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G-CONTINUOUS FRAMES AND COORBIT SPACES

M. A. DEHGHAN AND M. A. HASANKHANI FARD

ABSTRACT. A generalized continuous frame is a family of operators on a
Hilbert space H which allows reproductions of arbitrary elements of H
by continuous superpositions. Generalized continuous frames are natural
generalization of continuous and discrete frames in Hilbert spaces which
include many recent generalization of frames. In this article,we associate to
a generalized continuous frame suitable Banach spaces, called generalized
coorbit spaces, provided the frame satisfies a certain integrability condition.
Also two classes of generalized coorbit spaces associated to a generalized
continuous frame,its standard dual and some results are studied.

1. INTRODUCTION

Frames were first introduced in 1952 by Duffin and Schaeffer [5]. Frames have
very important and interesting properties make them very useful in the charac-
terization of function spaces, signal processing and many other fields. A discrete
frame is a countable family of elements in a separable Hilbert spaces allows sta-
ble not necessarily unique decomposition of arbitrary elements into expansions
of frame elements [4]. Given a separable Hilbert spaces H,a collections of ele-
ments {f;}icz is called a discrete frame if there exist constants 0 < Aj, Ay < 00
such that

AL FIP <D I< £y fi >P< Agl|f||? for all f € H.
i€z
Later, this concept was generalized to continuous frames indexed by a Radon
measure space [3, 2, 1] and [7]. For a locally compact Hausdorff space X en-
dowed with a positive Randon measure p, a family {1, }.cx of vectors in a
separable Hilbert spaces H is called a continuous frame if there exist constants
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0 < Ay, Ay < oo such that

ALllf)? < /X |< f e > dp(z) < As| f|? for all f € H.

The concept of generalized frames has been introduced by W. Sun [8]. Gener-
alized frames are natural generalizations of frames as members of a Hilbert space
to bounded linear operators. A family {A;};cz of bonded linear operators from
a separable Hilbert space H into another separable Hilbert space K is called a
generalized frame if there are two positive constants A and B such that

A2 < ST IAH 2 < BIFI? for all f € H.
i€Z
M. Fornasier and H. Rauhut have studied a kind of Banach spaces called
coorbit spaces that vectors can be decomposed by use continuous frames [6].
Now we are going to extend this action by generalized continuous frames.

2. GENERALIZED CONTINUOUS FRAMES

Let X be a locally compact Hausdorff space endowed with a positive radon
measure p with supp pu = X.

Definition 2.1. A family F = {A,}.cx of bonded linear operator from a
Hilbert space H into another Hilbert space K is called generalized continuous
frame or simply g-continuous frame for H with respect to IC if there are positive
constants C7 and Cy such that

(1) allfIP < /X 1A (F)2du(z) < Collf]1? for all f € M.

If C7; = C5 then the frame is called tight. We call F a g-continuous frame for H
itH=K.

For the sake of simplicity we assume that the mapping x — A, is weakly
continuous. Not that, if X is a countable set and p is counting measure then
we obtain the usual definition of (generalized discrete) frame. By the Riesz
Representation Theorem, to every functional A € L(H,C), one can find some
g € H such that A(f) =< f,g > for all f € H.Hence a continuous frame is
equivalent to a g-continuous frame frame whenever C = C.

For a g-continuous frame F define the frame operator S = Sr in weak sense
by

S:H—-H, Sf ::/ ArA, fdu(z)
X
where A is adjoint of the operator A,.

Proposition 2.2. The frame operator S is a bounded, positive, self-adjoint, and
invertible.
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Proof. For all f € H
<Sff > = [ MM > dn) = [ < Ao Aof > duta)
= [ 1A B o) > € | £ P20 =< 5F0 >
= /X <M f, 9> du(x) = /X < Asf, Azg > dp(z)

- / < f AZAyg > du(z) =< f,5g >
X

by (1) we have C4 < f,f >SS f><Co < f,f > C1I <8 < Csl and
II-C3'S<1-& 1 < 1. Hence S is invertible operator. O

Proposition 2.3. Let F = {A;}zex is a g-continuous frame for Hilbert space
H with frame operator S and bounds C1,Cy. Then F = {A;}zex such that
A, = A.S71, is a frame for H with bounds Cl_l, C’_1 and frame operator S~1.

