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26 (2010), 149–163
www.emis.de/journals

ISSN 1786-0091

TWO-DIMENSIONAL COMPLEX BERWALD SPACES WITH

(α, β)-METRICS

NICOLETA ALDEA

Abstract. In this paper we study the two-dimensional complex Finsler
spaces with (α, β)-metrics by using the complex Berwald frame. A special
approach is dedicated to the complex Berwald spaces with (α, β) - metrics.
We establish the necessary and sufficient condition so that the complex
Randers and Kropina spaces should be complex Berwald spaces, and we
will illustrate the existence of these spaces in some examples.

1. Introduction

In the previous papers [16], [4] we constructed the complex Berwald frame in
which the orthogonality is, with respect to the Hermitian structure, defined by
the fundamental metric tensor of a 2-dimensional complex Finsler space on the
holomorphic tangent manifold T ′M . The complex Berwald frame is not only a
geometrical machinery, it also satisfies important properties which contain three
main real scalars which live on T ′M : one vertical curvature scalar I and two
horizontal curvature scalars K and W. Such that, the study of the horizontal
and vertical holomorphic sectional curvatures was reduced to the significance of
these scalars. A first classification of the complex Finsler manifold of dimension
two came from the exploration of the vv̄−, hv̄− and vh̄− Riemann type tensors,
(Theorem 2.1). An immediate interest for the 2-dimensional complex Landsberg
and Berwald spaces was induced by the properties of the hv̄− and vh̄− Riemann
type tensors. We found that the complex Landsberg and Berwald spaces of
dimension two coincide, but also other interesting properties of these spaces,
(Theorem 2.2).
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The main purpose of this paper is to characterize the complex Berwald spaces
with (α, β)-metrics of dimension two. We apply some of the results obtained in
[4] to the 2-dimensional complex Finsler spaces with (α, β)-metrics.

Subsequently, we make an overview of the contents of the paper.
In §2 we recall some preliminary properties of the 2-dimensional complex

Finsler spaces in general and complex Landsberg and Berwald spaces in par-
ticular. In §3, we prepare the tools for our aforementioned study. After we
review the construction of the complex (α, β) - metrics, we find the expression
of them in terms of the complex Berwald frame. The complex Randers spaces
and Kropina spaces are of particular interests. We establish the necessary and
sufficient condition for these spaces to be complex Berwald spaces, (Theorems
3.1 and 3.2). We also show that I = − 1

L
and so, the vertical holomorphic

sectional curvature in direction m is negatively, (Corollary 3.2 and Proposition
3.10). All these results are in §3.1 and §3.2. Finally, in §3.3 some examples of
complex Berwald spaces with (α, β)-metrics are discussed.

2. Preliminaries

For the beginning we will make a survey of two - dimensional complex Finsler
geometry and we will set the basic notions and terminology. For more, see
[1, 4, 15, 16].

Let M be a 2-dimensional complex manifold, (zk)k=1,2 are the complex coor-
dinates in a local chart. Everywhere in this paper the indices i, j, k, . . . run over
{1, 2}.

Let M be a complex manifold, dimC M = n, with (zk)k=1,n complex co-
ordinates in a local chart. The complexified of the real tangent bundle TCM

splits into the sum of holomorphic tangent bundle T ′M and its conjugate T ′′M .
The bundle T ′M, is in its turn, a complex manifold, the local coordinates in
a chart will be denoted by u = (zk, ηk) and these are changed by the rules:

z′k = z′k (z) , η′k = ∂z′k

∂zj ηj . The complexified tangent bundle of T ′M is decom-
posed as TC(T ′M) = T ′(T ′M) ⊕ T ′′(T ′M). A natural local frame for T ′

u(T ′M)
is { ∂

∂zk , ∂
∂ηk }, which changes according to the rules obtained with Jacobi matrix

of above transformations. Note that the change rule of ∂
∂zk contains the second

order partial derivatives.
Let V (T ′M) = kerπ∗ ⊂ T ′(T ′M) be the vertical bundle, spanned locally by

{ ∂
∂ηk }. A complex nonlinear connection, briefly (c.n.c.), determines a supple-

mentary complex subbundle to V (T ′M) in T ′(T ′M), i.e. T ′(T ′M) = H(T ′M)⊕
V (T ′M). It determines an adapted frame { δ

δzk = ∂
∂zk −N

j
k

∂
∂ηj }, where N

j
k(z, η)

are the coefficients of the (c.n.c.), ([1], [2], [15]).
A continuous function F : T ′M → R+ is called complex Finsler metric on M

if it fulfills the conditions:

i) L := F 2 is smooth on T̃ ′M := T ′M\{0};
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ii) F (z, η) ≥ 0, the equality holds if and only if η = 0;
iii) F (z, λη) = |λ|F (z, η) for ∀λ ∈ C;

iv) the Hermitian matrix
(

gij̄(z, η)
)

, with gij̄ = ∂2L
∂ηi∂η̄j , called the funda-

mental metric tensor, is positive definite.

