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AN ALGORITHMIC DETERMINATION OF OPTIMAL
MEASURE FROM DATA AND SOME APPLICATIONS

N. K. AGBEKO AND A. HÁZY

Abstract. In [8], by determining fuzzy measure from the data, the authors
did not mention under what circumstances this can be done. Following the
idea of [8] we propose by means of optimal measure theory an alternative
way which is to determine optimal measure from the data. We also show
that this determination can always be done.

1. Introduction

All along the pair (Ω, F) will stand for an arbitrarily fixed measurable space

and [0, 1]F the collection of all set functions µ : F → [0, 1].

Readily we note that among the functions in [0, 1]F probability measure
constitutes the most studied field, due to Kolmogorov’s impacting pace. Yet,
there are still at least as many as continuum other types of functions in [0, 1]F

to be dealt with.
In fact, by various statistical tools it is customary to find from a represent-

ing data a probability measure followed by a given sample, which is a finite
sequence of random variables mapping Ω into R. At times if the normality
is assumed confidence intervals for the theoretical mean (or variance) can be
computed.

Nevertheless, the question arises whether or not from a given data only
probability measure can and should be looked for.

In the literature some approaches have been initiated to the solution of the
raised problem. Fuzzy measure can be mentioned here as an instance. We
notice that fuzzy measure which also belongs to set [0, 1]F saw the light in
the 60s. However, we must point out that the axioms of fuzzy measure are
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not uniquely given as in the case of probability measure. In [8], by deter-
mining fuzzy measure from the data the authors did not mention under what
circumstances this can be done.

To the image of probability measure and mathematical expectation (or
Lebesgue integral) we introduced (using an axiom of one of the types of fuzzy

measures) the so-called optimal measure in the set [0, 1]F and a non-linear
functional referred to as optimal average or integral. Among others we ob-
tained the corresponding Fubini as well as Radon-Nikodym theorems. For
more about these notions and the derived results see [1, 2, 3, 4].

Alongside with the idea of [8], the object of our present communication,
which is a part of the first author’s PhD thesis [5], is to propose by means of
optimal measure theory an alternative way which consists of the determination
of optimal measure from the data. We also show that in our framework this
determination can always be done. A MAPLE code program can be found at
the end of this paper.

In the sequel the symbols ∨ and
∨

will stand for the maximum operators,

and
∧

for the minimum operator.

Here below we shall list some basic definitions and results.

Definition 1.1 (cf. [1]). A set function p : F → [0, 1] will be called optimal
measure if it satisfies the following three axioms:

Axiom 1. The identities p (Ω) = 1 and p (∅) = 0 hold.

Axiom 2. For all measurable sets B and E, we have p (B ∪ E) = p (B)∨p (E).

Axiom 3. Function p is continuous from above, i.e. whenever (En) ⊂ F is a
decreasing sequence, then

p

( ∞⋂
n=1

En

)
= lim

n→∞
p (En) =

∞∧
n=1

p (En) .

A general form of Definition 1.1 is formulated here below.

Definition 1.2 (cf. [2]). By a quasi-optimal measure we mean a set function
q : F → [0, ∞] which satisfies Axioms 1–3, with the hypothesis q (Ω) = 1 in
Axiom 1 replaced by the hypothesis 0 < q (Ω) < ∞.

A typical example of quasi-optimal measure is provided in Proposition 2.1
of [2].

Definition 1.3 (cf. [2]). By a p-atom we mean a measurable set H, p (H) > 0
such that whenever B ∈ F and B ⊂ H, then p (B) = p (H) or p (B) = 0.

Definition 1.4 (cf. [2]). A p-atom H is decomposable if there exists a subatom
B ⊂ H such that p (B) = p (H) = p (H \B). If no such subatom exists, we
shall say that H is indecomposable.
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Theorem 1.1 (The Structure Theorem). Let p be an optimal measure de-
fined on the measurable space (Ω, F). Then there exists a collection H (p) =
{Hn : n ∈ J} of disjoint indecomposable p-atoms, where J is some countable
(i.e. finite or countably infinite) index set, such that for every measurable set
B ∈ F with p (B) > 0 we have

(1) p (B) =
∨
n∈J

p (B ∩Hn) .

