S3

which commute each other, we get x = 1 + g1 + g2 = 1 + σ + σ2. Since, x is an
idempotent, it can not be a unit.

Case 2. If g1 and g2 do not commute with each other, then also x can not be
a unit in Z2S3. For that, take g1, g2 ∈ {τ, στ, σ2τ}, then x2 = 1+g1g2 +g2g1 =
1 + σ + σ2, an idempotent; hence x2 and therefore x cannot be a unit. Next,
assume g1 ∈ {τ, στ, σ2τ} and g2 ∈ {σ, σ2}, then x2 = g2

2 + g1g2 + g2g1 =
g2
2(1 + g2g1g2 + g2

2g1). If x is a unit then y = 1 + g2g1g2 + g2
2g1 is also a unit.

But, this is not possible, because g2g1g2 and g2
2g1 ∈ {τ, στ, σ2τ}. Hence, no

element of length 3 is a unit.
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This leaves only one case to explore, namely the elements of length 5. All
elements of length 5 are units. These are given by

u1 = u−1
1 = 1 + σ + σ2 + στ + σ2τ ;

u2 = u−1
2 = 1 + σ + σ2 + τ + στ ;

u3 = u−1
3 = 1 + σ + σ2 + τ + σ2τ ;

v = v−1 = σ + σ2 + τ + στ + σ2τ and

w = 1 + σ2 + τ + στ + σ2τ, with

w−1 = 1 + σ + τ + στ + σ2τ ; .

Hence, the unit group U (Z2S3) of Z2S3 is

U (Z2S3) = {u1, u2, u3, v, w, w−1, 1, σ, σ2, τ, στ, σ2τ}.
Further, w2 = σ2, w3 = σ2w = v, w4 = σ4 = σ, w5 = wσ = w−1, w6 = 1 and
wτ = u3, w

3τ = u1 and w5τ = u2. We get

U (Z2S3) = 〈w, τ | w6 = τ 2 = 1, wτ = τw5〉,
which is a dihedral group of order 12. This completes the proof of this theorem.

¤
Next, we will discuss about the unit group U (Z3S3) over the prime field Z3.

For the field Z3, structure of the unit group U (Z3S3) is given as follows:

Theorem 3.2. Let V1 = 1 + J(Z3S3) and let Z(V1) denotes the center of V1.
Then

(i) both the groups Z(V1) and V1/Z(V1) are isomorphic to C3 × C3.
(ii) the unit group U (Z3S3)/V1 is isomorphic to C2 × C2. In particular,

order of U (Z3S3) is 324.

The above theorem is direct consequence of the Theorem 2.2.
Now, we give more precise presentations of the unit group U (Z3S3). In fact,

we present all units in their canonical forms.
In Example 8, Kulshammer and Sharma [4] showed that

ω(A3) = Z3u + Z3v + Z3uv + Z3vu

for some u, v ∈ Z3S3. Let u = (σ − σ2)(1− τ) and v = (σ − σ2)(1 + τ). Thus,
uv = 2(1 + σ + σ2) + 2(1 + σ + σ2)τ and vu = 2(1 + σ + σ2) + (1 + σ + σ2)τ
and so Z3u + Z3v + Z3uv + Z3vu ⊆ ω(A3).

Further, {(1− σ), (1− σ2), (1− σ)τ, (1− σ2)τ} form a basis of ω(A3). One
can see that

1− σ = uv + vu− u− v,

1− σ2 = uv + vu + u + v,

(1− σ)τ = uv − vu− v + u,

(1− σ2)τ = uv − vu + v − u.
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Thus, any element of ω(A3) can be expressed as Z3-linear combination of
u, v, uv and vu. Hence ω(A3) = Z3u + Z3v + Z3uv + Z3vu.

Since J(Z3S3) = ω(A3), we have

V1 = 1 + J(Z3S3) = {1 + α1u + α2v + α3uv + α4vu | 0 ≤ αi ≤ 2}
for i = 1, 2, 3, 4. Let

x = uv + vu, y = uv − vu, ω1 = 1 + v, ω2 = 1 + u.