The pair (M, F ) is called a complex Finsler space. The iv)-th assumption in-
volves the strong pseudoconvexity of the Finsler metric F on the complex in-
dicatrix IF,z = {η ∈ T ′

zM | F (z, η) < 1}. We notice that if gij = gij(z)
the complex Finsler metric comes from Hermitian metric on M, so-called purely
Hermitian metrics in [15].

Let us consider the Sasaki type lift of the metric tensor gij̄ ,

(2.1) G = gijdzi ⊗ dzj + gijδη
i ⊗ δηj .

A Hermitian connection of (1, 0)− type has a special meaning, in a complex
Finsler space. Its name is the Chern-Finsler connection in [1]. In the notations
from [15] it is DΓN = (Li

jk, 0, Ci
jk, 0), where

CF

N i
j= gm̄i ∂glm̄

∂zj
ηl, Li

jk = gm̄i δgjm̄

δzk
=

∂N i
k

∂ηj
, Ci

jk = gm̄i ∂gjm̄

∂ηk
.

We denote by p, | , p̄ and |̄, the h−, v−, h−, v− covariant derivatives with respect
to the Chern-Finsler connection (in brief C −F connection), respectively, ([15]).
The nonzero curvatures coefficients of the C − F connection are denoted by

Ri
jhk

= −δhLi
jk − δh(N l

k)Ci
jl; Ξi

jhk
= −δhCi

jk = Ξi
khj

;

P i

jhk
= −∂̇hLi

jk − ∂̇h(N l
k)Ci

jl; Si

jhk
= −∂̇hCi

jk = Si

khj
.

(2.2)

Considering the Riemann tensor

R(W, Z, X, Y ) := G(R(X, Y )W, Z),

with
R(W, Z, X, Y ) = R(Z, W, Y, X),

for W, X , Z, Y horizontal or vertical vectors, it results the hh̄−, hv̄−, vh̄−, vv̄−
Riemann type tensors:

Rj̄ih̄k = glj̄R
l
ih̄k

; Pj̄ih̄k = glj̄P
l
ih̄k

; Ξj̄ih̄k = glj̄Ξ
l
ih̄k

; Sj̄ih̄k = glj̄S
l
ih̄k

,

which have properties

Rijkh = Rjihk; Ξijkh = Pjihk; Pijkh = Ξjihk; Sijkh = Sjihk = Shijk,

where Rijkh := Rı̄jk̄h, etc., (see [15], p. 77). Further on, everywhere the index

0 means the contraction by η, for example Ri

0hk
:= Ri

jhk
ηj .

By analogy with the real case, we defined in [4] the following: (M, F ) is
called complex Landsberg space iff Cjr̄k|0̄ = 0 and it is called complex Berwald
space iff Cjr̄k|h̄ = 0. Note that, by Proposition 2.1 iii) from [4], (M, F ) is a

complex Landsberg space iff Ξr̄j0k = 0 and (M, F ) is a complex Berwald space
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iff Ξrjh̄k = 0. Moreover, any 2-dimensional complex Berwald space is Landsberg.
Also, using the similar arguments like those used in [9], p. 65, we can prove that
(M, F ) is a complex Berwald space if and only if the coefficients Li

jk of the

complex Berwald connection (see [15]) depend only on zk.

For the vertical section L = ηk∂̇k, called the Liouville complex field (or the
vertical radial vector field in [1]), we consider its horizontal lift χ := ηkδk.
According to [1], p. 108, [15], p. 81, the horizontal holomorphic curvature of
the complex Finsler space (M, F ) in η direction, is given by

(2.3) KF (z, η) =
2

L2
G(R(χ, χ̄)χ, χ̄).

Next, we recall in brief the construction of the complex Berwald frame {l, m,

l̄, m̄} on VCT ′M . For more details see [16].

In [16] we set l := li∂̇i with its dual form ω = liδη
i, where

(2.4) li =
1

F
ηi and li =

1

F
gij̄ η̄

j = gij̄ l
j̄ .

As the vertical distribution V T ′M is a two-dimensional space, it is decom-
posed into V T ′M = {l}⊕{l}⊥, where {l}⊥ is spanned by the unit vector m ob-
tained by requiring the orthogonality conditions G(l, m̄) = 0 and G(m, m̄) = 1.

Taking mi := gij̄m
j̄ , these lead to the system

l1m
1 + l2m

2 = 0

m1m
1 + m2m

2 = 1

with the solutions m1 =
−l2

∆
and m2 =

l1

∆
, where ∆ = l1m2 − l2m1. A

straightforward computation proves that ∆ = ∆̄ is real and if we replace these
solutions in the second equation of the system, we will get that ∆2 = g =
det(gij̄). Thus, we have m = 1√

g
(−l2

∂
∂η1 + l1

∂
∂η2 ).

