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ON BERWALD AND WAGNER MANIFOLDS

CSABA VINCZE

Abstract. Berwald and Wagner manifolds are two important classes of
spaces in Finsler geometry. They are closely related to each other via
the conformal change of the metric. After discussing the basic definitions
and the elements of the theory we present general methods to construct
examples of them.

1. Preliminaries

Let M be a connected differentiable manifold of dimension n. If U is a
local coordinate neighbourhood with coordinate functions u1, . . . , un then we
use notation x1, . . . , xn, y1, . . . , yn for the induced coordinate functions on the
tangent manifold TM .

Definition 1. A function F : TM → R satisfying the conditions

(F1) F (v) ≥ 0 and F (v) = 0⇔ v = 0,
(F2) F is smooth on the manifold TM \ {0},
(F3) F is positively homogeneous of degree 1: F (tv) = tF (v), for all t > 0,
(F4) the second order partial derivatives gij := 1

2
∂2F 2

∂yi∂yj form the coefficients
of an inner product at every point of TM \ {0},

is a fundamental function on the manifold M . Manifolds equipped with a fun-
damental function are called Finsler manifolds. The metric with coefficients gij

is the Riemann-Finsler metric, E := 1
2F 2 is the energy function.

Remark 1. Riemannian manifolds are Finsler manifolds with quadratic energy
functions.
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Remark 2. The fundamental function F restricted to a tangent space is closely
related to the concept of a norm on a real vector space, so F (v) may be called
as the Finslerian norm or the Finslerian length of the tangent vector v.

Definition 2. A Finsler manifold M is called a generalized Berwald manifold
if there exists a linear connection ∇ on M such that the parallel transport with
respect to∇ preserves the Finslerian norm of tangent vectors. Wagner manifolds
are generalized Berwald manifolds with the special form

T =
1
2
(
1⊗ dα− dα⊗ 1

)

of the torsion, where α is a smooth function on the manifold M . If the torsion
is identically zero then we have a Berwald manifold.

Remark 3. In what follows we fix a manifold M as the base manifold. All objects
are defined on M or the manifold TM \{0} unless otherwise stated. By a Finsler
manifold we mean the base manifold M equipped with a fundamental function.

Definition 3. A conformal relation between two Riemann-Finsler metrics means
that

(1) g̃v(w, z) = e2f(v)gv(w, z)

holds for any tangent vectors w, z and v with a common base point. By a
conformal relation between two Finsler manifolds we mean that their Riemann-
Finsler metrics are conformally related.

The relation
F̃ (v) = ef(v)F (v)

between the fundamental functions of two conformally related Finsler manifolds
can easily be derived using the homogeneity property of the fundamental func-
tion. Calculating the coefficients of the Riemann-Finsler metric by the formula

gij :=
1
2

∂2F 2

∂yi∂yj

we may easily derive the following theorem of M. S. Knebelman [7].

Theorem 1. The scale function between two conformally related Riemann-
Finsler metrics depends only on the position.

Therefore relation (1) reduces to

(2) g̃v(w, z) = e2f(p)gv(w, z),

where p is the common base point of the tangent vectors v, w and z. If the scale
function is constant then the conformal change is homothetic. This is the trivial
case. Berwald and Wagner manifolds are closely related to each other via the
conformal change of the metric as the following theorem due to M. Hashiguchi
and Y. Ichijyō [5] shows.
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Theorem 2. A Finsler manifold is Wagnerian if and only if it is conformal to
a Berwald manifold.

More precisely a conformal change

g̃v(w, z) = e2f(p)gv(w, z)

results in a Berwald manifold with the fundamental function F̃ if and only if
there exists a linear connection on the base manifold such that it preserves the
Finslerian length of tangent vectors with respect to F and the torsion can be
expressed by the formula

T =
1
2
(
1⊗ dα− dα⊗ 1

)
with α = 2f.

2. Historical remarks

The notion of generalized Berwald manifolds (esp. Wagner manifolds) was
introduced by V. Wagner [24] in 1946. The class of these manifolds is quite rich:
Wagner himself showed that any two-dimensional Finsler manifold with cubic
metric is a generalized Berwald manifold. Japanese and Hungarian geometers
also have main contributions to the development of the theory. Some of them
are M. Hashiguchi, Y. Ichijyō, M. Matsumoto, T. Aikou, S. Kikuchi, S. Bácsó,
J. Szilasi, Sz. Szakál and Cs. Vincze.

