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24 (2008), 125–133
www.emis.de/journals
ISSN 1786-0091

PROJECTIVE EINSTEIN FINSLER METRICS

N. SADEGHZADEH AND B. REZAEI AND A. RAZAVI

Abstract. In the present paper, we investigate the necessary and suffi-
cient condition of a given Finsler metric to be Einstein. The considered
Einstein Finsler metric in the study describes all different kinds of Einstein
metrics which are pointwise projective to the given one.

1. Introduction

A Finsler metric on an open subset in Rn is called a projective flat Finsler
metric if it is pointwise projective to Euclidean metric. The problem of char-
acterizing and studying projective Finsler metrics is known as Hilbert’s fourth
problem. More general, it can be assumed a Finsler metric on a manifold whose
geodesics coincide with the geodesics of the given one as set points.

There are some quantities in the projective Finsler geometry which are projec-
tive invariant. One most important of them is the Weyl curvature. The Finsler
metrics with W i

k = 0 are called Weyl metrics. It is well-known that a Finsler
metric is a Weyl metric if and only if it is of scalar flag curvature. The Ricci cur-
vature plays an important role in the projective geometry of Riemannian–Finsler
manifolds. The well-known Ricci tensor was introduced in 1904 by G. Ricci.
Nine years later Ricci’s work was used to formulate the Einstein’s theory of
gravitation [5].

The Ricci curvature is defined as the trace of the Riemann curvature where the
Riemann curvature in direction y ∈ TxM is a linear transformation Ry : TxM →
TxM . A Finsler metric is Einstein if the Ricci scalar Ric is a function of x alone.
Equivalently Ricij = Ric(x)gij In Riemannian space, if g and ḡ are pointwise
projectively related Riemannian metrics on manifolds of dimensional n ≥ 3, then
g is of constant curvature if and only if ḡ is of constant curvature. The same
statement is also true for Einstein metrics. More precisely, it can be said:

2000 Mathematics Subject Classification. 53C60, 53C25.
Key words and phrases. Projectively related Finsler metrics, projectively flat, Einstein-

Finsler metric.

125



126 N. SADEGHZADEH AND B. REZAEI AND A. RAZAVI

Theorem ([9, 10]). Let (M, g) be an n-dimensional Riemannian space and ḡ
another Riemannian metric pointwise projective to g. Suppose that g is Einstein,
then ḡ must be Einstein.

The paper focuses on the Einstein Finsler metrics which are projectively re-
lated to other Einstein Finsler metrics. The classification of these metrics on
the compact manifold is investigated.

These metrics are studied in the two different categories including: Finsler
metrics pointwise projectively related to Einstein isotropic Finsler metric and
the non-isotropic one. A Finsler metric F is said isotropic if it is of scalar flag
curvature and this metric is said non-isotropic if it is not of scalar curvature.
The main proposed theorem is as follows:

Theorem. Let F be a Finsler metric (n > 2) projectively related to F̄ where F̄
is an Einstein non-isotropic Finsler metric, then F is Einstein if and only if it
is a constant multiple of F̄ .

The question that can be raised in the situations where a Finsler metric
is projectively related to the Einstein one is as: When is a Finsler metric is
Einstein? The contribution of the paper is to give an answer to this question.

2. Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM as the tangent space
at x ∈ M , and by TM = ∪x∈MTxM as the tangent bundle of M . Each element
of TM has the form (x, y), where x ∈ M and y ∈ TxM . Let TM0 = TM{0}
and the natural projection π : TM → M is given by π(x, y) = x. The pull-
back tangent bundle π∗TM is a vector bundle over TM0 whose fiber π∗νTM at
ν ∈ TM0 is just TxM , where π(ν) = x. Then

π∗TM = {(x, y, ν) | y ∈ TxM0, ν ∈ TxM}.
A Finsler metric on a manifold M is a function F : TM → [0,∞) which has the
following properties:

(i) F is C∞ on TM0;
(ii) F (x, λy) = λF (x, y) λ > 0;
(iii) For any tangent vector y ∈ TxM , the vertical Hessian of F 2

2 given by

gij(x, y) =
[
1
2
F 2

]

yiyj

is positive definite.
We obtain a symmetric tensor C defined by

C(U, V, W ) = Cijk(y)U iV jW k,

where U = U i ∂
∂xi , V = V i ∂

∂xi , W = W i ∂
∂xi and Cijk = 1

4 [F 2]yiyjyk(y).
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C is called the Cartan tensor. It is well known that C = 0 if and only if F is
Riemannian. Every Finsler metric F induces a spray G = yi ∂

∂xi − 2Gi(x, y) ∂
∂yi

by

Gi(x, y) :=
1
4
gil(x, y)

{
2
∂gjl

∂xk
(x, y)− ∂gjk

∂xl
(x, y)

}
yjyk.