We note that lil
i = 1, lim

i = limi = 0, mim
i = 1 and, from the definition

(2.1) of the metric structure G, the (1, 0) vectors are orthogonal to (0, 1) vectors,
thus li l̄

i = 0, etc. With respect to the complex Berwald frame, ∂
∂ηk and gij̄ are

given by ∂
∂ηi = lil + mim and gij̄ = lilj̄ + mimj̄ and, from here we deduce that

(2.5) Ci
jk = gm̄i∂̇kgjm̄ = Alimkmj + Bmimkmj ,

where we set A := mjmklhCh
kj ; B := mhmkmjCh

jk.
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Therefore, the formulas from Proposition 3.2, in [16], become

l(li) =
−1

2F
li; l̄(li) =

1

2F
li; l(mi) =

1

2F
mi; l̄(mi) =

−1

2F
mi;

m(li) = Ami; m̄(li) =
1

F
mi; m(mi) =

1

2
Bmi −

1

F
li

m̄(mi) =
1

2
B̄mi; l(li) =

1

2F
li; l̄(li) = − 1

2F
li;

l(mi) = − 1

2F
mi; l̄(mi) =

1

2F
mi; m(li) =

1

F
mi;

m̄(li) = 0; m(mi) = −1

2
Bmi − Ali; m̄(mi) = − 1

F
li − 1

2
B̄mi.

(2.6)

By using the complex Berwald frame the local coefficients of the vv̄, vh̄, hv̄−
Riemann type tensors can be written as

Sr̄jhk = Imh̄mr̄mjmk, Ξrjhk = −A|h̄lr̄mjmk − B|h̄mr̄mjmk,

Pr̄jhk = −F [Ā|k|j −
1

2F
Ā|klj + (BĀ|k +

A

F
Ā|0mk + BĀ|sm

smk)mj ]mr̄mh̄,

where I := −B|s̄ms̄ − BB̄
2 and it is called in [4] the vertical curvature scalar.

Taking into account (2.3), we defined in [4] the vertical holomorphic sectional
curvature in direction l and m, respectively

(2.7) Kv
F,l(z, η) := 2R(l, l̄, l, l̄) = 0 ; Kv

F,m(z, η) := 2R(m, m̄, m, m̄) = 2I.

Theorem 2.1. [4] Let (M, F ) be a complex Finsler space of dimension two.
Then it is purely Hermitian, or it satisfies that B = 0 and A 6= 0, or B|k = 0
and AB 6= 0.

The above considerations get us the premises for some special characteriza-
tions of the 2- dimensional complex Landsberg spaces.

Theorem 2.2. [4] Let (M, F ) be a complex Finsler space of dimension two. The
following statements are equivalent: i) (M, F ) is a complex Landsberg space; ii)
A|0̄ = B|0̄ = 0; iii) Ā|k = 0; iv) (M, F ) is a complex Berwald space.

An important result can be deduced, namely the class of 2-dimensional com-
plex Landsberg spaces coincides with the Berwald class. Another remark is that
Ā|k = 0 implies B̄|k = 0, but the converse is not true, (see [4]).

3. Complex Finsler spaces with (α, β)-metrics

Now, we consider z ∈ M, η ∈ T ′
zM, η = ηi ∂

∂zi , ã := aij̄(z)dzi ⊗ dz̄j a purely

Hermitian positive metric and b = bi(z)dzi a differential (1, 0)− form. By these
objects we have defined (for more details see [5]) the complex (α, β)− metric F

on T ′M

(3.1) F (z, η) := F (α(z, η), |β(z, η)|),



154 NICOLETA ALDEA

where

α(z, η) :=
√

aij̄(z)ηiη̄j ;

|β(z, η)| =

√

β(z, η)β(z, η) with β(z, η) = bi(z)ηi.

(3.2)

Let us recall the coefficients of the C − F connection corresponding to the
purely Hermitian metric α are

a

Nk
j := am̄k ∂alm̄

∂zj
ηl,

a

Li
jk:= ali(

a

δk ajl),
a

Ci
jk= 0.

Now, we denote by (
a

l ,
a
m,

a

l̄ ,
a
m̄) the complex Berwald frame of the purely Her-

mitian space (M, α). Their local coefficients are

a

li :=
1

α
aij̄ η̄

j ;
a

li:=
1

α
ηi;

a

m1 =
−

a

l2

∆
;

a

m2=

a

l1

∆
;

a
m1= −∆

a

l2;
a
m2= ∆

a

l1

∆2 := det(aij̄)

(3.3)

On the one hand, we can decompose bi into
a

li and
a
mi, this is bi = ε

a

l i +τ
a
mi.