The Japanese school of Finsler geometry has been dominated by Matsumoto
and his theory of Finsler connections [9]. Having these ideas the first steps in the
systematic treatment of generalized Berwald manifolds (esp. Wagner manifolds)
were taken by Hashiguchi [3]. Together with Ichijyō, they succesfully connected
the theory of Wagner manifolds with the conformal change of the metric. Basic
formulas between the canonical data of conformally related Finsler manifolds
were also formulated in [4]. Following Hashiguchi’s work lots of geometers started
to deal with special problems too. Nice results have been obtained for example
on Finsler manifolds with (α, β) - metrics, see e.g. [2]. Another approach to the
problem was elaborated by Hungarian geometers ([12], [13], [17] and [18]) using
Grifone’s connection theory, see also [14]. As an illustration of the activity of
the recent research we summarize here some basic problems solved by Vincze in
[19], [21] and [23] in the last few years.

I. The question of the unicity : how many essentially different ways are there
to realize conformal equivalence

F̃1 ←− F −→ F̃2

of a Finsler manifold to a Berwald manifold. According to the transitivity of the
conformal equivalence we can also ask whether there are two Berwald manifolds
which are conformally equivalent (but not homothetic) to each other? This is
Matsumoto’s problem posed in 2001, see [10].
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II. A generalization of Matsumoto’s problem. It is well-known that Berwald
spaces can be characterized by the vanishing of the mixed curvature tensor

◦
P (X, Y )Z := K(hX, JY )JZ

of the canonical Berwald connection D, where

K(X, Y )Z := DXDY Z −DY DXZ −D[X,Y ]Z

is the curvature of the Berwald connection in the usual sense, J is the vertical
endomorphism and h is the canonical horizontal endomorphism of the Finsler
manifold. A generalization of the problem above is to find conformal changes
of the metric such that the (not necessarily zero) mixed curvature tensor of the
Berwald connection remains invariant. If n ≥ 3 then Finsler manifolds admitting
such a conformal change of the metric must have a local product structure N×R
with the fundamental function F satisfying

(3)
1
2
F 2(v, t) = k∗

(
γp(v, v) +

k

2

√
γp(v, v) t + t2

)
e2f(v,t),

where γ is a Riemannian metric on the manifold N and

f(v, t) =
k√

16− k2

(
arctan

1√
16− k2

( 4t√
γp(v, v)

+ k
)− arctan

k√
16− k2

)

with functions k∗ and k depending only on the position. The case n = 2 is also
discussed by Vattamány and Vincze [16].

Remark 4. Similar but not exactly the same Finslerian energies can be found in
[1].

Definition 4. A function of the form (3) is called a (non-reversible) Asanov-type
Finslerian energy function.

Using the special form of the fundamental function the following result can
be proved, for the proof see [19].

Theorem 3. The conformal equivalence between two Berwald manifolds must
be homothetic unless they are Riemannian.

Therefore we have the following unicity theorem of Wagner manifolds.

Theorem 4. If there exists a linear connection with torsion

T =
1
2
(1⊗ dα− dα⊗ 1)

on the base manifold such that the parallel transport preserves the Finslerian
norm of tangent vectors, then it is uniquely determined.
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III. The intrinsic characterization of Wagner manifolds. It remains only to
answer whether how we can check intrinsically the existence of a linear connec-
tion with semi-symmetric torsion

T =
1
2
(
1⊗ dα− dα⊗ 1

)

such that the induced parallel transport preserves the Finslerian norm of tangent
vectors. Alternatively, how can we find intrinsically the scale function such that
the resulting manifold is Berwaldian? Concerning the two-dimensional confor-
mality problem the first result due to Wagner [24], where the special apparatus
of two-dimensional Finsler spaces such as the Berwald-frame, main scalar and
Landsberg angle was applied, see also [8]. Further results with strange regularity
conditions can be found in Kikuchi’s paper [6]. The multidimensional problem
is solved in [21] by giving a differential equation of the form

dα = canonical data of the Finsler manifold

such that the exterior derivative of the right hand side is a conformally invari-
ant 2-form on the base manifold. This also gives a partial solution of Shen’s
open problem 36: find all conformal invariants of a Finsler metric. . . , see
http://www.math.iupui.edu/ zshen/Research/preprintindex.html. The key tool
to solve the problem is an associated Riemannian metric on the base mani-
fold constructed as follows. Choosing a local orientation, define the canonical
oriented volume form

dµp (z1, . . . , zn)(v) := ±
√

det gv(zi, zj)

in the tangent spaces as Riemannian manifolds with the Riemann-Finsler metric.
The right hand side is affected by the sign + or− according to the basis z1, . . . , zn

belongs to the orientation or not. Integrating the Riemann-Finsler metric on the
indicatrix hypersurface

