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SOME UNIFYING RESULTS ON STABILITY AND STRONG
CONVERGENCE FOR SOME NEW ITERATION PROCESSES

M. O. OLATINWO

Abstract. In this paper, we shall establish some stability results as well as
strong convergence results for a pair of nonselfmappings using some newly
introduced iteration processes and two general contractive conditions. Our
results are improvements, generalizations and extensions of the results in
some of the references listed in the reference section of this paper as well as
some other analogous ones in the literature.

1. Introduction

Let (E, d) be a complete metric space and T : E → E a selfmap of E.
Suppose that FT = { p ∈ E | Tp = p } is the set of fixed points of T .

There are several iteration processes in the literature for which the fixed
points of operators have been approximated over the years by various authors.
In a complete metric space, the Picard iteration process {xn}∞n=0 defined by

(1.1) xn+1 = Txn, n = 0, 1, · · · ,
has been employed to approximate the fixed points of mappings satisfying the
inequality relation

(1.2) d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ E and α ∈ [0, 1).

Condition (1.2) is called the Banach’s contraction condition. Any operator
satisfying (1.2) is called strict contraction. Also, condition (1.2) is significant
in the celebrated Banach’s fixed point theorem [3].

In the Banach space setting, we shall state some of the iteration processes
generalizing (1.1) as follows:

For x0 ∈ E, the sequence {xn}∞n=0 defined by

(1.3) xn+1 = (1− αn)xn + αnTxn, n = 0, 1, · · · ,
where {αn}∞n=0 ⊂ [0, 1], is called the Mann iteration process (see Mann [20]).
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For x0 ∈ E, the sequence {xn}∞n=0 defined by

(1.4)
xn+1 = (1− αn)xn + αnTzn

zn = (1− βn)xn + βnTxn

}
n = 0, 1, · · · ,

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1], is called the Ishikawa it-
eration process (see Ishikawa [14]).

The following is the iteration process introduced by Singh et al [39] to es-
tablish some stability results: Let S and T be operators on an arbitrary set Y
with values in E such that T (Y ) ⊆ S(Y ). S(Y ) is a complete subspace of E.
Then, for x0 ∈ Y, the sequence {Sxn}∞n=0 defined by

(1.5) Sxn+1 = (1− αn)Sxn + αnTxn, n = 0, 1, · · · ,
where {αn}∞n=0 is a sequence in [0, 1] is called the Jungck-Mann iteration pro-
cess.

If αn = 1 and Y = E in (1.5), then we obtain

(1.6) Sxn+1 = Txn, n = 0, 1, 2, · · · ,
which is the Jungck iteration. See Jungck [16] for detail.

While the iteration process (1.5) extends (1.1), (1.3) and (1.6), the iteration
processes (1.4) and (1.5) are independent.

Kannan [17] established an extension of the Banach’s fixed point theorem
by using the following contractive definition: For a selfmap T, there exists
β ∈ (0, 1

2
) such that

(1.7) d(Tx, Ty) ≤ β [d(x, Tx) + d(y, Ty)] , ∀x, y ∈ E.
Chatterjea [8] used the following contractive condition: For a selfmap T, there
exists γ ∈ (0, 1

2
) such that

(1.8) d(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)] , ∀x, y ∈ E.
Zamfirescu [40] established a nice generalization of the Banach’s fixed point
theorem by combining (1.2), (1.7) and (1.8). That is, for a mapping T : E →
E, there exist real numbers α, β, γ satisfying 0 ≤ α < 1, 0 ≤ β < 1

2
, 0 ≤ γ < 1

2
respectively such that for each x, y ∈ E, at least one of the following is true:

(1.9)
(z1) d(Tx, Ty) ≤ αd(x, y)
(z2) d(Tx, Ty) ≤ β [d(x, Tx) + d(y, Ty)]
(z3) d(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)] .