Contracting with ηi it results β = εα. Now, the contraction by
a

mi gives τ =

bi

a

mi. On the other hand,
a
mi bi = aij̄

a

m̄j bi = bj̄

a

m̄j= τ̄ . So that,

||b||2 := bib
i = β

α

a

li bi + τ
a
mi bi = |β|2

α2 + |τ |2. From here immediately results

(3.4) bi =
β

α

a

li +τ
a
mi; bi =

β̄

α

a

li +τ̄
a

mi,

where |τ |2 = α2||b||2−|β|2
α2 .

Using (2.6) it is easy to show that

a

l (α) =
1

2
;

a

l (β) =
β

α
;

a

l (β̄) = 0;
a

l (|β|) =
|β|
2α

;

a

l (τ) = − τ

2α
;

a

l (τ̄ ) =
τ̄

2α
;

a

l (|τ |) = 0;

a
m (α) = 0;

a
m (β) = τ ;

a
m (β̄) = 0;

a
m (|β|) =

β̄τ

2|β| ;

a
m (τ) = 0;

a
m (τ̄ ) = − β̄

α2
;

a
m (|τ |) = − β̄τ

2|τ |α2
.

(3.5)

Let (l, m, l̄, m̄) be the complex Berwald frame of the complex Finsler space
with (α, β)− metric F , (M, F (α(z, η), |β(z, η)|)). The link between these frames

is ∂
∂ηi = lil + mim =

a

li
a

l +
a
mi

a
m.
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Lemma 3.1. Let (M, F (α(z, η), |β(z, η)|)) be a complex Finsler space with (α, β)-

metric of dimension two. Then α|k = 0 if and only if (N i
j−

a

N i
j)

a

li= 0.

Proof. 0 = α|k = δkα =
∂aij̄

∂zk ηiη̄j − αN r
k

a

lr= α(
a

N r
k −N r

k )
a

lr. �

By 0 = F|k = Lα α|k + L|β||β||k and by the expression of |τ | it results the
following

Lemma 3.2. Let (M, F (α(z, η), |β(z, η)|)) be a complex Finsler space with (α, β)-
metric of dimension two. If α|k = 0 then |β||k = 0. Moreover, if ||b||2 is a
constant on M then |τ ||k = 0.

Further on, we focus on the two classes of complex (α, β)− metrics.

3.1. Complex Randers metric F := α+ |β|. For the complex Randers metric
F := α + |β| we have, ([6])

gij̄ =
F

α
aij̄ −

F

2α

a

li
a

l j̄ +
F

2|β|bibj̄ +
1

2
lilj̄ ;

gj̄i =
α

F
aj̄i +

|β|(α||b||2 + |β|)
γ

lilj̄ − α3

Fγ
bib̄j − α

γ
(β̄lib̄j + βbilj̄);

li :=
ηi

F
=

1

F

∂L

∂ηi
=

Lα

F

∂α

∂ηi
+

L|β|
F

∂|β|
∂ηi

=
a

li +
β̄

|β|bi;

li :=
1

F
ηi =

α

F

a

li; g := det(gij̄) =
γF 2

2α3|β|∆
2 ,

(3.6)

where γ := L + α2(||b||2 − 1). One can check that
a

l (F ) = F
2α

,
a

l (γ) = γ
α
,

a
m (F ) = β̄τ

2|β| ,
a
m (γ) = β̄τF

|β| . Next we compute

m1 = −√
gl2 = −

√

2α|β|
γ

∆
a

l2=

√

γ

2α|β|
a
m1;

m2 =
√

gl1 =

√

2α|β|
γ

∆
a

l1=

√

γ

2α|β|
a
m2;

m1 = − l2√
g

=
α

F

√

2α|β|
γ

(
a

m1 − β̄

∆|β|b2)

=
α

F

√

2α|β|
γ

(
a

m1 − β̄

∆|β|
β

α

a

l2 − β̄

∆|β|τ
a
m2) =

α

F

√

2α|β|
γ

(
a

m1 − β̄τ

|β|
a

l1).

By analogy we have,

m2 =
l1√
g

=
α

F

√

2α|β|
γ

(
a

m2 +
β̄

∆|β|b1) = . . . =
α

F

√

2α|β|
γ

(
F

α

a

m2 − β̄B

|β|
a

l2).
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So, we have proved

Proposition 3.1. Let (M, F := α + |β|) be a complex Randers space of dimen-
sion two. The coefficients of the complex Berwald frame (l, m, l̄, m̄) are

li =
F

α

a

li +
β̄τ

|β|
a
mi; li =

α

F

a

li;

mi =

√

γ

2α|β|
a
mi; mi =

√

2α|β|
γ

(
a

mi −αβ̄B

|β|F
a

li).