Moreover, if the index set J is countably infinite, then the only limit point of
the set {p (Hn) : n ∈ J} is 0.

Next, we shall recall the definition of the optimal average or integral as
follows.

Let

s =
n∑

i=1

biχ (Bi)

be an arbitrary nonnegative measurable simple function, where

{Bi : i = 1, . . . , n} ⊂ F
is a partition of Ω.

Definition 1.5 (cf. [1]). The quantity\
Ω

sdp :=
n∨

i=1

bip (Bi)

will be called optimal average of s.

We proved ([1], Theorem 1.0) that the optimal average of any nonnegative
measurable simple function does not depend on its decomposition. Due to
Proposition 2.0 in [1] we were able to extend Definition 1.5 to arbitrary random
variables.

Definition 1.6. The optimal average of a measurable function f is defined

by A|f | :=
\

Ω
|f | dp = sup

\
Ω

sdp, where the supremum is taken over all

measurable simple functions s ≥ 0 for which s ≤ |f |.
The following remark is readily obtained.

Remark 1.1 (cf. [2]). If a function f : Ω → R is measurable, then it is constant
almost everywhere on every indecomposable atom.

Proposition 1.1 (cf. [2], Proposition 2.6). Let p ∈ P and f be any measurable
function. Then \

Ω

|f | dp = sup




\
Hn

|f | dp : n ∈ J



 ,
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where H (p) = {Hn : n ∈ J} is a p-generating countable system.
Moreover, if A |f | < ∞, then\

Ω

|f | dp = sup {cn · p (Hn) : n ∈ J} ,

where cn = f (ω) for almost all ω ∈ Hn, n ∈ J .

2. Algorithmic determination of optimal measure from data

2.1. Some preliminary. In fuzzy sets theory the crux was how to determine
the values of the fuzzy measure in a given real problem. To achieve that goal
the Sugeno integral was used together with the so-called genetic algorithm
to solve it (see [8]), say. The Sugeno integral with respect to a given fuzzy
measure µ is regarded as a multi-input single-output system. The input is the
integrand, i.e. the vector (f (ω1) , . . . , f (ωn)), while the output is the value of
its Sugeno integral

E := (S)

∫
fdµ = sup {α ∧ µ (Fα) : α ∈ [0, 1]} ,

where f (with range contained in [0, 1]) is a measurable function defined on a
finite measurable space (Ω,F) and

Fα := {ω ∈ Ω : f (ω) ≥ α} .

By repeatedly observing the system

(f (ω1) , . . . , f (ωn))

results the following

f11 (ω1) f12 (ω2) . . . f1k (ωn) E1

f21 (ω1) f22 (ω2) . . . f2k (ωn) E2
...

...
...

...
fk1 (ω1) fk2 (ω2) . . . fkk (ωn) Ek

and the authors of [8] obtained an approximate fuzzy measure µ with

Ei = (S)

∫
fidµ, (i = 1, . . . , k),

such that the expression

e :=

√√√√1

k

k∑
i=1

(
Ei − (S)

∫
fidµ

)2

is minimized. For more about the genetic algorithm see [6, 7], for example.
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2.2. An analogous approach. An analogous crucial question also arises to
know how to determine the range of optimal measure from the data. We shall
first formulate some useful problems.

Problem 1. Let (Ω, F) be the measurable space with Ω = {1, . . . , n} and
F = 2Ω, i.e., F is the power set of Ω. Write B1 := {1} , . . . , Bn := {n} and let
f be a random variable assuming the theoretical values in [0, ∞). Observe k
times this measurable function with results f1, . . . , fk, i.e.,

B1 B2 . . . Bn

f1(1) f1(2) . . . f1(n) Q1 Q
(r∗)
1

f2(1) f2(2) . . . f2(n) Q2 Q
(r∗)
2

...
...