Proof. We show that S™!f = [ (STIALSTIA,) fdu(x).
s A fdpte) = 57 [ (12574 fduta)
X

=57 [ A5 duta)
—STUS(STI) = 57U

also since F = {A;},ex is a frame for H then C11 < S < C3I. On other hand
since I and S are self-adjoint and S~! commutative with I and 9,

C1IS™1 < 887 < ISt

and hence
cylr< st <crtr

If F is tight frame with bound A = B = A then S = AI. Now the set
L*(X,H) ={F: X - H| / | F(2)|Pdu(z) < oo},
b'e

with inner product < F,G >:= [, < F(x),G(x) > du(x), is a Hilbert space.
We define the following two transformations associated to F,

ViH— LX(X,H), Vf(z):=A(f),
W:H— LA (X,H), Wf(z):=A (S f).
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The operators V and W are well define since by (1) we have

J Wi Pdu@) = [ 18DIduta) < Calf? < o0
and

/||Wf )Pyl /HA 1) 2 ()
- /X 15710, () Pdu(z) < O] < oo.

In the following we show that adjoint operator of V' and W given weakly by

V¥ L*(X,H) =— H, V*F ::/XAZF(y)du(y),

W*: L*(X,H) -— H, W*F:= /X S'_lAZF(y)d,u(y).
Since for all h € ‘H, we have

<V*F,h>= /X < ALF(y), h > du(y) = /X < F(y), Ay(h) > du(y)

= / < F(y),Vh(y) > duly) =< F,Vh >
X

and

* —1 A%
<WF,h>:/X<S ALF(y), h > du(y)

_ /X < Fy), A, (S h) > du(y)
— [ < F@.Wh) > du(y) =< FWh >
X

Proposition 2.4. Let F = {A;}zex is a g-continuous frame for Hilbert space
‘H with frame operator S, then the following holds,
a) S=V*V, St =w*w,
) < f,g>=<VfWg>=<WfVg>,
) V and W are unitary if F is a tight frame,
d) RangeV = Range W,
e) V and W are bijective transformations from H onto the Hilbert space

M where

M={FeL*(X,H): /X R(z,y)F(y)dp = F(z)a.e, R(z,y) = S~ A AL}

Proof. Let f € 'H, we have

V*V)(f /A*Vf )dp(y /A* Jfdu(y) = S,
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and
VW) = [ AW = [ A0S Nauty) = S5 ) = .
In the same argument, (W*V)f = f and hence for all f and g in H,

< fog>=<VfWg>.

Therefore a), b) and c) hold.
Since S is invertible and self-adjoint we have

F=557 = [ MAST NG = [ AW,
X
and

f=8"15f= /S 1A*A yfdu(y /S 1A*Vf( Vdu(y)
in the weak sense. Furthermore we have

W) = Aa(S1f) = A8 /X AW £ (9)du(y))
_ /X NS LI F(y)du(y),

<
=
8
~
I
-
8
~
N
Il

A / STV F(y)du(y)) = / AeS ATV F(y)dp(y).
X X

Therefore
W () = /X R(z, )W (n)duy), VF(x) = /X R(z,y)V £ (4)duly),

and hence V f and W f are in M.
Conversely, let F' be in M then

F(z) = / R(z,y) F(y)du(y) = / AsSUAZ F(y)du(y)
— A5~ /A* — NSV (VEF) = W(V*F)(a).

Therefore F' € RangeW, M C RangeW and M = Range W. The same argu-
ment implies that M = Range V. Finally by (1) V and W are injective and the
proof is complete. O

For every kernel function K: X x X — L(H) and every function F: X — H
corresponds an operator K such that

2) K(F)(x) = /X K (2, 9) F(y)du(y).
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Proposition 2.5. Let R: L?(X,H) — L*(X,’H) and

:/R@MNWM%
X

then,

a
b
c

R(z,y) = R(y,z)* for all x and y in X,
R(Vf) VY, R(Wf) W forall f inH,
R is self-adjoint as an operator on L*(X,H),
R

)

VV\/\_/

is orthogonal projection from L*(X,H) onto M.