(3.7)

In the theory of two-dimensional complex Berwald spaces, an important role
is played by the scalars A and B. Therefore, our next goal is to determine the
scalars A and B for a complex Randers space.

Proposition 3.2. Let (M, F := α + |β|) be a complex Randers space of dimen-
sion two. Then

i) l = α
F

a

l ; m =
√

2α|β|
γ

(
a
m − αβ̄τ

|β|F
a

l);

ii) gij̄ = F 2

α2

a

li
a

l j̄ + F
α|β|(βτ̄

a

l i
a
mj̄ +β̄τ

a
mi

a

l j̄) + (|τ |2 + γ
2α|β|)

a
mi

a
mj̄ ;

iii) Cjh̄k :=
∂gjh̄

∂ηk = − β̄2τ2

2|β|3
a
mj

a
mk

a

l h̄ + β̄τ(4|β|2−α2|τ |2)
4α|β|3

a
mj

a
mk

a
mh̄.

Proof. By Proposition 3.1 and (3.7) it results i).
ii) Using (3.6) and (3.7) we compute

gij̄ =
F

α
aij̄ −

F

2α

a

l i

a

l j̄ +
F

2|β|bibj̄ +
1

2
lilj̄

=
F

α

a

li
a

lj̄ +
F

α

a
mi

a
mj̄ − F

2α

a

li
a

l j̄ +
F

2|β|(
β

α

a

li +τ
a
mi)(

β̄

α

a

lj̄ +τ̄
a

mj̄)

+
1

2
(
F

α

a

li +
β̄τ

|β|
a
mi)(

F

α

a

lj̄ +
βτ̄

|β|
a

mj̄)

= (
F

α
− F

2α
+

F |β|
2α2

+
F 2

2α2
)

a

li
a

lj̄ +
F

α|β| (βτ̄
a

li
a
mj̄ +β̄τ

a
mi

a

l j̄)

+ (
F

α
+

F

2|β| |τ |
2 +

|τ |2
2

)
a
mi

a
mj̄

=
F 2

α2

a

li
a

lj̄ +
F

α|β| (βτ̄
a

li
a
mj̄ +β̄τ

a
mi

a

l j̄) + (|τ |2 +
γ

2α|β| )
a
mi

a
mj̄ .

We can write Cjh̄k =
∂gjh̄

∂ηk = (
a

lk
a

l +
a
mk

a
m)gjh̄.

Taking into account (2.6) and (3.5) we obtain
a

l gjh̄ = 0 and

a
m gjh̄ = − β̄2τ2

2|β|3
a
mj

a

l h̄ +
β̄τ(4|β|2 − α2|τ |2)

4α|β|3
a
mj

a
mh̄,

which lead to iii). �
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Using now (3.7) and Proposition 3.2 iii) we obtain

(3.8) Cjh̄k = −α2β̄2τ2

γF |β|2 mjmklh̄ +

√

2α|β|
γ

β̄τ

2|β|2 (
|β| − α

F
+

2|β|F
γ

)mjmkmh̄.

Moreover, we find

Proposition 3.3. Let (M, F := α + |β|) be a complex Randers space of dimen-
sion two. Then

(3.9) A = −α2β̄2τ2

γF |β|2 ; B =

√

2α|β|
γ

β̄τ

2|β|2 (
|β| − α

F
+

2|β|F
γ

).

Further on, our aim is to disclose the conditions in which a complex Randers
space of dimension two is a complex Berwald space. As it has already been
obtained in Theorem 2.1, we can talk about only three classes of 2 - dimensional
complex Finsler spaces: i) the purely Hermitian class (A = 0), ii) the class with
B = 0 and A 6= 0 and iii) the class with B|k = 0 and AB 6= 0. In order to
solve the stated problem we use (3.9). On the one hand, we note that A = 0 iff
τ = 0. Indeed, τ = 0 is equivalent to α2||b||2 = |β|2 and so this last condition
is equivalent to F = α(1 + ||b||), namely it is purely Hermitian. On the other

hand, if B = 0 and A 6= 0 imply |β|−α

F
+ 2|β|F

γ
= 0. Taking ||b||2 = 1 into

|β|−α

F
+ 2|β|F

γ
= 0, it results α = 3|β|. This means that the metric is purely

Hermitian, too. So, it is interesting for us to discuss about the class of two-
dimensional complex Randers spaces with B|k = 0 and AB 6= 0.

Firstly, we compute

B|k = [
1

2|β|2

√

2α|β|
γ

(
|β| − α

F
+

2|β|F
γ

)]|kβ̄τ

+
1

2|β|2

√

2α|β|
γ

(
|β| − α

F
+

2|β|F
γ

)(β̄|kτ + β̄τ|k).