The mapping T : E → E satisfying (1.9) is called the Zamfirescu contraction.
Any mapping satisfying condition (z2) of (1.9) is called a Kannan mapping,
while the mapping satisfying condition (z3) is called Chatterjea operator. The
contractive condition (1.9) implies

(1.10) ||Tx− Ty|| ≤ 2δ||x− Tx||+ δ||x− y||, ∀x, y ∈ E,
where δ = max

{
α, β

1−β
, γ

1−γ

}
, 0 ≤ δ < 1.
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Condition (1.9) was used by Rhoades [31, 32] to obtain some convergence
results for Mann and Ishikawa iteration processes in a uniformly convex Banach
space. The results of [31, 32] were recently extended by Berinde [6] to an
arbitrary Banach space for the same fixed point iteration processes. Rafiq [30]
proved a convergence result for the Noor iteration process in normed space
using the Zamfirescu contraction. See Noor [2] for the Noor iteration process.

Singh et al [39] defined the following general iteration process:
Let S, T : Y → E and T (Y ) ⊆ S(Y ). For any x0 ∈ Y, let

(1.11) Sxn+1 = f(T, xn), n = 0, 1, · · ·
For S = I (i.e. identity map on E), f(T, xn) = Txn+1 and Y = E, then (1.11)
reduces to the well-known Picard iteration process in (1.1).

If Y = E, and f(T, xn) = Txn, n = 0, 1, · · · , then (1.11) reduces to the
Jungck iteration process of (1.6). Jungck [16] established that the maps S and
T satisfying

(1.12) d(Tx, Ty) ≤ kd(Sx, Sy), ∀x, y ∈ E, k ∈ [0, 1),

have a unique common fixed point in complete metric space E, provided that
S and T commute, T (Y ) ⊆ S(Y ) and S is continuous. For results which are
similar to Jungck [16] in uniform space, we refer to Aamril and El Moutawakil
[1] as well as Olatinwo [21, 22].

The following definition of the stability of iteration process due to Singh et
al [39] shall be required in the sequel.

Definition 1.1. Let S, T : Y → E, T (Y ) ⊆ S(Y ) and z a coincidence point
of S and T, that is, Sz = Tz = p (say). For any x0 ∈ Y, let the sequence
{Sxn}∞n=0 , generated by the iteration procedure (1.11) converge to p. Let
{Syn}∞n=0 ⊂ E be an arbitrary sequence, and set εn = d(Syn+1, f(T, yn)), n =
0, 1, · · · Then, the iteration procedure (1.11) will be called (S, T )-stable if and
only if lim

n→∞
εn = 0 implies that lim

n→∞
Syn = p.

This definition reduces to that of the stability of iteration procedure due to
Harder and Hicks [11] when Y = E and S = I (identity operator).

Several stability results established in metric space and normed linear space
are available in the literature. Some of the various authors whose contribu-
tions are of colossal value in the study of stability of the fixed point iteration
procedures are Ostrowski [29], Harder and Hicks [11], Rhoades [34, 36], Osilike
[27], Osilike and Udomene [28], Jachymski [15], Berinde [5, 4] and Singh et
al [39]. Harder and Hicks [11], Rhoades [34, 36], Osilike [27] and Singh et al
[39] used the method of the summability theory of infinite matrices to prove
various stability results for certain contractive definitions. The method has
also been adopted to establish various stability results for certain contractive
definitions in Olatinwo et al [24, 26]. Osilike and Udomene [28] introduced a
shorter method of proof of stability results and this has also been employed
by Berinde [5], Imoru and Olatinwo [12], Imoru et al [13], Olatinwo et al [25]
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and some others. In Harder and Hicks [11], the contractive definition stated in
(1.2) was used to prove a stability result for the Kirk’s iteration process. The
first stability result on T− stable mappings was proved by Ostrowski [29] for
the Picard iteration using (1.2).