Assume H1 = 〈1 + x, 1 + y〉. Now, 1 + x, 1 + y ∈ Z(Z3S3) and u2 = 0, v2 = 0
and uvu = 0, implies x2 = y2 = 0. Thus,

H1 = 〈1 + x | (1 + x)3 = 1〉 × 〈1 + y | (1 + y)3 = 1〉 ⊆ Z(Z3S3).

Hence, H1 ⊆ Z(V1). For the converse, observe that uv, vu ∈ Z(Z3S3). There-
fore, if z = 1+α1u+α2v+α3uv+α4vu ∈ Z(V1), then α1u+α2v commutes with
every element of V1. In particular, α1u+α2v commutes with 1+ v but, then it
commutes with v also. This implies that α1u commutes with v. This gives that
α1y = α1(uv−vu) = α1(uv)−α1(vu) = (α1u)v−v(α1u) = (α1u)v−(α1u)v = 0.
But, then α1(1 + y) = α1. Since, (1 + y) is a unit, we get α1 = 0. Similarly,
we get α2 = 0. Hence, z = 1 + α3uv + α4vu, i.e. Z(V1) = 1 + Z3uv + Z3vu.
Since, H1 ⊆ Z(V1) and |H1| = |Z(V1)| = 9 we get

Z(V1) = 1 + Z3uv + Z3vu

= 〈1 + x | (1 + x)3 = 1〉 × 〈1 + y | (1 + y)3 = 1〉
= 〈2 + σ + σ2 | (2 + σ + σ2)3 = 1〉×
× 〈(1 + (1 + σ + σ2)τ | (1 + (1 + σ + σ2)τ)3 = 1〉.

We have so far got that

H1 = 〈1 + x | (1 + x)3 = 1〉 × 〈1 + y | (1 + y)3 = 1〉 = Z(V1).

Next, ω1, ω2 /∈ Z(V1) as ω1ω2 6= ω2ω1. Otherwise,

(1 + v)(1 + u) = (1 + u)(1 + v) ⇒ uv − vu = y = xτ = 0.

But, then x = 1 + σ + σ2 = 0, a contradiction. Further, since v2 = 0,
ω3

1 = (1 + v)3 = 1. Similarly, we get ω3
2 = 1. Also,

(ω1, ω2) = ω−1
1 ω−1

2 ω1ω2 = ω2
1ω

2
2ω1ω2.

Observe that ω2
1 = (1+v)2 = 1+2v+v2 = 1+2v = 1−v. Similarly, ω2

2 = 1−u.
So ω2

1ω
2
2 = (1− v)(1− u) = 1− u− v + vu and

ω1ω2 = (1 + v)(1 + u) = 1 + u + v + vu
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and therefore,

ω2
1ω

2
2ω1ω2 = (1− u− v + vu)(1 + u + v + vu)

= (1− u− v)(1 + u + v) + vu + vu since vu ∈ Z(Z3S3), u
2 = v2 = 0

= 1− (u + v)2 + 2vu

= 1− (uv + vu)− vu

= 1− 2vu− uv

= 1 + vu− uv

= 1− y = (1 + y)2.

The equation (ω1, ω2) = (1 + y)2 ∈ Z(V1) implies that ω1Z(V1) and ω2Z(V1)
commute with each other. Also (ω1Z(V1))

3 = (ω2Z(V1))
3 = Z(V1) as

ω3
1 = ω3

2 = 1.

Since, |V1/Z(V1)| = 9, we get V1/Z(V1) = 〈ω1Z(V1)〉 × 〈ω2Z(V1)〉. This dis-
cussion summarizes the following:

Lemma 3.3. Let V1 be 1 + J(Z3S3) and Z(V1) be its center. Then

(i) Z(V1) = 〈1 + x〉 × 〈1 + y〉, where x = 1 + σ + σ2 and

y = (1 + σ + σ2)τ ; (1 + x)3 = (1 + y)3 = 1.

(ii) Z(V1) = {1 + αuv + βvu | α, β ∈ Z3}, where u = (σ − σ2)(1 − τ),
v = (σ − σ2)(1 + τ)

(iii) V1/Z(V1) = 〈ω1Z(V1)〉 × 〈ω2Z(V1)〉, where ω1 = 1 + v, ω2 = 1 + u.