(3.10)

In addition, if ||b||2 is a constant on M and using that α|k = −|β||k then γ|k =

2αα|k(||b||2 − 1). Thus the term [ 1
2|β|2

√

2α|β|
γ

( |β|−α

F
+ 2|β|F

γ
)]|k is proportional

to α|k.

Proposition 3.4. Let (M, F := α + |β|) be a complex Randers space of di-
mension two with AB 6= 0. If α|k = 0 and ||b||2 is a constant on M then
(M, F := α + |β|) is a complex Berwald space.

Proof. Because AB 6= 0, α|k = 0 and ||b||2 is a constant on M , by (3.10) it

results that β̄|kτ + β̄τ|k = 0. On the other hand, by Lemma 3.1, β|k̄β̄ +ββ̄|k̄ = 0

and τ|k̄ τ̄ + τ τ̄|k̄ = 0. Multiplying the first with τ
β

and the second with β̄
τ̄

and,
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by adding them we obtain

β|k̄
τβ̄

β
+ τ̄|k̄

τβ̄

τ̄
+ β̄|k̄τ + β̄τ|k̄ = 0.

But, β|k̄
τ β̄
β

+ τ̄|k̄
τ β̄
τ̄

= 0 because β|k̄ τ̄ = −βτ̄|k̄. Hence β̄|k̄τ + β̄τ|k̄ = 0.

Now, in our assumptions, by (3.9) A|k̄ = − 2α2β̄τ
γF |β|2 (β̄|k̄τ + β̄τ|k̄) = 0, i.e. the

space is Berwald. �

Proposition 3.5. Let (M, F := α + |β|) be a complex Randers space of dimen-
sion two with AB 6= 0. If β̄|kτ + β̄τ|k = 0 and ||b||2 is a constant on M then
(M, F := α + |β|) is a complex Berwald space.

Proof. Because AB 6= 0, β̄|kτ + β̄τ|k = 0 and ||b||2 is a constant on M , by (3.10)
it results that α|k = 0. Applying Proposition 3.4, the claim is proved. �

Corollary 3.1. Let (M, F := α+ |β|) be a complex Randers space of dimension

two with AB 6= 0. If N i
j =

a

N i
j and ||b||2 is a constant on M then (M, F :=

α + |β|) is a complex Berwald space.

Proof. Immediately results by Lemma 3.1 and Proposition 3.4. �

Theorem 3.1. Let (M, F := α + |β|) be a complex Randers space of dimension
two with AB 6= 0 and ||b||2 = 1. Then (M, F := α + |β|) is a complex Berwald
space if and only if α|k = 0.

Proof. We suppose that (M, F := α + |β|) is Berwald, i.e. A|k̄ = B|k̄ = 0.

By (3.9) these conditions lead to the system α|β|(β̄τ)|k̄ + F β̄τα|k̄ = 0 and

2α|β|(3|β|−α)(β̄τ)|k̄−3F (α−|β|)β̄τα|k̄ = 0 with the solution α|k̄ = (β̄τ)|k̄ = 0.
So, α|k = 0. The converse results from Proposition 3.4. �

Further on, we aim to find other features of the complex Randers spaces.
Namely, we determine the vertical curvature scalar I of a complex Randers
space.

Proposition 3.6. Let (M, F := α + |β|) be a complex Randers space of dimen-
sion two. Then

(3.11) I =
α|β|(1 − ||b||2)

γ

(

1

2L
− 4|β|F

γ2

)

− 1

γ
.

Proof. it results with I = −B|s̄ms̄ − BB̄
2 = m̄(B) − BB̄

2 and the relations (3.5),
(3.9) and Proposition 3.2 i). �

For ||b||2 = 1 in (3.11) we obtain

Corollary 3.2. Let (M, F := α + |β|) be a complex Randers space of dimen-
sion two with ||b||2 = 1. Then I = − 1

L
and the vertical holomorphic sectional

curvature in direction m is Kv
F,m(z, η) = − 2

L
< 0.
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3.2. Complex Kropina metric F := α2

|β| , |β| 6= 0. A similar approach, we

make to the complex Kropina metric F := α2

|β| , |β| 6= 0. From [3] we recall that

gij̄ = 2q2aij̄ − 2q2
a

li
a

l j̄ +lilj̄, where q =
α

|β| ;

gj̄i =
1

2q2
aj̄i − 2 − q2||b||2

2
lilj̄ +

1

2|β| (βbilj̄ + β̄lib̄j);

g := det(gij̄) = 2q4∆2.