In addition to (1.2), the contractive condition in (1.9) was also employed by
Harder and Hicks [11] to establish some stability results for both Picard and
Mann iteration processes. Rhoades [34, 36] extended the stability results of
[11] to more general classes of contractive mappings. Rhoades [34] extended
the results of [11] to the following independent contractive condition: there
exists c ∈ [0, 1) such that

(1.13) d(Tx, Ty) ≤ cmax {d(x, y), d(x, Ty), d(y, Tx)} , ∀x, y ∈ E.
Rhoades [36] used the following contractive definition: there exists c ∈ [0, 1)
such that

(1.14) d(Tx, Ty) ≤ cmax

{
d(x, y),

d(x, Tx) + d(y, Ty)

2
, d(x, Ty), d(y, Tx)

}
,

for all x, y ∈ E. Moreover, Osilike [27] generalized and extended some of the
results of Rhoades [36] by using a more general contractive definition than those
of Rhoades [34, 36]. Indeed, he employed the following contractive definition:
there exist a ∈ [0, 1], L ≥ 0 such that

(1.15) d(Tx, Ty) ≤ Ld(x, Tx) + ad(x, y), ∀x, y ∈ E.
Osilike and Udomene [28] introduced a shorter method to prove stability re-
sults for the various iteration processes using the condition (1.15). Berinde [5]
established the same stability results for the same iteration processes using the
same set of contractive definitions as in Harder and Hicks [11] but the same
method of shorter proof as in Osilike and Udomene [28].

More recently, Imoru and Olatinwo [12] established some stability results
which are generalizations of some of the results of Osilike [5, 11, 27, 28, 34, 36].
In Imoru and Olatinwo [12], the following contractive definition was employed:
there exist
a ∈ [0, 1) and a monotone increasing function ϕ : R+ → R+ with ϕ(0) = 0,

such that

(1.16) d(Tx, Ty) ≤ ϕ(d(x, Tx)) + ad(x, y), ∀x, y ∈ E.
Condition (1.16) was also employed in Olatinwo et al [24] to establish some
stability results in normed linear space setting with additional condition of
continuity imposed on ϕ.

However, Singh et al [39] established some stability results for Jungck and
Jungck-Mann iteration processes by employing two contractive definitions both
of which generalize those of Osilike [27] but independent of that of Imoru and
Olatinwo [12]. Singh et al [39] obtained stability results for Jungck and Jungck-
Mann iterative procedures in metric space using both the contractive definition
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(1.12) and the following: For S, T : Y → E and some k ∈ [0, 1), we have

(1.17) d(Tx, Ty) ≤ kd(Sx, Sy) + Ld(Sx, Tx), ∀x, y ∈ Y.
In the next section, we shall introduce the Jungck-Ishikawa iteration pro-

cess to prove some stability and convergence results for nonselfmappings in
normed linear space and arbitrary Banach space respectively. In establishing
our results, more general contractive conditions than (1.9) will be considered.

2. Preliminaries

We shall consider the following iteration processes in establishing our results:
Let (E, ||.||) be a Banach space and Y an arbitrary set. Let S, T : Y → E

be two nonselfmappings such that T (Y ) ⊆ S(Y ), S(Y ) is a complete subspace
of E and S is injective. Then, for x0 ∈ Y, define the sequence {Sxn}∞n=0

iteratively by

(2.1)
Sxn+1 = (1− αn)Sxn + αnTzn

Szn = (1− βn)Sxn + βnTxn

}
, n = 0, 1, · · · ,

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1]. The iteration process (2.1)
is called the Jungck-Ishikawa iteration process. See Olatinwo [23] for more
detail.

The iteration processes (1.1) and (1.3)–(1.6) are special cases of (2.1). For
instance,

if in (2.1), S is identity operator, Y = E, βn = 0 then we obtain the Mann
iteration process of (1.3).

Since S is injective, if βn = 0, then for x0 ∈ Y, (2.1) reduces to the Jungck-
Mann iteration process of (1.5).