This gives

Theorem 3.4. If x = 1 + σ + σ2, y = (1 + σ + σ2)τ, u = (σ − σ2)(1− τ) and
v = (σ − σ2)(1 + τ), then

(i) V1 = {1 + α1u + α2v + α3uv + α4vu | αi ∈ Z3 for i = 1, 2, 3, 4}
(ii)

V1 = 〈1 + x, 1 + y, 1 + v, 1 + u |
(1 + x)3 = (1 + y)3 = (1 + v)3 = (1 + u)3 = 1,

(1 + u)(1 + v) = (1 + y)(1 + v)(1 + u)

and 1 + x, 1 + y commute with every generator 〉;
(iii) V1 = {(1 + x)i(1 + y)j(1 + v)k(1 + u)l | 0 ≤ i, j, k, l ≤ 2};
(iv) V1 = [H]K, the semidirect product of H by K, where

H = 〈1 + x〉 × 〈1 + y〉 × 〈1 + v〉
and K = 〈1 + u〉 or 〈σ〉;

(v) V1 = W × 〈1 + x〉 where

W = 〈1 + u, 1 + v〉 = [〈1 + y〉 × 〈1 + v〉]〈1 + u〉.
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Proof. Proof of Part (i) directly follows from our earlier discussion. First, we
prove part (iv). Observe that H = 〈1+x, 1+y, 1+v〉 = 〈1+x〉×〈1+y〉×〈1+v〉 is
an abelian subgroup of the form C3×C3×C3 of V1, because 〈1+x〉×〈1+y〉 =
H1 = Z(V1). It is known that for a finite group G of order |G|, if p is the
smallest prime such that p divides |G|, then a subgroup of index p is normal in
G. Hence, H E V1. Already we have checked that (1+v)(1+u) 6= (1+u)(1+v).
Hence (1 + u) /∈ H. Thus, V1 = HK and H ∩K = {1}, where K = 〈1 + u〉.
Therefore, V1 = [H]〈1+u〉, the semi direct product of H and 〈1+u〉. Further,
observe that

(1 + u)(1 + v)(1 + y)

= (1 + u + v + uv)(1 + uv − vu)

= 1 + (u + v + uv) + (uv − vu), since u2 = v2 = 0 and uv ∈ Z(Z3S3)

= 1 + (σ − σ2)(1− τ) + (σ − σ2)(1 + τ) + 2(1 + σ + σ2)

= 1 + 2(σ − σ2) + 2(1 + σ + σ2)

= 1 + 2(1 + 2σ)

= σ.

The equation σ = (1+u)(1+v)(1+y) gives that σ ∈ 〈(1+y), (1+v), (1+u)〉.
Also σ(1+ v) 6= (1+ v)σ ⇒ σ /∈ H. Hence, σ ∈ [H]〈1+u〉. This proves that

[H]〈σ〉 ⊆ [H]〈1 + u〉.
For the converse, observe that (1 + u)(1 + v) = (1 + y)(1 + v)(1 + u).

(1 + y)(1 + v) = (1 + uv − vu)(1 + v)

= 1 + v + (uv − vu) + (uv − vu)v

= 1 + v + uv − vu.

Hence,

(1 + y)(1 + v)(1 + u) = (1 + v + uv − vu)(1 + u)

= 1 + v + uv − vu + u + vu + (uv − vu)u

= 1 + u + v + uv

= (1 + u)(1 + v).

Thus,

(1 + y)(1 + v)2σ = (1 + y)(1 + v)2(1 + u)(1 + v)(1 + y)

= (1 + y)2(1 + v)2{(1 + u)(1 + v)}
= (1 + y)2(1 + v)2{(1 + y)(1 + v)(1 + u)}
= (1 + y)3(1 + v)3(1 + u)

= (1 + u).

The equation (1 + u) = (1 + y)(1 + v)2σ gives that 1 + u ∈ [H]〈σ〉. But, then
[H]〈1 + u〉 ⊆ [H]〈σ〉. Hence, V1 = [H]〈1 + u〉 = [H]〈σ〉. This proves part (iv).