(3.12)

Proposition 3.7. Let (M, F := α2

|β|) be a complex Kropina space of dimension

two. Then

i)
a

l (F ) = q
2 ;

a

l (q) = 0;
a
m (F ) = − q2β̄τ

2|β| ;
a
m (q) = − qβ̄τ

2|β|2 ;

ii) li = q
a

li − q2β̄τ
|β|

a
mi; li = 1

q

a

li; mi = q
√

2
a
mi; mi = 1

q
√

2
(

a

mi + qβ̄τ
|β|

a

li);

iii) l = 1
q

a

l ; m = 1
q
√

2
(

a
m + qβ̄τ

|β|
a

l);

iv) gij̄ = q2
a

l i

a

l j̄ − q3

|β|(βτ̄
a

li
a
mj̄ +β̄τ

a
mi

a

l j̄) + q2(q2|τ |2 + 2)
a
mi

a
mj̄.

v) Cjh̄k = 2q3β̄2τ2

|β|3
a
mj

a
mk

a

l h̄ − 2β̄τq2(q2||b||2+1)
|β|2

a
mj

a
mk

a
mh̄.

Proof. i) follows by (3.5).

ii) li := ηi

F
= 1

F
∂L
∂ηi = Lα

F
∂α
∂ηi +

L|β|

F

∂|β|
∂ηi = 2q

a

l i −q2 β̄
|β|bi = q

a

li − q2β̄τ
|β|

a
mi by

(3.4). li := 1
F

ηi = 1
q

a

li.

m1 := − l2√
g

= − 1

q2∆
√

2
(q

a

l2 −q2β̄τ

|β|
a
m2) =

1

q
√

2
(

a

m1 +
qβ̄τ

|β|
a

l1).

Analogue, for m2.
iii) is a consequence of ii). (3.12) with ii) gives iv).

Again, we write Cjh̄k =
∂gjh̄

∂ηk = (
a

lk
a

l +
a
mk

a
m)gjh̄. Using (2.6), (3.5) and i) we

obtain
a

l gjh̄ = 0 and

a
m gjh̄ =

2q3β̄2τ2

|β|3
a
mj

a

l h̄ −2β̄τq2(q2||b||2 + 1)

|β|2
a
mj

a
mh̄,

which lead to v). �

Now, taking into account i) and v) of above Proposition we obtain

(3.13) Cjh̄k =
β̄2τ2

|β|3 mjmklh̄ − β̄τ
√

2

|β|2q mjmkmh̄.

So, we have proved
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Proposition 3.8. Let (M, F := α2

|β|) be a complex Kropina space of dimension

two. Then

(3.14) A =
β̄2τ2

|β|3 ; B = − β̄τ
√

2

|β|2q .

Having the expressions of the scalars A and B, we can deduce the conditions
in which a 2-dimensional complex Kropina space is a complex Berwald space.
Taking into account Theorem 2.1 and (3.14), we obtain only two cases:

1. A = 0 iff τ = 0. Indeed, τ = 0 is equivalent to α2||b||2 = |β|2. This leads
to F = α

||b|| and so, the metric is purely Hermitian.

2. B|k = 0 and AB 6= 0. This case is developed follow up.

Firstly, F|k = 0 implies |β||k = 2
q
α|k. Secondly, a direct computation gives

(3.15) B|k =
3
√

2

q2|β|3 β̄τα|k −
√

2

|β|2q (β̄|kτ + β̄τ|k).

So that, B|k = 0 is equivalent to β̄|kτ + β̄τ|k = 3β̄τ
α

α|k. Moreover, α|k = 0 iff

β̄|kτ + β̄τ|k = 0.

Proposition 3.9. Let (M, F := α2

|β|) be a complex Kropina space of dimension

two with AB 6= 0. If α|k = 0 then (M, F := α2

|β|) is a complex Berwald space.

Proof. By means of Lemma 3.1, β|k̄β̄+ββ̄|k̄ = 0 and τ|k̄ τ̄ +τ τ̄|k̄ = 0. Multiplying

the first with τ
β

and the second with β̄
τ̄

and, by adding them, we obtain β|k̄
τ β̄
β

+

τ̄|k̄
τ β̄
τ̄

+ β̄|k̄τ + β̄τ|k̄ = 0. But, β|k̄
τ β̄
β

+ τ̄|k̄
τ β̄
τ̄

= 0 because β|k̄τ̄ = −βτ̄|k̄. Hence

β̄|k̄τ + β̄τ|k̄ = 0.

With our hypothesis and by (3.14), A|k̄ = 2β̄τ
|β|3 (β̄|k̄τ + β̄τ|k̄) = 0. So, the space

is Berwald. �

Corollary 3.3. Let (M, F := α2

|β|) be a complex Kropina space of dimension two

with AB 6= 0. If N i
j =

a

N i
jthen (M, F := α2

|β|) is a complex Berwald space.