The Riemann curvature Ry = Ri
kdxk ⊕ ∂

∂xi |p : TpM is defined by

(2.1) Ri
k(y) := 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj

∂Gj

∂yk
.

The Riemann curvature has the following properties. For any non-zero vector
y ∈ TpM ,

Ry(y) = 0, gy(Ry(u),v) = gy(u,Ry(v)), u,v ∈ TpM,

and

(2.2) Ri
kl =

1
3

{
∂Ri

k

∂yl
− ∂Ri

l

∂yk

}
.

For a two-dimensional plane P ⊂ TpM and a non-zero vector y ∈ TpM , the flag
curvature K(P, y) is defined by [16]

K(P,y) :=
gy(u,Ry(u))

gy(y,y)gy(u,u)− gy(y,u)2
,

where P = span{y,u}. F is said to be of scalar curvature K = λ(y) if for any
y ∈ TpM , the flag curvature K(P,y) = λ(y) is independent of P containing
y ∈ TpM , that is equivalent to the following system in a local coordinate system
(xi, yi) in TM ,

Ri
k = λF 2{δi

k − F−1Fykyi}.
If λ is a constant, then F is said to be of constant curvature. The Ricci scalar
function of F is given by

ρ :=
1

F 2
Ri

i

therefore, the Ricci scalar function is positive homogeneous of degree 0 in y.
This means that ρ(x, y) depends on the direction of the flag pole y but not its
length. The Ricci tensor of a Finsler metric F is defined by

Ricij :=
{

1
2
Rk

k

}

yiyj

Ricci-flat manifolds are Riemannian manifolds whose Ricci tensor vanishes. In
physics, they are important because they represent vacuum solutions to Ein-
stein’s equations.
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Definition ([13]). A Finsler metric is said to be an Einstein metric if the Ricci
scalar function is a function of alone, equivalently

Ric = ρ(x)gij , or Ric00 = ρ(x)F 2.

Ricci-flat manifolds are special cases of Einstein manifolds. We now consider pro-
jectively related Finsler metrics on M i.e. the metrics having the same geodesics
as the point sets.

Definition. [15] A Finsler space Fn is projective to another Finsler space F̄n,
if and only if there exist a one-positive homogeneous scalar field P (x, y) on TM
satisfying

Ḡi(x, y) = Gi(x, y) + P (x, y)yi.

Let Gi and Ḡi = Gi +Pyi be sprays on n-manifold M . The Riemann curvatures
are related by [3]

(2.3) R̄i
k = Ri

k + Eδi
k + τkyi,

where

E := P 2 − P|kyk,

τk = 3(P|k − PPyk) + Eyk .

Definition ([15]). Let (M, G) be a spray space. Assume that a function P on
TM is C∞ on TM \ {0} satisfying

P (λy) = λP (y), ∀λ > 0,

(a) P is called a Funk function if it satisfies the following system of PDEs

P|k = PP.k.

(b) P is called a weak Funk function if it satisfies the following system of
PDEs

ykP|k = P 2.

Lemma ([12]). Let (M, F ) be a Finsler space. A Finsler metric F is pointwise
projective to F̃ if and only if

∂F̃|k
∂yl

yk − F̃|l = 0.

then
G̃i = Gi + Pyi,

where

P =
F̃|kyk

2F̃
.

By above lemma an (α, β)-metric in the form of (1.1) is pointwise projective to
α if and only if

(2.4) ϕ′′(α.lβ − αbl)β|kyk = α2ϕ′(β|k.ly
k − β|l).
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Now, we are going to study the Weyl curvature of spray as an important projec-
tive invariant. The Weyl’s projective invariant is constructed from the Riemann
curvature. Define [3]

W i
k(y) = Ri

k −Kδi
k −

1
n + 1∂ym

(Rm
k −Kδm

k )yi,

here K := 1
n−1 Ric = 1

n−1Rm
m. Wy : TxM → TxM is a linear transformation

satisfying Wy(y) = 0. We call W := Wyy∈T M0
the Weyl curvature. W is a

projective invariant under projective transformations [14].

Theorem ([15]). A Finsler metric is of scalar curvature if and only if W = 0.

Theorem ([15]). For a Riemannian metric (M, g) of dimension n> 2, the fol-
lowing conditions are equivalent.

(a) W = 0
(b) g is of scalar curvature.
(c) g is of constant curvature.
(d) g is locally projectively flat.

3. Proof of the main Theorem

In the followings, we prove the main theorem.

Proposition. Let (M, F ) be a Finsler space of dimension n > 2. F is Einstein
metric if and only if

yiV
i
k = −3(n− 1)

n + 1
Kyk,

Where V i
k = W i

k −Ri
k − 3

n+1 Ric0k yi.

