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ACYCLIC NUMBERS OF GRAPHS

VLADMIR SAMODIVKIN

Abstract. A subset S of vertices in a graph G is acyclic if the subgraph
〈S〉 induced by S contains no cycles. The lower acyclic number, ia(G), is
the smallest number of vertices in a maximal acyclic set in G. The upper
acyclic number, βa(G), is the maximum cardinality of an acyclic set in G.
Let µ ∈ {βa, ia}. Any maximal acyclic set S of a graph G with |S| = µ(G)
is called a µ-set of G. A vertex x of a graph G is called: (i) µ-good if x
belongs to some µ-set, (ii) µ-fixed if x belongs to every µ-set, (iii) µ-free if x
belongs to some µ-set but not to all µ-sets, (iv) µ-bad if x belongs to no µ-
set. In this paper we deal with µ-good/bad/fixed/free vertices and present
results on upper and lower acyclic numbers in graphs having cut-vertices.

1. Introduction

We consider finite, simple graphs. The vertex set and the edge set of a
graph G is denoted by V (G) and E(G), respectively. The subgraph induced
by S ⊆ V (G) is denoted by 〈S,G〉. For a vertex x of G, N(x, G) denote the
set of all neighbors of x in G and N [x,G] = N(x,G) ∪ {x}.

A subset of vertices S in a graph G is said to be acyclic if 〈S, G〉 contains no
cycles. Note that the property of being acyclic is a hereditary property, that
is, any subset of an acyclic set is itself acyclic. An acyclic set S ⊆ V (G) is
maximal if for every vertex v ∈ V (G)− S, the set S ∪ {v} is not acyclic. The
lower acyclic number, ia(G), is the smallest number of vertices in a maximal
acyclic set in G. The upper acyclic number, βa(G), is the maximum cardinality
of an acyclic set in G. These two numbers were defined by S.M. Hedetniemi et
al. in [4]. We denote by MAS(G) the set of all maximal acyclic sets of a graph
G. For every vertex x ∈ V (G), let MAS(x,G) = {A ∈ MAS(G) : x ∈ A}.

Let µ(G) be a numerical invariant of a graph G defined in such a way that
it is the minimum or maximum number of vertices of a set S ⊆ V (G) with a
given property P . A set with property P and with µ(G) vertices in G is called
a µ-set of G. A vertex v of a graph G is defined to be
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(a) µ-good, if v belongs to some µ-set of G [3];
(b) µ-bad, if v belongs to no µ - set of G [3];
(c) µ-fixed if v belongs to every µ-set [5];
(d) µ-free if v belongs to some µ-set but not to all µ-sets [5].

For a graph G and µ ∈ {ia, βa} we define:

G(G,µ) = {x ∈ V (G) : x is µ-good};
B(G,µ) = {x ∈ V (G) : x is µ-bad};
Fi(G,µ) = {x ∈ V (G) : x is µ-fixed};
Fr(G,µ) = {x ∈ V (G) : x is µ-free};
V0(G,µ) = {x ∈ V (G) : µ(G− x) = µ(G)};
V−(G,µ) = {x ∈ V (G) : µ(G− x) < µ(G)};
V+(G,µ) = {x ∈ V (G) : µ(G− x) > µ(G)}.

Clearly, {V−(G,µ),V0(G, µ),V+(G,µ)} and {G(G,µ),B(G,µ)} are parti-
tions of V (G), and {Fi(G,µ),Fr(G,µ)} is a partition of G(G).

Observation 1.1. For any nontrivial graph G the following holds:

(1) V (G) = V−(G, βa) ∪V0(G, βa);
(2) V−(G, βa) = {x ∈ V (G) : βa(G− x) = βa(G)− 1} = Fi(G, βa);
(3) V−(G, ia) = {x ∈ V (G) : ia(G− x) = ia(G)− 1};
(4) V+(G, ia) ⊆ Fi(G, ia);
(5) B(G, ia) ⊆ V0(G, ia).

Proof. (1): Let v ∈ V (G) and M be a βa-set of G− v. Then M be an acyclic
set of G which implies βa(G− v) ≤ βa(G).

(2): Let v ∈ V (G) and M1 be a βa-set of G. First assume v be no βa-fixed.
Hence the set M1 may be chosen so that v 6∈ M1 and then M1 is an acyclic
set of G − v implying βa(G) = |M1| ≤ βa(G − v). Now by (1) it follows
βa(G) = βa(G− v).

Let v be βa-fixed. Then each βa-set of G − v is an acyclic set of G but is
no βa-set of G. Hence βa(G) > βa(G− v). Since M1 − {v} is an acyclic set of
G− v then βa(G− v) ≥ |M1 − {v}| = βa(G)− 1.