Ip := {v ∈ TpM | F (v) = 1 }
with respect to the induced volume form µp we have a Riemannian metric

γp(X, Y ) :=
∫

Ip

g(Xv, Y v);

it is called the associated Riemannian metric. The importance of the associated
structure can be seen from two fundamental facts:

(A) Conformally equivalent Riemann-Finsler metrics have conformally equiv-
alent associated Riemannian metrics.

(B) If the parallel transport induced by a linear connection ∇ preserves the
Finslerian norm of tangent vectors then ∇ is metrical with respect to
the associated Riemannian metric; for a proof see [20].
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In what follows the objects labelled by the symbol ∗ are related to the associated
Riemannian structure such as E∗ - the Riemannian energy, h∗ - the canonical
horizontal distribution, S∗ - the canonical spray associated with h∗. We also
need the gradient of the function ϕ := ln E∗− ln E with respect to the Riemann-
Finsler metric. It will be denoted by JΘ because it must be a vertical vector
field on the tangent manifold. Let us define the form ρ by the formula

ρ :=
dh∗E

E
− 1

2
S∗E
E

dJE∗
E∗

,

where dh∗ and dJ are the differential operators associated with the mappings
h∗ and the canonical vertical endomorphism J , respectively. Using the transfor-
mation formulas between the canonical objects of conformally equivalent Finsler
manifolds it follows that

dJ ρ̃ = dJρ +
1
2
dαv ∧ dJϕ,

where the conformal relation is given by

g̃v(w, z) = e2f(p)gv(w, z) with α := 2f.

Then we can express the exterior derivative of the function α as a difference

dα =
η

σ
− η̃

σ̃
,

where

σp :=
∫

Ip

g(JΘ, JΘ) and ηp(X) :=
∫

Ip

dJρ (Xh,Θ)− 1
2

SE∗
E∗

Xvϕ.

Taking the exterior derivative of both sides we obtain a conformally invariant
differential form

ϑ :=
1
σ

(
dη − 1

σ
dσ ∧ η

)

on the base manifold and the main result can be formulated as follows.

Theorem 5. A Finsler manifold is locally conformally equivalent to a Berwald
manifold if and only if ϑ = 0 and the parallel transport induced by the linear
connection

∇̄XY := ∇∗(X, Y ) +
1
2σ

(
η(Y )X − γ∗(X, Y )η]

)

preserves the Finslerian norm of tangent vectors. Then the torsion is just

T =
1
2
(1⊗ η

σ
− η

σ
⊗ 1)

where η
σ has the local form dα.
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Proof. Note first that if the resulting manifold is Berwaldian then ρ̃ = 0 and,
consequently, η̃ = 0 because the horizontal distribution of the Finsler manifold is
just the same as that of the associated Riemannian space. Therefore we should
solve the equation

dα =
η

σ
.

The (local) solvability is guaranteed by the condition ϑ = 0 because ϑ is just the
exterior derivative of the right hand side. The condition for the uniquely deter-
mined metrical connection ∇̄ with respect to the associated Riemannian met-
ric with prescribed torsion T guarantees that the resulting manifold is Berwal-
dian. ¤

Remark 5. In terms of conformally invariant differential forms the conditions of
Theorem 5 take the form

ϑ = 0 and
1
E

dh̄E = 0,

where h̄ is the horizontal projector associated with the linear connection ∇̄.

3. Examples

I. Simple but important examples can be constructed in the class of Randers
manifolds with a fundamental function of the form

F := F∗ + β,

where F∗ is a Riemannian fundamental function and β is a 1-form on the base
manifold satisfying the condition

sup {β(v) | γ∗(v, v) = 1 } < 1.