Proof. (i) Assume that F is Einstein. By definition of Weyl tensor, we have

yiW
i
k − yiR

i
k = −Kyk − n− 2

n + 1
K.kF 2 +

3F 2

n + 1
Ric0k,

then
yiV

i
k = −Kyk − n− 2

n + 1
K.kF 2,

Since F is non-isotropic Einstein metric, it can be concluded

2Kyk = K.kF 2,

therefore

yiV
i
k = −3(n− 1)

n + 1
Kyk,

this completes the proof (i).
(ii) Suppose

yiV
i
k = −3(n− 1)

n + 1
Kyk,
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by definition of Weyl tensor, we have

−yiV
i
k = yi

(
Kδi

k +
n− 2
n + 1

K.kyi

)
,

it can be resulted in

Kyk +
n− 2
n + 1

K.kF 2 =
3(n− 1)
n + 1

Kyk,

by a simple computation and n > 2, it is concluded that,

2Kyk = K.kF 2,

this implies (
K

F 2

)

.k

= 0,

therefore F is Einstein. ¤

Proposition. Let F be projectively related to F̄ with projective factor P (of
dimension n > 2) which F̄ is an Einstein Finsler metric. If F be Einstein, then(

E
F 2

)
where E = P 2 − P|kyk.

Proof. Let W and W be the Weyl curvature of F and F̄ . For Einstein Finsler
metric F , we have

yiV
i
k =

−3(n− 1)
n + 1

Kyk,

therefore

yiW
i
k = yi

(
Ri

k +
3Ric0k

n + 1
yi

)
− 3(n− 1)

n + 1
Kyk,

but W i
k is invariant under projective transformation, then

yiW
i
k = yW i

k = yi

(
R̄i

k +
3Ric0k

n + 1
yi

)
− 3(n− 1)

n + 1
K̄yk,

therefore

(3.1) yi(Ri
k − R̄i

k) +
3yi

n + 1
(
Ric0k yi − Ric0kyi

)− 3(n− 1)
n + 1

(K − K̄)yk = 0,

but we know that
Ric = Ric + (n− 1)E,

and it implies that

(3.2) K = K̄ + E,

By settling (3.1) in (2.2) one can conclude

3Ri
kl = 3R̄i

kl + (E.l − τl)δi
k − (E.k − τk)δi

l + (τk.l − τl.k)yi,

therefore
3 Ric0l = 3Ric0l + (n− 2)E.l − (n + 1)τl,
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by substituting the above in (3.1), it is concluded:

Eyk + τkF 2 +
3yi

3(n + 1)
((n− 2)E.kyi − (n + 1)τkyi)− 3(n− 1)

n + 1
Eyk

= −2(n− 2)
n + 1

Eyk +
(n− 2)F 2

n + 1
E.k = 0.

thus
n− 2
n + 1

(E.kF 2 − 2Eyk) = 0.

Since n > 2, then
(

E
F 2

)
.k

= 0. ¤

Proposition. Let F be a Finsler metric (n > 2) projectively related to F̄ , where
F̄ is an Einstein non-isotropic Finsler metric, then F is Einstein if and only if

(
F

F̄

)

.k

= 0.

Proof. Assume F is Einstein, by definition we have
(

K
F 2

)
.k

= 0 and by above
Lemma

(
E
F 2

)
.k

= 0, then there exist a function ξ(x) where K−E
F 2 = ξ(x). F

is projectively related to F̄ , then by (3.2) we have K
F 2 = K̄

F 2 + E
F 2 . But F̄ is

Einstein non-isotropic Finsler metric then there is a non-zero function λ(x) such
that K̄ = λ(x)F̄ . It can be concluded that

(
F
F

)
.k

= 0. It is clear, conversely. ¤

Proof of Theorem. F is projectively related to F̄ then it can be said that Gi =
Ḡi + Pyi where P = F|kyk

2F . By above proposition, there is a function of x only,

where F = f(x)F̄ then P = f|kyk

2f .
By using the formula of Gi told in previous, it can be concluded

Gi = Ḡi +
f;xkyk

2f
yi − F̄ 2

4f
ḡilf;xl = Ḡi +

f;xkyk

2f
yi.

Then one can conclude that f;xl = 0 and therefore f is constant. ¤

Corollary. A Finsler metric F (n > 2) projectively related to a Riemannian
metric F̄ of constant sectional curvature is Einstein if and only if α is of constant
flag curvature.

Proof. Let F be projectively related to Riemannian metric α of constant sec-
tional curvature. This Riemannian metric is of constant sectional curvature,
then W = 0 and since F is projectively related to α, then W = 0. This resulted
in F is of scalar curvature. Then it is Einstein if and only if it is of constant flag
curvature [13]. ¤
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