...
...

...

fk(1) fk(2) . . . fk(n) Qk Q
(r∗)
k

where

Q
(r)
i :=

1

n

n∑
j=1

f r
ij

respectively

Q
(r∗)
i :=

1

n

n∑
j=1

∣∣∣fij −Q
(1)
i

∣∣∣
r

with fij := fi(j) being the observed value of f in the ith trial on event Bj, (j ∈
{1, . . . , n} , i ∈ {1, . . . , k} and r ≥ 1). The question is to know which one of

these sample rth moments Q
(r)
i (resp. rth central moments Q

(r∗)
i ) can ”best”

approximate the theoretical rth moment (resp. rth central moment) of the
random variable f .

To solve Problem 1 we propose to look for an approximation of the theoret-
ical optimal measure p for which\

Ω

f r
i dp ≈ Q

(r)
i ,

respectively \
Ω

∣∣∣fi −Q
(1)
i

∣∣∣
r

dp ≈ Q
(r∗)
i (i = 1, . . . , k),

such that the expression

err1 :=

√√√√
k∑

i=1

ε2
i =

√√√√√
k∑

i=1


Q

(r)
i −

\
Ω

f r
i dp




2



104 N. K. AGBEKO AND A. HÁZY

respectively,

err2 :=

√√√√
k∑

i=1

ε2
i =

√√√√√
k∑

i=1


Q

(r∗)
i −

\
Ω

∣∣∣fi −Q
(1)
i

∣∣∣
r

dp




2

is minimized. Write p0 for the optimal measure p for which the least square is
minimal. Now, it is not difficult to see that

k∨
i=1

∣∣∣∣∣∣
Q

(r)
i −

\
Ω

f r
i dp0

∣∣∣∣∣∣
< err1.

Let i0 be the index where the maximum is attained, i.e.,∣∣∣∣∣∣
Q

(r)
i0
−
\

Ω

f r
i0
dp0

∣∣∣∣∣∣
=

k∨
i=1

∣∣∣∣∣∣
Q

(r)
i −

\
Ω

f r
i dp0

∣∣∣∣∣∣
.

Then we can conclude that with respect to the optimal measure p0 the i0th
sample provides us with the best possible sample rth moments. Similar con-
clusion can be drawn for the theoretical rth central moment.

As we know statistical spaces are not restricted in general to the real line nor
to the real vector spaces. For this reason we need to formulate the following
problem. We shall then indicate how to reduce Problem 2 to Problem 1.

Problem 2. Let (X,S) be a measurable space with S being an arbitrary
σ-algebra. Fix a measurable partition D1, . . . , Dn of X and consider a ran-
dom variable h : X → [0,∞), assuming theoretical values. Observe k times
this measurable function with the following results:

D1 D2 . . . Dn

h1(1) h1(2) . . . h1(n) Q
(r)
1 Q

(r∗)
1

h2(1) h2(2) . . . h2(n) Q
(r)
2 Q

(r∗)
2

...
...

...
...

...

hk(1) hk(2) . . . hk(n) Q
(r)
k Q

(r∗)
k

where

Q
(r)
i :=

1

n

n∑
j=1

hr
ij

respectively

Q
(r∗)
i :=

1

n

n∑
j=1

∣∣∣hij −Q
(1)
i

∣∣∣
r

with hij := hi(j) being the observed value of h in the ith trial on event Dj

where j ∈ {1, . . . , n} , i ∈ {1, . . . , k} and r ≥ 1. The question is to know

which one of these sample rth moments Q
(r)
i (resp. rth central moments Q

(r∗)
i )
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can ”best” approximate the theoretical rth moment (resp. rth central moment)
of the random variable h.

To solve Problem 2, first write

S0 := σ (D1, . . . , Dn) .

We note that S0 is a finite σ-algebra and the random variable h is also
S0-measurable. Clearly, S0 and 2Ω are equinumerous, where Ω = {1, . . . , n}.
Then Problem 2 can be reduced to Problem 1 if we define fij := hij where
i = 1, . . . , k and j = 1, . . . , n.