Also, with S and T as in (2.1), we define the following three-step iteration
process which is an extension of (2.1):

For x0 ∈ Y and with S and T as above, define the sequence {Sxn}∞n=0

iteratively by

(2.2)
Sxn+1 = (1− αn)Sxn + αnTzn

Szn = (1− βn)Sxn + βnTrn

Srn = (1− γn)Sxn + γnTxn



 , n = 0, 1, · · · ,

where {αn}∞n=0 , {βn}∞n=0 and {γn}∞n=0 are sequences in [0, 1]. The iteration
process (2.2) will be called the Jungck-Noor iteration process.

The iteration processes (1.1) and (1.3)–(1.6) are also special cases of (2.2).
In fact, the iteration process defined in (2.2) is an extension of that of Noor
[2].

Definition 2.1 (Berinde [7]). A function ψ : R+ → R+ is called a compari-
son function if it satisfies the following conditions:

(i) ψ is monotone increasing;
(ii) lim

n→∞
ψn(t) = 0, ∀t ≥ 0.
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Remark 2.2. Every comparison function satisfies ψ(0) = 0. See Rus [37] and
Rus et al [38] for the Definition 2.1.

In addition to the iteration process (2.1), we shall employ the following
contractive definitions:

Definition 2.3. For two nonselfmappings S, T : Y → E with T (Y ) ⊆ S(Y ),
where S(Y ) is a complete subspace of E, there exist:

(a) a real number L ≥ 0, a sublinear comparison function ψ : R+ → R+

and a monotone increasing function ϕ : R+ → R+ such that ϕ(0) = 0
and ∀x, y ∈ Y, we have

(2.3) ||Tx− Ty|| ≤ ϕ(||Sx− Tx||) + ψ(||Sx− Sy||)
1 + L||Sx− Tx|| ;

and,
(b) real numbers k ≥ 0, L ≥ 0, a ∈ [0, 1) and a monotone increasing

function ϕ : R+ → R+ such that ϕ(0) = 0 and ∀x, y ∈ Y, we have

(2.4) ||Tx− Ty|| ≤
(
ϕ(||Sx− Tx||) + a||Sx− Sy||

1 + L||Sx− Tx||
)
ek||Sx−Tx||.

In this paper, we shall consider the iteration processes defined in (2.1) and
(2.2) to establish some stability results for nonselfmappings in normed linear
space as well as obtain some strong convergence results for these nonselfmap-
pings in an arbitrary Banach space by employing the contractive conditions
(2.3) and (2.4). Our stability results are generalizations and extensions of
those of Singh et al [39], some results of [5, 12, 13, 24, 26, 34, 36], while the
convergence results extend, generalize and improve those of [6, 18, 19, 36, 31].
For more on the study of fixed point iteration processes and various contrac-
tive conditions, our interested readers can consult Berinde [4], Ciric [9, 10],
Rhoades [33] and others in the reference section of this paper.

Definition 2.4. Let X and Y be two nonempty sets and S, T : X → Y two
mappings. Then, an element x∗ ∈ X is a coincidence point of S and T if and
only if Sx∗ = Tx∗.

Denote the set of the coincidence points of S and F by C(S, T ).

There are several papers and monographs on the coincidence point theory.
However, we refer our readers to Rus [37] and Rus et al [38] for the Definition
2.4 and some coincidence point results.

We shall require the following lemmas in the sequel.

Lemma 2.5 (Berinde [5, 4, 7]). If δ is a real number such that 0 ≤ δ < 1, and
{εn}∞n=0 is a sequence of positive numbers such that lim

n→∞
εn = 0, then for any

sequence of positive numbers {un}∞n=0 satisfying

un+1 ≤ δun + εn, n = 0, 1, · · · ,
we have lim

n→∞
un = 0.
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Lemma 2.6 (Imoru et al [13]). Let ψ : R+ → R+ be a comparison function
and {vn}∞n=0 a sequence of positive numbers such that lim

n→∞
vn = 0. Then, we

have

lim
n→∞

n∑

k=0

ψn−k(vk) = 0, for each k.

Proof. Since ψ is monotone increasing, there exists a convergent series
∑
ank

of positive numbers ank, k = 0, 1, 2, · · · , n such that

ψn−k(vk) = ankvk.