THE UNIT GROUP OF FS3 139

Now, for part (ii), observe that each of (1+x), (1+y), (1+v), (1+u) is a unit
of order 3. Also (1 + u)(1 + v) = (1 + y)(1 + v)(1 + u) and that (1 + x), (1 + y)
commute with each generator. This proves part (ii) as

V1 = [H]〈1 + u〉 = 〈1 + x, 1 + y, 1 + u, 1 + v〉.
The canonical form of part (iii) now, follows from part (ii). For the proof of
the part (v), observe that W = 〈1 + u, 1 + v〉 is a nonabelian normal subgroup
of V1 of order 27. The following relations can be verified:

(1 + u)3 = (1 + v)3 = 1 and 1 + y = ((1 + u), (1 + v)) ∈ Z(V1).

Hence,
W = 〈1 + u, 1 + v〉 = 〈1 + u, 1 + v, 1 + y〉

satisfies the following relations:

(1 + u)3 = (1 + v)3 = (1 + y)3 = 1,

(1 + u)(1 + v) = (1 + v)(1 + u)(1 + y),

(1 + u)(1 + y) = (1 + y)(1 + u),

(1 + v)(1 + y) = (1 + y)(1 + v).

It can be easily seen that W = [〈1+v, 1+y〉]〈1+u〉, the semidirect product
of 〈1+v, 1+y〉 by 〈1+u〉. Further, 1+x /∈ W otherwise 1+x ∈ Z(W ) = 〈1+y〉,
a contradiction. Hence, V1 = W × 〈1 + x〉. The proof of the theorem is now
complete. ¤

Further, V1 is a 3-group, τ and −1 are units in Z3S3 of order 2, we get τ,−1 /∈
V1. Also, V1 is a normal subgroup of U (Z3S3) of index 4 with U (Z3S3)/V1

∼=
C2 × C2. Hence we can explicitly write all the units as follows:

Theorem 3.5. The unit group

U (Z3S3) = [V1](〈−1〉 × 〈τ〉) = (±V1) ∪ (±V1τ)

= {±(1 + α1u + α2v + α3uv + α4vu),

± (1 + α′1u + α′2v + α′3uv + α′4vu)τ | αi, α
′
i ∈ Z3}.

We can write a presentation of the unit group as follows:

Theorem 3.6.

U (Z3S3) = {(1 + x)i(1 + y)jωk
1ω

l
2(−1)mτn | 0 ≤ i, j, k, l ≤ 2; 0 ≤ m,n ≤ 1}.

The canonical form obtained here uses 6 generators. Let u1 = 2+u+v+uv+
vu, u2 = 1+u+v+uv+vu, u3 = τ+u+v+uv+vu, and u4 = 1+u. They can be
re-written as u1 = −σ2, u2 = −(1+σ2), u3 = 1−σ2+τ, u4 = 1+(σ−σ2)(1−τ).
The following relations can be verified:

ω1 = u4
1u

2
2u

4
3u

2
4, ω2 = u4, 1 + x = u2

1u
2
2,

(1 + y) = u2
1u

2
2u

4
3,−1 = u3

1, τ = u2
2u3u4.
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For example

u4
1 = (−σ2)4 = σ8 = σ2

u2
2 = {−(1 + σ2)}2 = (1 + σ2)2 = 1 + σ + 2σ2 = 1 + σ − σ2

u2
3 = (1− σ2 + τ)2 = (1− σ2)2 + τ 2 + (1− σ2)τ + τ(1− σ2)

= (1 + σ4 − 2σ2) + τ 2 + (1− σ2)τ + (1− σ)τ

= (1 + σ + σ2) + 1 + (2− σ − σ2)τ

= (2 + σ + σ2)− (1 + σ + σ2)τ

= 1 + (1 + σ + σ2)− (1 + σ + σ2)τ

= 1 + x− y.

u4
3 = (1 + x− y)2 = 1 + x2 + y2 + 2x− 2y − 2xy

= 1− x + y = 1− x + xτ

since x, y ∈ Z(Z3S3), x2 = 0, y2 = 0, and y = xτ

= 1− x(1− τ) = 1− (1 + σ + σ2)(1− τ),

Since, (1− τ)(σ − σ2) = (σ − σ2)− (σ2 − σ)τ = (σ − σ2)(1 + τ), we get

u2
4 = {1 + (σ − σ2)(1− τ)}2

= 1 + 2(σ − σ2)(1− τ) + (σ − σ2)(1− τ)(σ − σ2)(1− τ)