2.3. Why do the above solutions always exist? In the similar papers
where different types of set functions µ ∈ [0, 1]F were estimated from data no
guarantees have been shown that the least square minimization can always be
done. Hereafter we shall show that in the case of optimal measure theory the
least square minimization can always be used to provide estimated optimal
measures from data.

Theorem 2.1. Let 0 < s = b1χ (B1) + b2χ (B2) + · · · + bnχ (Bn) be any
measurable simple function defined on (Ω, F), where B1, . . . , Bn is a partition
of Ω. Then for all numbers ε ∈ (0, 1) and c ∈ (0, ∞) there exists a quasi-
optimal measure q such that

∣∣∣∣∣∣
c−

\
Ω

sdq

∣∣∣∣∣∣
< ε.

Proof. Suppose in the contrary that there are some numbers ε0 ∈ (0, 1) , c0 ∈
(0, ∞) and for every quasi-optimal measure q,

∣∣∣∣∣∣
c0 −

\
Ω

sdq

∣∣∣∣∣∣
> ε0.

Let {n1, . . . , nn} be a permutation of {1, . . . , n} which arranges decreasingly
the numbers b1, . . . , bn, that is bnn > . . . > bn2 > bn1 . Clearly, to the value bnj

corresponds the measurable set Bnj
, j ∈ {1, . . . , n}. On the other hand it is

also trivial that

s = b1χ (B1) + · · ·+ bnχ (Bn) = bn1χ (Bn1) + . . . + bnnχ (Bnn) .

Now, fix ωj ∈ Bnj
, j ∈ {1, . . . , n} and define the function q0 : F → [0, ∞) , by

q0 (E) = max

{
c0

bnj

: ωj ∈ E

}
.

Obviously, q0 is a quasi-optimal measure. Let

H (q0) =
{
Hnj

: j ∈ {1, . . . , n}}
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be a generating system of q0. We then trivially have that

q0

(
Hnj

)
= q0

(
Bnj

)
=

c0

bnj

, j ∈ {1, . . . , n} .

Hence

ε0 <

∣∣∣∣∣∣
c0 −

\
Ω

sdq

∣∣∣∣∣∣
=

∣∣∣∣∣c0 −
n∨

j=1

bnj
q0

(
Hnj

)
∣∣∣∣∣ = 0,

which, however, contradicts the choice of ε0. This concludes the proof. ¤

3. An algorithm to solve the first problem

The following algorithm provides a solution for the first problem in the case
r = 1. The general form can be obtained by making little changes in both the
algorithm and the Maple code program.

The Inputs: n positive integer
Ω = {1, . . . , n}
k × n matrix F = [f(i, j)]n, k

i, j=1

n-dimensional vector Q
error bound ε
Bj = {j} , j = 1 . . . n
X = the power set of Ω.
Generate the set σ of all permutations of {1, . . . , n}.

Step 1.
Generate a decreasing sequence
α(j) ∈ (0, 1], with α(1) = 1.

Step 2.
For any permutation {n1, . . . , nn} ∈ σ
Put p (Bj) = α(nj), for j = 1, . . . , n
Compute the optimal average:

A(i) = max{f(i, j) ∗ p (Bj) : j = 1, . . . , n} for i = 1, . . . , k

Compute the corresponding error: err =

√(∑n
j=1 (Q(i)−A(i))

)2

Step 3.
If err < ε for some permutation then
Find the index i0 such that |Q(i0)−A(i0)| = max{|Q(i)−A(i)| : i = 1, . . . , k}
Determine p (B) = max {α(nj) : j ∈ B} for each B ∈ X
Else GOTO Step 1

The outputs:
1.) Best sample: f (i0, 1) , . . . , f (i0, n)
2.) The approximated optimal
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measure:
2Ω p(B)
{} 0
B1 p (B1)
...

...
Bi p (Bi)
...