Therefore,
n∑

k=0

ψn−k(vk) =
n∑

k=0

ankvk.

Let A be the lower triangular matrix with entries ank, k = 0, 1, · · · , n. Clearly,
lim

n→∞
ank = 0, for each k. Since

∑
ank is convergent, let lim

n→∞
∑
ank = s < ∞.

Therefore, A is multiplicative (See Rhoades [36]). Then,

lim
n→∞

n∑

k=0

ψn−k(vk) = lim
n→∞

n∑

k=0

ankvk = lim
n→∞

n∑

k=0

ank. lim
n→∞

vn

= lim
n→∞

∑
ank lim

n→∞
vn = 0.

¤
Lemma 2.7 (Imoru et al [13]). Let {ψk(t)}n

k=0 be a sequence of comparison
functions. Then, any linear combination

∑n
j=0 cjψ

j(t) of the comparison func-

tions is also a comparison function, where
∑n

j=0 cj = 1 and co, c1, · · · , cn are
positive constants.

Proof. Let ψ̄(t) = c0ψ
0(t) + c1ψ(t) + c2ψ

2(t) + · · ·+ cnψ
n(t). Since each ψk(t),

k = 0, 1, , · · · , n is a comparison function, then each ψk(t), k = 0, 1, · · · , n
is monotone increasing. Also, since each ck > 0, k = 0, 1, · · · , n, then each
ckψ

k(t) is monotone increasing, from which it follows that ψ̄(t) is monotone
increasing. Moreover, since ψk(t) → 0, ∀t ≥ 0, k = 0, 1, · · · , n then ckψ

k(t) →
0, ∀k = 0, 1, · · · , n. Therefore, ψ̄(t) → 0, ∀ t ≥ 0. Hence, ψ̄(t) is a comparison
function. ¤
Lemma 2.8 (Imoru et al [13]). If ψ : R+ → R+ is a subadditive comparison
function and {εn}∞n=0 is a sequence of positive numbers such that lim

n→∞
εn = 0,

then for any sequence of positive numbers {un}∞n=0 satisfying

(2.5) un+1 ≤
m∑

k=0

δkψ
k(un) + εn, n = 0, 1, · · · ,

where δ0, δ1, · · · , δm ∈ [0, 1] with 0 ≤ ∑m
k=0 δk ≤ 1, and we have lim

n→∞
un = 0.
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Proof. Let ψ̄(un) =
∑m

k=0 δkψ
k(un). Then, inequality (2.5) becomes

(2.6) un+1 ≤ ψ̄(un) + εn, n = 0, 1, 2, · · · ,
Using Lemma 2.7, then we have that ψ̄(un) is a comparison function. Also,
using (2.6) yields

u1 ≤ ψ̄(u0) + ε0

u2 ≤ ψ̄(u1) + ε1 ≤ ψ̄(ψ̄(u0) + ε0) + ε1 = ψ̄2(u0) + ψ̄(ε0) + ε1

u3 ≤ ψ̄(u2) + ε2 ≤ ψ̄3(u0) + ψ̄2(ε0) + ψ̄(ε1) + ε2,

and in general, we have

(2.7) un ≤ ψ̄n(u0) + ψ̄n−1(ε0) + ψ̄n−2(ε1) + · · ·+ ψ̄(εn−2) + εn−1

Replacing n by (n+ 1) in (2.7) yields

¯un+1 ≤ ψ̄n+1(u0) + ψ̄n(ε0) + ψ̄n−1(ε1) + · · ·+ ψ̄(εn−1) + εn

= ψ̄n+1(u0) +
n∑

k=0

ψ̄n−k(εk).(2.8)

Since ψ̄ is a comparison function, then ψ̄n+1(u0) → 0 as n→∞. Using Lemma
2.6, then we have that

lim
n→∞

n∑

k=0

ψ̄n−k(εk) = 0 for each k.