Proof. a) and b) are trivial. R is self-adjoint as an operator on L?(X,H), since
for all F,G € L?(X,H) we have

<R(F),G>:/X<R(F)(x),G(x)>du(x)

~ [ < [ R@nF@duw.6) > dua)
X X

:/ < R(z,y)F(y),G(z) > du(y)du(z)
XJX

J
-1,
“1J;
“Jol,

J,

< F(y), R(z,y)*G(x) > du(y)du(z)
<F

(y,2)G(x) > du(y)du(z)

< R(y,z)G(z), F(y) > du(y)du(z)

/ < R(y,2)G(x), F(y) > du(x)dpu(y)

:/</Rw@amMWF@>W@
X X

:A<R@mmﬂw>ww
= <R(G),F > =< F,R(G) >

For all F € L?(X,H) we have R(F) € Range(R) = Range(V) then R(F) = Vg,
for some g € ‘H and hence

R*(F) = R(R(F)) = R(Vg) = Vg = R(F)

then R?2 = R and

L*(X,H) = N(R) @) Range(R)
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We assume in the following that |[A;|| < C for all z € X. This implies
[V f(x)| < C|f|l and [Wf| < C||STH||f]| for all z € X and, together with the
weak continuity assumption, we conclude Vf,Wf € C*(X,H) for all f € H,
where C?(X,H) denotes the bonded continuous function of X to H.

3. COORBIT SPACES

Associated to a g-continuous frames, there are Banach spaces called coorbit
spaces where describe vectors in the Hilbert spaces of kernel functions. M. For-
nasier and H. Rauhut [6] associated coorbit spaces to continuous frames. First,to
built a weighted algebra, we need to introduce an special weight function.

Definition 3.1. Let m be a real weight function on X x X. m is called admissible
if,

a) m is continuous,

b) 1 <m(z,y) < m(x z)m(z,y) for all z,y,z € X,

c) m(z,y) =m(y,z) for all z,y € X,

d) (xy)§C<ooforallx,y€X.

In order to get a weighted algebra we need to make a norm and a multiplica-
tion on kernel functions.

Proposition 3.2. Let
Ay :={K: X x X — L(H), K is measurable, | K|A;|| < oo}

where
KAl = mascfess sup [ [ e )llduy),esssup [ 5 (ep)lduto))
reX JX yeX JX

is its norm (the norm in integral is uniform norm) and the multiplication in Ay
is given by
Kio Ka(wy) = [ K 2) Kol 0)du(2),
X
such that in weak sense

Ko Ks(z,y) : H—H, K1ng(:Jc,y)f:/XKl(a:,z)Kg(z,y)fdu(z).

Then Ay with ||.|A1|| and the multiplication is a Banach algebra.

Proof. Obviously ||.].41]| is a norm and the conditions of an algebra satisfy. We
prove the associativity of multiplication and completeness of the norm. For all
f€Hand K1, K5, K3 € A; we have

Ky o (I 0 K3)|(2,9)f = /X Ky (2, 2) (K 0 Ks) (2, ) fdu(2)

_ / Ky(z.2) / Koy (2, ) Ks(t, ) fdpu(t)dpu(2)
X X
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- / / K (2, 2) Ko (2, £) K (1, ) fdp(t) du(2)
X JX
— [ [ Koo Ka(e 0dulo) Ka(t. ) fdutt)
X JX

_ /X (K1 0 Ky) (1) Ks(t,y) fdp(t)

= [(K1 0 K3) o K3|(w,y) f,

and then K o (K0 K3) = (K; 0 K3) o K3.

Finally ||.|4;]| is Banach since if {K,}22; is Cauchy sequence in A;, then
|, — K| Ail| — 0 as m,n — oo. Hence | Ky, (x,y) — K (2, y)||sup — 0 as
m,n — o0o. Since L(H) with uniform norm is Banach then there is K € L(H)
such that || K, (z,y)—K(x,y)||sup — 0 as m,n — oo and hence || K, —K|A;|| — 0
as m,n — oo. Therefore A; is a Banach algebra. O

Now we define a corresponding weighted subalgebra respect to an admissible
weight function m.

Proposition 3.3. Let m be an admissible weight function and let,
Ap ={K: X x X - L(H), Kme A},
with the natural norm | K| Ap| = |Km|ALl|. Then

a) A, is a Banach algebra,
b) For every K € A,,, corresponding operator K on L?(X,H) defined by

K(F)(x) = /X K (2, y)F(y)du(y),
18 self adjoint.