= 1 + 2(σ − σ2)(1− τ) = 1− (σ − σ2)(1− τ)

Now,

u4
1u

2
2 = σ2(1 + σ − σ2) = σ2 + 1− σ = 1− σ + σ2,

u4
1u

2
2u

4
3 = (1− σ + σ2){1− (1 + σ + σ2)(1− τ)}

= (1− σ + σ2)− (1− σ + σ2)(1 + σ + σ2)(1− τ)

= (1− σ + σ2)− (1 + σ + σ2)(1− τ),

u4
1u

2
2u

4
3u

2
4 = {(1− σ + σ2)− (1 + σ + σ2)(1− τ)}{1− (σ − σ2)(1− τ)}

= (1− σ + σ2)− (1− σ + σ2)(σ − σ2)(1− τ)− (1 + σ + σ2)(1− τ)

+ (1 + σ + σ2)(1− τ)(σ − σ2)(1− τ).

Since, (1−τ)(σ−σ2) = (σ−σ2)(1+τ), we get (1+σ+σ2)(1−τ)(σ−σ2)(1−τ) =
0. Further (1− σ + σ2)(σ − σ2) = −1 + σ2.

Combining, we get

u4
1u

2
2u

4
3u

2
4 = (1− σ + σ2)− (−1 + σ2)(1− τ)− (1 + σ + σ2)(1− τ)

= (1− σ + σ2)− (σ − σ2)(1− τ)

= 1− 2(σ − σ2) + (σ − σ2)τ

= 1 + (σ − σ2) + (σ − σ2)τ = 1 + (σ − σ2)(1 + τ)

= ω1.
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Hence, u4
1u

2
2u

4
3u

2
4 = ω1.

This proves the first relation, namely u4
1u

2
2u

4
3u

2
4 = ω1. Similarly, other rela-

tions can be proved. Hence, U (Z3S3) ⊆ 〈u1, u2, u3, u4〉.
Further the following relations can be shown to hold among u′is :

u6
1 = u6

3 = u3
2 = u3

4 = 1, u1u2 = u2u1, u3u1 = u1u
2
2u

5
3,

u3u2 = u2
2u

3
3, u4u3 = u2

1u
2
2u

5
3u

2
4, u4u1 = u5

1u2u
2
3u4, u4u2 = u2

1u
4
3u4

and that u3
1, u

2
3 commute with each ui. The group 〈u1, u2, u3, u4〉 is obviously

contained in U (Z3S3). We have obtained canonical form presentation of the
unit group U (Z3S3) as follows:

Theorem 3.7. U (Z3S3) = {ui
1u

j
2u

k
3u

l
4 | 0 ≤ i, k ≤ 5, 0 ≤ j, l ≤ 2}, where

u1 = −σ2, u2 = −(1 + σ2), u3 = 1− σ2 + τ, u4 = 1 + (σ − σ2)(1− τ) and they
satisfy the following relations:

u6
1 = u6

3 = u3
2 = u3

4 = 1,

u1u2 = u2u1, u3u1 = u1u
2
2u

5
3,

u3u2 = u2
2u

3
3, u4u3 = u2

1u
2
2u

5
3u

2
4,

u4u1 = u5
1u2u

2
3u4, u4u2 = u2

1u
4
3u4

and u3
1, u

2
3 commute with each ui.

We can also write a presentation of the unit group in terms of 3- generators
as follows:

Theorem 3.8. The unit group

U (Z3S3) = 〈v1, v2, v3 | v6
1 = v6

2 = v3
3 = 1, v3v2 = v1v2v1v

2
3,

v3v1 = v2v
5
1v

5
2v3, v2v1 = v2

1v2v
2
1v2v1v

−1
2 v2

1,

v3
1 and v2

2 commute with each vi〉.
This can be done by taking v1 = u1, v2 = u3, v3 = u4 in the presentation

given in the earlier theorem.
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