Thus, inequality (2.8) yields lim
n→∞

un = 0. ¤

We establish our main results in the next two sections. Our stability results
are established by using the method of Berinde [5] and Osilike and Udomene
[28]. Section 3 deals with some stability results in normed linear space, while
a strong convergence result is proved in section 4.

3. Some Stability Results in Normed Linear Space

Theorem 3.1. Let (E, ||.||) be a normed space and Y an arbitrary set. Suppose
that S, T : Y → E are nonselfoperators such that T (Y ) ⊆ S(Y ), S(Y ) a
complete subspace of E, and S is an injective operator. Let z be a coincidence
point of S and T (that is, Sz = Tz = p). Suppose that S and T satisfy
condition (2.3). Let ψ : R+ → R+ be a continuous sublinear comparison
function and ϕ : R+ → R+ a monotone increasing function such that ϕ(0) = 0.
For x0 ∈ Y, let {Sxn}∞n=0 be the Jungck-Ishikawa iteration process defined
by (2.1) converging to p, where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1].
Then, the Jungck-Ishikawa iteration process is (S, T )-stable.

Proof. Suppose that {Syn}∞n=0 ⊂ E, εn = ||Syn+1 − (1 − αn)Syn − αnTbn||,
n = 0, 1, . . . , where Sbn = (1 − βn)Syn + βnTyn and let lim

n→∞
εn = 0. Then,
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we shall establish that lim
n→∞

Syn = p, using the contractive condition and the

triangle inequality:

||Syn+1 − p|| ≤ εn + ||(1− αn)(Syn − p) + αn(Tbn − p)||
≤ εn + (1− αn)||Syn − p||+ αn||Tz − Tbn||
≤ εn + (1− αn)||Syn − p||

+αn

[
ϕ(||Sz − Tz||) + ψ(||Sz − Sbn||)

1 +M ||Sz − Tz||
]

= (1− αn)||Syn − p||+ αnψ(||p− Sbn||) + εn

≤ (1− αn)||Syn − p||+ αn[(1− βn)ψ(||p− Syn||)
+βnψ(||Tz − Tyn||)] + εn

≤ (1− αn)||Syn − p||+ αn(1− βn)ψ(||Syn − p||)(3.1)

+αnβnψ
2(||p− Syn||) + εn.

Using Lemma 2.8 in (3.1) yields lim
n→∞

||Syn − p|| = 0, that is, lim
n→∞

Syn = p.

Conversely, let lim
n→∞

Syn = p. Then, by using the triangle inequality and the

contractive definition, we have the following:

εn = ||Syn+1 − (1− αn)Syn − αnTbn||
≤ ||Syn+1 − p||+ (1− αn)||Syn − p||+ αn||Tz − Tbn||
≤ ||Syn+1 − p||+ (1− αn)||Syn − p||+ αn(1− βn)ψ(||p− Syn||)

+αnβnψ(||Tz − Tyn||)
≤ ||Syn+1 − p||+ (1− αn)||Syn − p||+ αn(1− βn)ψ(||Syn − p||)

+αnβnψ
2(||Syn − p|| → 0 as n→∞.

¤

Theorem 3.2. Let (E, ||.||) be a normed space and Y an arbitrary set. Suppose
that S, T : Y → E are nonselfoperators such that T (Y ) ⊆ S(Y ), S(Y ) a
complete subspace of E, and S is an injective operator. Let z be a coincidence
point of S and T (that is, Sz = Tz = p). Suppose that S and T satisfy
condition (2.4). Let ϕ : R+ → R+ be a monotone increasing function such
that ϕ(0) = 0. For x0 ∈ Y, let {Sxn}∞n=0 be the Jungck-Noor iteration process
defined by (2.2) converging to p, where {αn}∞n=0 , {βn}∞n=0 and {γn}∞n=0 are
sequences in [0, 1] such that 0 < α ≤ αn, 0 < β ≤ βn and 0 < γ ≤ γn, (n =
0, 1, · · · ). Then, the Jungck-Noor iteration process is (S, T )-stable.