...

4. A Maple codes solution of Problem 1

> with(combinat) :

> with(stats) :

> with(V ectorCalculus) :

> st := time() :

> bestsample := proc(k,n, epsz)
global Omega,A, B,X, S, F, alpha,Q, err, p, measure, i0, setmeasure;
local i, j, vel, per, step, err1;

Omega := {};
setmeasure := array(1..2∧n, 1..2);
for i from 1 tondo

Omega := Omega union {i};
od;

S := subsets(Omega) :
i := 1;

whilenotS[finished]do

X[i] := S [nextvalue]();
i := i + 1

od;

F := array(1..k, 1..n);
for i from 1 to k do

for j from 1 tondo

F [i, j] := abs(stats[random, normald](1));
od;

od;

print(‘Matrix F : ‘); print(F );
for j from 1 tondo

B[j] := j

od;
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Q := array[1..k];
for i from 1 to k do

Q[i] := 0;
for j from 1 tondo

Q[i] := Q[i] + F [i, j]/n;
od;

od;

print(‘The mean values of the rows of matrix F, i.e. vector Q : ‘); print(Q);
err1 := 10000000;
while epsz < err1do

alpha := [1, op(sort(RandomTools[Generate](list(float(range = 0..1), n− 1))

, ‘ > ‘))];
step := 1;
err1 := 10000000;

print(‘The elements of vector alpha‘); print(alpha);

while (epsz < err1and step <= n!) do

per := permute(n)[step];
for j from 1 tondo

p[j] := alpha[per[j]]
od;
for i from 1 to k do

for j from 1 tondo

if j = 1 thenA[i] := F [i, j] ∗ p[j];

else if A[i] < F [i, j] ∗ p[j] thenA[i] := F [i, j] ∗ p[j]; fi;
fi;

od;
od;
err := 0;
for i from 1 to k do

err := (Q[i]−A[i])∧2;
od;

err := sqrt(err);
step := step + 1;
if err < err1 then err1 := err fi;

od;

print(‘The error obtained from this alpha : ‘); print(err1);
od;
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print(‘The permutation which provides the optimal measure : ‘); print(per);
i0 := 1;
for i from 2 to k do

if abs(Q[i]−A[i]) > abs(Q[i0]−A[i0]) then i0 := i; fi;
od;

print(‘The value of i0 : ‘); print(i0);

for i from 1 to 2∧ndo
measure := 0;
for j from 1 tondo

if in(j, X[i]) thenmeasure := max (measure, p[j])fi;
od;

setmeasure[i, 1] := X[i];

setmeasure[i, 2] := measure;
od;

print(‘The measure of the sets : ‘); print(setmeasure);

print(‘The run time : ‘); time()− st;
end proc;

5. Example

‘Matrix F‘




0.4194899055 0.6079846246 0.9765680503 0.09453300345

1.231491638 0.3284744201 1.255955432 1.705108694

1.128982417 1.052401359 0.008623922093 0.1198713918




‘The mean values of the rows of matrix F, i.e. vector Q:‘

table ([1 = 0.5246438961, 2 = 1.130257546, 3 = 0.5774697724])

‘The elements of vector alpha:‘

[1, 0.5248995821, 0.0000000009879313609, 0.0000000002610718605]

‘The error obtained from this alpha:‘

0.01513262650

‘The permutation which provides the optimal measure:‘

[2, 3, 1, 4]
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‘The value of i 0:‘

1

‘The measure of the sets:‘




{} 0

{1} 0.5248995821

{2} 0.0000000009879313609

{3} 1

{4} 0.0000000002610718605

{1, 2} 0.5248995821

{1, 3} 1

{1, 4} 0.5248995821

{2, 3} 1

{2, 4} 0.0000000009879313609

{3, 4} 1

{1, 2, 3} 1

{1, 2, 4} 0.5248995821

{1, 3, 4} 1

{2, 3, 4} 1

{1, 2, 3, 4} 1




‘The run time:‘

2.687
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