(3), (4) and (5): Let v ∈ V (G), M2 be an ia-set of G and v 6∈ M2. Then
M2 ∈ MAS(G − v) implying ia(G) ≥ ia(G − v). Now let M3 be an ia-set of
G − v. Then either M3 or M3 ∪ {v} is a maximal acyclic set of G. Hence
ia(G− v) + 1 ≥ ia(G) and if the equality holds then v is ia-good. ¤

A set D ⊆ V (G) is called a decycling set if V (G)−D is acyclic. A decycling
set D ⊆ V (G) is a minimal decycling set if no proper subset D1 ⊂ D is a
decycling set.

The minimum order of a decycling set of G is called the decycling number of
G and is denoted by ∇(G) (see [2]). Note that the set A is in MAS(G) if and
only if V (G) − A is a minimal decycling set. Hence ∇(G) + βa(G) = |V (G)|.
For a survey of results and open problems on ∇(G) see [1]. In [2] the decycling
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of combinations of two graphs were considered, namely the sum, the join and
the Cartesian product. Let G1 and G2 be connected graphs, both of order
at least two, and let they have an unique vertex in common, say x. Then a

coalescence G1
x◦ G2 is the graph G1∪G2. Clearly, x is a cut-vertex of G1

x◦ G2.
In this paper we present results on maximal acyclic sets, lower acyclic number
and upper acyclic number in a coalescence of graphs.

2. Maximal acyclic sets

In this section we begin an investigation of maximal acyclic sets in graphs
having cut-vertices.

Proposition 2.1. Let G = H1
x◦ H2, M ∈ MAS(x,G) and Mj = M ∩ V (Hj),

j = 1, 2. Then Mj ∈ MAS(x,Hj) for j = 1, 2.

Proof. Clearly Mj is an acyclic set of Hj, j = 1, 2. Assume Mi 6∈ MAS(x, Hi)
for some i ∈ {1, 2}. Then there is a vertex u ∈ V (Hi)−Mi such that Mi∪{u}
is an acyclic set in Hi. But then M∪{u} is an acyclic set of G - a contradiction
with the maximality of M . ¤

Proposition 2.2. Let G = H1
x◦ H2, Mj ∈ MAS(x,Hj) for j = 1, 2. Then

M = M1 ∪M2 ∈ MAS(x,G).

Proof. Since x is a cut-vertex then M is an acyclic set of G. If M 6∈ MAS(G)
then there is u ∈ V (G − M) such that M ∪ {u} is an acyclic set of G. Let
without loss of generalities u ∈ V (H1). Then M1 ∪ {u} is an acyclic set of H1

contradicting M1 ∈ MAS(H1). Hence M ∈ MAS(G). ¤

Proposition 2.3. Let G = H1
x◦ H2, M ∈ MAS(G), x 6∈ M and Mj =

M ∩ V (Hj), j = 1, 2. Then one of the following holds:

(1) Mj ∈ MAS(Hj) for j = 1, 2;
(2) there are l and m such that {l,m} = {1, 2}, Ml ∈ MAS(Hl), Mm ∈

MAS(Hm − x) and Mm ∪ {x} ∈ MAS(Hm).

Proof. Clearly Mi is an acyclic set of Hi, i = 1, 2. Assume there be j ∈ {1, 2}
such that Mj 6∈ MAS(Hj), say j = 1. If M1 6∈ MAS(H1 − x) then there
is v ∈ V (H1 − x), v 6∈ M1 such that M1 ∪ {v} is an acyclic set of H1 − x
and since x 6∈ M then M ∪ {v} is an acyclic set of G - a contradiction. So,
M1 ∈ MAS(H1 − x). Since M1 6∈ MAS(H1) then there is u ∈ V (H1 − M1)
such that M1 ∪ {u} is an acyclic set of H1. Since M1 ∈ MAS(H1 − x) then
u = x. Hence M1 ∪ {x} ∈ MAS(H1). Suppose M2 6∈ MAS(H2). Then
M2∪{x} ∈ MAS(H2) and by Proposition 2.2, M∪{x} ∈ MAS(G) contradicting
M ∈ MAS(G). ¤

Proposition 2.4. Let G = H1
x◦ H2, Mj ∈ MAS(Hj) for j = 1, 2 and x 6∈

M = M1 ∪M2. Then M ∈ MAS(H).

Proof. The proof is analogous to the proof of Proposition 2.2. ¤



4 VLADMIR SAMODIVKIN

Proposition 2.5. Let G = H1
x◦ H2, M1 ∈ MAS(x,H1), M2 ∈ MAS(H2) and

x 6∈ M2. Then M = M1∪M2 is no acyclic set of G and there is a set M3 such
that M1 − {x} ⊆ M3 ∈ MAS(H1 − x) and M3 ∪M2 ∈ MAS(G).