Proof. Clearly, K is a linear operator on L?(X,H). For every F,G € L*(X,H)

we have
<K(F),G>= /X < K(F)(z),G(z) > du(x)
- / / < K(2,9)F(y), G(z) > du(y)dp(z)
X JX
- / / < F(y), K*(2,4)G(x) > du(y)dp(z)
X JX

_ / / < F(y), K(y,2)G() > du(y)du(z)
X JX

_ / / < K(y,2)G(x), F(y) > du(y)dp(z)
X JX

_ / < / K (y, 2)G(x)dp(x), F(y) > du(y)
X X
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— /X < K(G)(y), F(y) > du(y)

=< K(G),F>=<FK(G)>.
0

A function space Y that satisfies some properties is other tool for definition
coorbit spaces associated to g-continuous frames.

Definition 3.4. Let (Y, ||.|Y||) be a non-trivial Banach space of functions F': X —
‘H such that

1) Y is continuously embedded into L} (X, H), where

loc
LL(X.H) = {F: X - H, /K |F ()]l du(z) < oo

for every compact subset K of X},

2) If F' is measurable and G € Y such that ||F(z)|| < ||G(z)| a.e. then
FeY and |F|Y] < |GIY]-
3) There exists an admissible weight function m such that A,,(Y) C Y and

IEENY ]| < [K[AnlF[Y]|
forall K € A,,, F €Y, then (Y, ||.|Y])) is called an m-function space.

In the rest of this article, let (Y, ||.|Y||) with a weight function m be fixed.
For fixed point z € X define a weight function on X by

v(z) = v, (x) :=m(z,2).
Now, we define the spaces
HL =HLX,H) = {f eH,Vfec L. (X, H)},
KL =KNX,H):={feH,WfecLLX H)}
with natural norms
LA = VAL, IFHI = VAL
The frame operator S is an isometric isomorphism between HL and K.

Proposition 3.5. The spaces (H., ||.|HL||) and (KL, ||.|IKL||) are Banach spaces.

The proof is completely analogous to the proof of proposition 1 in [6] and
hence omitted.
Now let R be in A, and let g € H then,

1A gl | =/X||W(AZQ)(JS)IIV(x)du(x)

:/ IIAxS’lAZQIIV(ﬂf)d#(z)S/ 1Rz, y)[[llglm(z, 2)dp(z)
X X
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< Hgllm(y,Z)/X [1B(z, y)[m(z, y)dp(z) < |lgll|RlAn ¥ (y),

and similarly
15~ 11\*9|Hl\\—/ V(ST AL g9) (@) |[v(2)dp(z)
— [ 14257 ()t
X

< Hgllm(y,z)/ [1R(z, y)[m(z, y)dp(z) < [lgll|RlAn | (y)-
Hence, Ajg € KL and S~ 1A*g € HL for all y € X.
Now,we define the spaces

(HY)":={f: H. — H, f is continuous and conjugat-linear},

(KL :={f: KL — H, fis continuous and conjugat-linear}.
Since Afg € Kl we may extend the transform V to (K1) by

Vf(e)=Vyf(x) = f(ALg) =< f.Ajg >, feK,.
By the same argument, the transform W extends to (H})" by
Wf(z) =Wyf(x) = f(ST'ALg) =< f,S'Ajg >, f € H,,.

We may also extend the operator S to an isometric isomorphism between (L)’
and (H}) by < Sf,g >=< f,Sg > for f € (K.) and g € H}.
Definition 3.6. The coorbits of Y with respect the frame F = {A;},c, are
defined as

CoY :=Co,(F,Y):={fe(K))', Vf=V,feY},
CoY = Co,(F,Y):={f e (H.)", Wf=W,eY}

with natural norm
[fICoY || == VY, [fICoY ] :=[W f[Y].
The operator S is an isometric isomorphism between CoY and CoY.

There are some results in what follows and their proofs are similar to corre-
spond results in [6].

Proposition 3.7. Suppose that R(Y) C LY (X, H). Then the following state-
ments hold. ’

a) The spaces (CoY,|.|CoY|)) and (CoY, |.|CoY||) are Banach spaces.
b) A function F € Y s of the form Vf (resp. Wf) for some f € CoY
(resp. CoY ) if and only if F = R(F).
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¢) The map V: CoY — Y (resp. W: CoY — Y') establishes an isometric
isomorphism between CoY (resp. CoY) and the closed subspace R(Y)
of Y.

Corollary 1. If Y also is a Hilbert space and R(Y) C L (X, H) then CoY and

CoY are Hilbert spaces.
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