Proof. Suppose that {Syn}∞n=0 ⊂ E, εn = ||Syn+1 − (1 − αn)Syn − αnTbn||,
n = 0, 1, . . . , where Sbn = (1 − βn)Syn + βnTcn, Scn = (1 − γn)Syn + γnTyn

and let lim
n→∞

εn = 0. Then, we shall establish that lim
n→∞

Syn = p, using the
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contractive condition (2.4) and the triangle inequality:

||Syn+1 − p|| ≤ (1− αn)||Syn − p||+ αn||Tz − Tbn||+ εn

≤ (1− αn)||Syn − p||+ aαn||p− Sbn||+ εn

≤ (1− αn)||Syn − p||+ aαn[(1− βn)||Syn − p||
+βn||Tz − Tcn||+ εn

= [1− (1− a)αn − aαnβn]||Syn − p||+ aαnβn||Tz − Tcn||] + εn

≤ [1− (1− a)αn − aαnβn]||Syn − p||+ a2αnβn||Sz − Scn||+ εn

= [1− (1− a)αn − (1− a)aαnβn

−(1− a)a2αnβnγn]||Syn − p||+ εn

≤ [1− (1− a)α− (1− a)aαβ − (1− a)a2αβγ]||Syn − p||+ εn.(3.2)

Since

0 ≤ 1− (1− a)α− (1− a)aαβ − (1− a)a2αβγ < 1 and lim
n→∞

εn = 0,

using Lemma 2.5 in (3.2) yields lim
n→∞

||Sxn − p|| = 0, that is, lim
n→∞

Sxn = p.

Conversely, let lim
n→∞

Sxn+1 = p. Then, by using the triangle inequality and

the contractive definition, we have the following:

εn ≤ ||Syn+1 − p||+ (1− αn)||Syn − p||+ αn||Tz − Tbn||
≤ ||Syn+1 − p||+ (1− αn)||Syn − p||+ aαn||Sz − Sbn||
≤ ||Syn+1 − p||+ [1− (1− a)αn − aαnβn]||Syn − p||+ aαnβn||Tz − Tcn||
≤ ||Syn+1 − p||+ [1− (1− a)αn − aαnβn]||Syn − p||+ a2αnβn||Sz − Scn||
≤ ||Syn+1 − p||+ [1− (1− a)αn − aαnβn]||Syn − p||

+ a2αnβn[(1− γn)||p− Syn||+ γn||p− Tyn||]
≤ ||Syn+1 − p||+ [1− (1− a)α− (1− a)aαβ

− (1− a)a2αβγ]||Syn − p|| → 0 as n→∞.

¤
Remark 3.3. Both Theorem 3.1 and Theorem 3.2 are generalizations and ex-
tensions of Theorem 3.5 of Singh et al [39], Theorem 3 of Berinde [5], Theorem
2 of Osilike [27], Theorem 2 and Theorem 5 of Osilike and Udomene [28], The-
orem 2 of Rhoades [34], Theorem 30 of Rhoades [35], Theorem 2 of Rhoades
[36], Theorem 3 of Harder and Hicks [11] as well as some of the results of the
author [12, 13, 24, 26, 25]. Our stability results also extend some similar ones
in Berinde [7] and Olatinwo [23].

4. Some Convergence Results in Arbitrary Banach Space

Theorem 4.1. Let (E, ||.||) be an arbitrary Banach space and Y is an arbitrary
set. Suppose that S, T : Y → E are nonselfoperators such that T (Y ) ⊆
S(Y ), S(Y ) a complete subspace of E, and S is an injective operator. Let z
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be a coincidence point of S and T (that is, Sz = Tz = p). Suppose that S and
T satisfy condition (2.4). Let ϕ : R+ → R+ be a monotone increasing function
such that ϕ(0) = 0. For x0 ∈ Y, let {Sxn}∞n=0 be the Jungck-Noor iteration
process defined by (2.2), where {αn}∞n=0 , {βn}∞n=0 and {γn}∞n=0 are sequences
in [0, 1] such that

∑∞
n=0 αn = ∞. Then, {Sxn}∞n=0 converges strongly to p.