Proof. Since M1−{x} is an acyclic set of H1−x then there is M3 ∈ MAS(H1−x)
with M1 − {x} ⊆ M3. Hence U = M3 ∪ M2 is an acyclic set of G. Assume
U 6∈ MAS(G). Then there is v ∈ V (G) − U such that U ∪ {v} is an acyclic
set of G. Now either M3 ∪ {u} is an acyclic set of H1 − x or M2 ∪ {u} is an
acyclic set of H2 depending on whether u ∈ V (H1− x) or u ∈ V (H2). In both
cases we have a contradiction. ¤

3. βa-sets and ia-sets

In this section we present some results concerning the lower acyclic number
and the upper acyclic number of graphs having cut-vertices.

Theorem 3.1. Let G = H1
x◦ H2. Then βa(H1) + βa(H2) − 1 ≤ βa(G) ≤

βa(H1) + βa(H2). Moreover, βa(G) = βa(H1) + βa(H2) if and only if x is no
βa-fixed vertex of Hi, i = 1, 2.

Proof. We need the following claims:

Claim 1. If x is a βa-fixed vertex of G then βa(G) ≤ βa(H1) + βa(H2)− 1.

Let M be a βa-set of G. Then

βa(G) = |M | = |M ∩ V (H1)|+ |M ∩ V (H2)| − 1 ≤ βa(H1) + βa(H2)− 1.

Claim 2. If x is no βa-fixed vertex of G then βa(G) ≤ βa(H1) + βa(H2).

Let M be a βa-set of G such that x 6∈ M . Hence

βa(G) = |M | = |M ∩ V (H1)|+ |M ∩ V (H2)| ≤ βa(H1) + βa(H2).

Claim 3. If x is no βa-fixed vertex of Hi, i = 1, 2 then βa(G) ≥ βa(H1)+βa(H2).

Let Mi be a βa-set of Hi and x 6∈ Mi, i = 1, 2. Then M = M1 ∪M2 is an
acyclic set of G and βa(G) ≥ |M | = |M1|+ |M2| = βa(H1) + βa(H2).

Claim 4. If x is βa-fixed vertex of Hi for some i ∈ {1, 2} then

βa(G) ≥ βa(H1) + βa(H2)− 1.

Let without loss of generalities i = 1. Let Mj be a βa-set of Hj, j = 1, 2.
Then M = (M1 − {x}) ∪M2 is an acyclic set of G and

βa(G) ≥ |M | = |M1| − 1 + |M2| = βa(H1) + βa(H2)− 1.

By the above claims it immediately follows

(1) βa(H1) + βa(H2)− 1 ≤ βa(G) ≤ βa(H1) + βa(H2)

If x is no βa-fixed vertex of Hi, i = 1, 2 then by (1) and Claim 3 it follows
βa(G) = βa(H1) + βa(H2). Now, let without loss of generalities x is a βa-fixed
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vertex of H1. If x is a βa-fixed vertex of G then by Claim 1 and (1) it follows
βa(G) = βa(H1) + βa(H2) − 1. Assume x is no βa-fixed vertex of G. Then
there is a βa-set of G with x 6∈ M . Hence

βa(G) = |M | = |M ∩ V (H1)|+ |M ∩ V (H2)|
≤ βa(H1 − x) + βa(H2) = (βa(H1)− 1) + βa(H2)

because of Observation 1.1 (2). ¤

Corollary 3.2. Let G = H1
x◦ H2 and x is a βa-fixed vertex of G. Then

βa(G) = βa(H1) + βa(H2)− 1.

Theorem 3.3. Let G = H1
x◦ H2. Then:

(1) ia(G) ≥ ia(H1) + ia(H2)− 1;
(2) Let x be an ia-good vertex of G, ia(G) = ia(H1) + ia(H2) − 1, let M

be an ia-set of G and x ∈ M . Then M ∩ V (Hj) is an ia-set of Hj,
j = 1, 2;

(3) Let x be an ia-bad vertex of the graph G, ia(H) = ia(H1)+ia(H2)−1 and
let M be an ia-set of G. Then there are l,m such that {l, m} = {1, 2},
M ∩ V (Hl) is a ia-set of Hl, M ∩ V (Hm) is an ia-set of Hm − x,
ia(Hm − x) = ia(Hm)− 1 and (M ∩ V (Hm)) ∪ {x} is an ia-set of Hm;

(4) Let x be an ia-good vertex of graphs H1 and H2. Then

ia(G) = ia(H1) + ia(H2)− 1.