Proof. It results from Lemma 3.1 and Proposition 3.9. �

Theorem 3.2. Let (M, F := α2

|β|) be a complex Kropina space of dimension two

with AB 6= 0 and ||b||2 a nonzero constant on M . (M, F := α2

|β|) is a complex

Berwald space if and only if α|k = 0.

Proof. If (M, F := α2

|β|) is Berwald then A|k̄ = 0. But, by (3.14), A|k̄ =
2β̄τ
|β|3 (β̄τ)|k̄ − 6β̄2τ2

|β|4q
α|k. So that, (β̄τ)|k̄ = 3β̄τ

α
α|k̄. On the one hand, B̄|k̄ = 0

means that (βτ̄ )|k̄ = 3βτ̄
α

α|k̄. From the last two equations we obtain

βτ̄ (β̄τ)|k̄ + β̄τ(βτ̄ )|k̄ =
6

α
|β|2|τ |2α|k̄,
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equivalent |β|2|k̄|τ |2 + |β|2|τ |2|k̄ = 6
α
|β|2|τ |2α|k̄.

On the other hand, |τ |2 = − 2α|k̄

q3|β| . Therefore, 2|β|||b||2
q

α|k̄ = 0, which leads

to α|k̄ = 0. By conjugation, α|k = 0. The converse results from Proposition
3.9. �

Proposition 3.10. Let (M, F := α2

|β|) be a complex Kropina space of dimen-

sion two. The vertical curvature scalar I and the vertical holomorphic sectional
curvature in direction m are

I = − 1

L
; Kv

F,m(z, η) = − 2

L
< 0.

Proof. I : = −B|s̄ms̄ − BB̄
2 = m̄(B) − BB̄

2 = 1
q
√

2
[

a
m̄ (B) + qβτ̄

|β|

a

l̄ (B)]. Using

(3.5) and (3.14) we have
a
m̄ (B) =

√
2( 1

qα2 − |τ |2
2α|β|) and

a

l̄ (B) = − β̄τ
√

2
2α2|β| . From

here, a quick computation leads to I = − 1
L

and Kv
F,m(z, η) = − 2

L
. �

3.3. Some examples. In order to reduce clutter, let us relabel the local coordi-
nates z1, z2, η1, η2 as z, w, η, θ, respectively. Let ∆ =

{

(z, w) ∈ C2, |w| < |z| < 1
}

be the Hartogs triangle with the Kähler-purely Hermitian metric

(3.16) aij =
∂2

∂zi∂zj
(log

1

(1 − |z|2) (|z|2 − |w|2) ); α2(z, w; η, θ) = aijη
iηj ,

where |zi|2 := ziz̄i, zi ∈ {z, w}, ηi ∈ {η, θ}. We choose

(3.17) bz =
w

|z|2 − |w|2 ; bw = − z

|z|2 − |w|2 .

With these tools we construct α(z, w, η, θ) :=
√

aij̄(z, w)ηiη̄j and β(z, η) =

bi(z, w)ηi and from here the complex Randers metric F = α + |β| and the

complex Kropina metric F := α2

|β| . By a direct computation, we deduce

azz =
1

(1 − |z|2)2
+ bzbz̄; azw = bzbw̄; aww = bwbw̄;

azz =
(

1 − |z|2
)2

; awz =
wz

(

1 − |z|2
)2

|z|2 ;

aww =

(

|z|2 − |w|2
)2

|z|2 +
|w|2

(

1 − |z|2
)2

|z|2 ;

bz = 0; bw = −|z|2 − |w|2
z

; ||b||2 = 1; α2 − |β|2 =
|η|2

(1 − |z|2)2

(3.18)
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and the coefficients of the Chern-Finsler (c.n.c.) are

CF

Nz
z =

a

Nz
z =

2zη

1 − |z|2 ;
CF

Nz
w=

a

Nz
w= 0;

CF

Nw
z =

a

Nw
z =

2zw

z

(

1

1 − |z|2 +
1

|z|2 − |w|2
)

η − |z|2 + |w|2
z (|z|2 − |w|2)θ;

CF

Nw
w =

a

Nw
w = − |z|2 + |w|2

z (|z|2 − |w|2)η +
2wθ

|z|2 − |w|2 .

(3.19)

Thus, these complex Finsler spaces with (α, β)− metric fulfill the assumptions
of the Corollaries 3.1 and 3.3. So, they give us some examples of complex
Berwald spaces with (α, β)− metrics.

Conclusions

By means of the complex Berwald frame, we made an approach to the geome-
try of the two-dimensional complex Finsler spaces with (α, β)-metrics. A trivial
class of complex Berwald spaces is represented by the purely Hermitian complex
Finsler spaces. But this paper moots a new class of complex Berwald manifolds.
It is desirable that the complex Randers and Kropina spaces will manage to
enrich the complex Berwald geometry, leading to new interesting issues.
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