It is well-known that a Randers manifold is a Berwald manifold if and only if β
is parallel with respect to the Lévi-Civita connection of the Riemannian metric.
The differential equation

(4) (∇∗β)(X,Y ) = ‖β]‖2γ∗(X,Y )− β(X)β(Y )

characterizing the Wagnerian Randers manifold is more complicated (all of the
operators is taken with respect to the Riemannian metric). It was found by
Bácsó, Hashiguchi and Matsumoto [2]. The characterization of Riemannian
manifolds admitting non-trivial solutions is due to Vincze [22].

Theorem 6. The local structure of Riemannian spaces admitting the non-trivial
solution β := K2dt of equation (4) is a product M = N × R equipped with the
Riemannian metric

(5) γ∗(v, v) = e2K2tγ(Tπ(v), Tπ(v)) + K2dt⊗ dt(v, v),

where γ is a Riemannian metric on the manifold N , π : M → N is the canonical
projection and K is a real constant.
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Taking K < 1 we can consider the fundamental function

F := F∗ + K2dt

on the product N × R as the prototype of Wagnerian Randers manifold up to
isometry.

II. Conformal flatness. After substitution t = − 1
K2 log Ks we get that

(6) γ∗(v, v) =
1

K2s2

(
γ(Tπ(v), Tπ(v)) + ds⊗ ds(v, v)

)
and β = −1

s
ds

showing that there is only one possible candidate among Riemannian spaces of
constant curvature admitting non-trivial solutions of (4): the upper half-space
Hn with the metric

γ∗(vp, vp) :=
1

K2p2
n

(
du1 ⊗ du1 + . . . dun ⊗ dun

)
(v, v).

The manifold Hn with the fundamental function

F (vp) =
1

Kpn

√
(v1)2 + · · ·+ (vn)2 − 1

pn
vp(un)

is Wagnerian. It is a conformally flat Finsler manifold because the conformal
change

F → F̃ (vp) := elog pn

F (vp) =
1
K

√
(v1)2 + · · ·+ (vn)2 − vp(un)

results in a Berwald manifold of zero curvature. Following Szabó’s terminology in
[11] the upper half-space Hn with the fundamental function F and F̃ is a Bolyai-
Lobatchewsky-Finsler manifold and a Hilbert type Bolyai-Lobatchewsky-Finsler
manifold with rectilinear geodesics, respectively. In terms of local coordinates
we have the equation

(y1)2 + · · ·+ (yn−1)2 + (1−K2)(yn − K2

1−K2
)2 = K2(1 +

K2

1−K2
)

for the indicatrix hypersurfaces with respect to F̃ . It can be easily seen that all
of its intersections with the coordinate planes (yi, yn) is an ellipse with one of
its foci at the origin.

III. Polyellipses [15] and polyellipsoids.

Definition 5. Let F∗ be a Riemannian fundamental function on the manifold
M . Tangent vectors v1, . . . , vm form an invariant system with respect to ∇∗ at
a point p if

ϕ(vi) ∈ {v1, . . . , vm} (i = 1, . . . , m)
for any element ϕ of the holonomy group at the point p.

The simplest examples are
(i) the singleton consisting of the zero vector at the point p,
(ii) the zero vector together with Np and −Np, where N is a covariantly

constant vector field,
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(iii) In case of a finite holonomy group {f1, . . . , fm} we have an invariant
system f1(v), . . . , fm(v) for any tangent vector v.

Theorem 7. Let F∗ be a Riemannian fundamental function and suppose that
∇∗ admits finite invariant systems of tangent vectors at some (and therefore
all) point p of the base manifold. Then ∇∗ is Berwald metrizable by a non-
Riemannian fundamental function.

Proof. Let v1, . . . , vm be an invariant system at a single point p and consider a
polyellipsoid with foci v1, . . . , vm. It is a level hypersurface of the function

Figure 1. Polyellipses with three collinear foci in the plane.

P(v) := d∗(v, v1) + · · ·+ d∗(v, vm),

where d∗ is the distance function induced by the inner product γ∗ at the point
p. Figure 1 illustrates an invariant system of type (ii). Let Fp be the function
satisfying (F1)-(F4) at p with such a polyellipsoid as the indicatrix hypersurface.
Since the foci form an invariant system with respect to ∇∗, the extension of Fp

by parallel transport results in a well-defined fundamental function on the whole
manifold. ¤
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