Proof. Let C(S, T ) be the set of the coincidence points of S and T . We shall
now use condition (2.4) to establish that S and T have a unique coincidence
point z (i.e. Sz = Tz = p (say)): Injectivity of S is sufficient.

Suppose that there exist z1, z2 ∈ C(S, T ) such that Sz1 = Tz1 = p1 and
Sz2 = Tz2 = p2.

If p1 = p2, then Sz1 = Sz2 and since S is injective, it follows that z1 = z2.
If p1 6= p2, then we have by the contractiveness condition (2.4) for S and T

that

0 < ||p1 − p2|| = ||Tz1 − Tz2||

≤
(
ϕ(||Sz1 − Tz1||) + a||Sz1 − Sz2||

1 + L||Sz1 − Tz1||
)
ek||Sz1−Tz1||

≤ a||p1 − p2||,
which leads to (1 − a)||p1 − p2|| ≤ 0, from which it follows that 1 − a > 0
since a ∈ [0, 1), but ||p1 − p2|| ≤ 0, which is a contradiction since norm is
nonnegative.

Therefore, we have that ||p1 − p2|| = 0, that is, p1 = p2 = p. Since p1 = p2,
then we have that p1 = Sz1 = Tz1 = Sz2 = Tz2 = p2, leading to Sz1 = Sz2 ⇒
z1 = z2 = z (since S is injective).

Hence, z ∈ C(S, T ), that is, z is a unique coincidence point of S and T .
Now, we prove that {Sxn}∞n=0 converges strongly to p (where Sz = Tz = p)

using again, condition (2.4). Therefore, we have

||Sxn+1 − p|| ≤ (1− αn)||Sxn − p||+ αn||Tz − Tzn||
≤ (1− αn)||Sxn − p||+ aαn||p− Szn||.(4.1)

Now, we have that

||p− Szn|| = ||(1− βn)(p− Sxn) + βn(p− Tyn)||
≤ (1− βn)||Sxn − p||+ aβn||p− Syn||.(4.2)

Using (4.2) in (4.1) yields

(4.3) ||Sxn+1 − p|| ≤ [1− (1− a)αn − aαnβn]||Sxn − p||+ a2αnβn||p− Syn||.
Furthermore, we have

|p− Syn|| ≤ (1− γn)||Sxn − p||+ γn||p− Txn||
≤ (1− γn + aγn)||p− Sxn||.(4.4)
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Using (4.4) in (4.3) yields

||Sxn+1 − p|| ≤ [1− (1− a)αn − (1− a)aαnβn − (1− a)a2αnβnγn]||Sxn − p||
≤ [1− (1− a)αn]||Sxn − p||
≤ Πn

j=0[1− (1− a)αj]||Sx0 − p||
≤ e−(1−a)

Pn
j=0 αj ||Sx0 − p|| → 0 as n→∞.(4.5)

Therefore, we obtain from (4.5) that lim
n→∞

||Sxn+1 − p|| = 0, i.e. {Sxn}∞n=0

converges strongly to p. ¤

Remark 4.2. Theorem 4.1 is a generalization and extension of a multitude of
results. In particular, Theorem 4.1 is a generalization and extension of both
Theorem 1 and Theorem 2 of Berinde [6], Theorem 3 of Rafiq [30], Theorem
2 and Theorem 3 of Kannan [18], Theorem 3 of Kannan [19], Theorem 4 of
Rhoades [31] as well as Theorem 8 of Rhoades [32]. Also, both Theorem 4 of
Rhoades [31] and Theorem 8 of Rhoades [32] are Theorem 4.10 and Theorem
5.6 of Berinde [4] respectively. Our result also extends some similar ones in
Berinde [7] and Olatinwo [23].

Remark 4.3. We have considered two new iteration processes to prove some
unifying theorems for stability and convergence. These new iteration processes
as well as the results obtained extend the frontiers of knowledge in the fixed
point theory.
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