If Mj is an ia-set of Hj, j = 1, 2 and {x} = M1 ∩M2 then M1 ∪M2 is
an ia-set of the graph G;

(5) Let x be an ia-bad vertex of graphs H1 and H2. Then

ia(G) = ia(H1) + ia(H2).

If Mj is a ia-set of Hj, j = 1, 2 then M1 ∪M2 is an ia-set of G.

Proof. (2): Let M be an ia-set of G and Mj = M ∩ V (Hj), j = 1, 2. If x ∈ M
then by Proposition 2.1 it follows Mj ∈ MAS(x,Hj), j = 1, 2. So that

ia(G) = |M | = |M1|+ |M2| − 1 ≥ ia(H1) + ia(H2)− 1.

Clearly the equality holds if and only if Mi is an ia-set of Hi, i = 1, 2.
(3): Let M be an ia-set of G and Mj = M ∩ V (Hj), j = 1, 2. Since x is

ia-bad, x 6∈ M . If Mj ∈ MAS(Hj), j = 1, 2 then

ia(G) = |M | = |M1|+ |M2| ≥ ia(H1) + ia(H2).

If there are l and m such that {l,m} = {1, 2}, Ml ∈ MAS(Hl), Mm ∈
MAS(Hm − x) and Mm ∪ {x} ∈ MAS(Hm) then

ia(G) = |M | = |Ml|+ |Mm| ≥ ia(Hl) + ia(Hm)− 1

and the equality holds if and only if Ml is an ia-set of Hl, Mm is an ia-set
of Hm − x and Mm ∪ {x} is an ia-set of Hm. There is no other possibilities
because of Proposition 2.3.
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(1): Immediately follows by the proofs of (2) and (3).
(4): Let Mj be an ia-set of Hj, j = 1, 2 and {x} = M1 ∩M2. It follows by

Proposition 2.2 that M1 ∪M2 ∈ MAS(G). Hence

ia(G) ≤ |M1 ∪M2| = |M1|+ |M2| − 1 = ia(H1) + ia(H2)− 1.

Now, by (1), ia(G) = ia(H1) + ia(H2)− 1 and then M1 ∪M2 is an ia-set of G.
(5): Assume ia(G) = ia(H1) + ia(H2) − 1. If x is an ia-bad vertex of G

then by (3) there exists m ∈ {1, 2} such that ia(Hm − x) = ia(Hm)− 1. Now,
by Observation 1.1(5) x is an ia-good vertex of Hm - a contradiction. If x is
an ia-good vertex of G, M is an ia-set of G and x ∈ M then by (2) we have
M ∩ V (Hs) is an ia-set of Hs, s = 1, 2. But then x is an ia-good vertex of Hs,
s = 1, 2 which is a contradiction. Hence, ia(G) ≥ ia(H1) + ia(H2). Let Mj

be an ia-set of Hj, j = 1, 2. By Proposition 2.4, M = M1 ∪M2 ∈ MAS(G).
Hence, ia(H1) + ia(H2) ≤ ia(G) ≤ |M | = |M1|+ |M2| = ia(H1) + ia(H2). ¤

Example 3.4. Let H1 and H2 be the graphs defined as follows:

V (H1) = {x; x11, . . . , x1m; x21, . . . , x2m},
E(H1) = ∪m

i=1{xx1i, xx2i, x1ix2i},
V (H2) = {x, y, z; y11, . . . , y1n; y21, . . . , y2n; z11, . . . , z1p; z21, . . . , z2p},
E(H2) = {xy, yz, zx} ∪ ∪n

i=1{yy1i, yy2i, y1iy2i} ∪ ∪p
j=1{zz1j, zz2j, z1jz2j},

where m, n and p be positive integers such that m + 1 ≤ n ≤ p. Now, let

G = H1
x◦ H2. It is easy to see that ia(H1) = m + 1, ia(H2) = n + p + 2 and

ia(G) = 2m + n + p + 2. Hence, ia(G)− ia(H1)− ia(H2) = m− 1.

This example establish the following result.

Theorem 3.5. For each positive integer r there exists a pair of graphs H1 and
H2 such that they have an unique vertex in common, say x, and

ia(H1
x◦ H2)− ia(H1)− ia(H2) > r.
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free and totally free points. Sankhyā Ser. A, 54(Special Issue):403–407, 1992. Combina-
torial mathematics and applications (Calcutta, 1988).

Received December 6, 2006.



ACYCLIC NUMBERS OF GRAPHS 7

Department of Mathematics,
UACG,
1046 Sofia,
Bulgaria.
E-mail address: VLSAM FTE@UACG.BG


