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SOME COMPARISON THEOREMS IN FINSLER AND

MINKOWSKI SPACES

A. A. BORISENKO

Abstract. It is given the survey of comparison theorems for volumes balls
and spheres in Finsler and Hilbert spaces.

1. Riemann – Hadamard manifolds

In 1972, in the course of the study of some problems of geometric probability
in H

2, L. A. Santaló and I. Yañez [18] proved the following result: Let {Ω(t)}t∈R+

be a family of compact h–convex domains in H
2 which expands over the whole

space. Then limt→0
Area(Ω(t))

Length(∂Ω(t)) = 1. A domain in the hyperbolic space H
n+1

of sectional curvature – 1 (and dimension n + 1) is a closed subset of H
n+1

with interior not empty. An h-convex domain (or convex by horoballs in the
terminology of [2]) in the hyperbolic space H

n+1 of sectional curvature – 1 (and
dimension n + 1) is a domain Ω ⊂ Hn+1 with boundary ∂Ω such that, for every
p ∈ ∂Ω, there is a horosphere H of H

n+1 through p such that Ω is contained in
the horoball of H

n+1 bounded by H. This H is called a supporting horosphere

of Ω (and of ∂Ω). We say that a family of domains {C(t)}t∈R+ in H
n+1 expands

over the whole space (e.o.w.s. in abbreviated notation) if for any x ∈ H
n+1 there

is a t0 ∈ R such that, for every t > t0, x ∈ C(t).

Theorem 1 ([5], A. A. Borisenko, V. Miquel, 1997). Let {Ω(t)}t∈R+ be a family

of h–convex domains expanding over the whole Lobachevsky space H
n+1. Then

lim
t→∞

volume(Ω(t))

volume(∂Ω(t))
=

1

n
.

This result had been generalized for Riemannian – Hadamard manifolds M .
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Definition 1. A C2 hypersurface N ⊂ M such that in every point all the
normal curvatures are greater or equal than a non-negative λ is called a regular
λ–convex hypersurface. When N is the boundary of a domain Ω it is said that
Ω is a regular λ–convex domain when its normal curvature with respect to the
inward normal direction is greater or equal than λ.

Definition 2. A locally hypersurface N of a Hadamard manifold is said to be
h–convex if every point has a locally supporting horosphere.

Theorem 2 ([4], A. A. Borisenko, 2002). Let M be a (n + 1)–dimensional

Hadamard manifold with sectional curvature K such that

−k2
2 ≤ K ≤ −k2

1 , k1, k2 > 0

Then there are functions α(r), α1(r) of the inradius and β(R), β1(R) of the

circumradius such that α(r), α1(r) → 1/(nk2) and β(R), β1(R) → 1/(nk1) when

r and R grow to infinity such that:

(a1) For compact λ–convex domain Ω in M with λ ≤ k2

α(r)
λ

k2
≤

vol(Ω)

vol(∂Ω)
≤ β(R).

(a2) For compact h–compact domain Ω in M

α1(r) ≤
vol(Ω)

vol(∂Ω)
≤ β1(R).

For a family {Ω(t)}t∈R+ of compact convex domains expanding over the whole

space as a consequence there are true the following results:

(b1) For compact λ–convex sets {Ω(t)}t∈R+ , λ ≤ k2

λ

nk2
2

≤ lim
t→∞

inf
vol(Ω(t))

vol(∂Ω(t))
≤ lim

t→∞
sup

vol(Ω(t))

vol(∂Ω(t))
≤

1

nk1
.

(b2) For compact h–convex sets {Ω(t)}t∈R+, λ ≤ k2

1

nk2
≤ lim

t→∞
inf

vol(Ω(t))

vol(∂Ω(t))
≤ lim

t→∞
sup

vol(Ω(t))

vol(∂Ω(t))
≤

1

nk1
.

(b3) For compact h–convex sets {Ω(t)}t∈R+ in Lobachevsky space Hn+1 of

the sectional curvature – 1

lim
t→∞

vol(Ω(t))

vol(∂Ω(t))
=

1

n
.

2. Finsler – Hadamard manifolds

Our goal is to generalize this theorem for Finsler manifolds.
By definition, a Finsler metric on a manifold is a family of Minkowski norms

on the tangent spaces. A Minkowski norm on a vector space V n is a nonnegative
function F : V n → [0,∞) with the following properties:
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(1) F is positively homogeneous of degree one, i.e., for any y ∈ V n and any
λ > 0, F (λy) = λF (y);

(2) F is C∞ on V n\{0} and for any vector y ∈ V n the following bilinear
symmetric form gy : V n × V n → R is positive definite,

gy(u, v) :=
1

2

∂2

∂t∂s
[F 2(y + su + tv)]|s=t=0.

Property 2 is also called the strong convexity property.
A Minkowski norm is said to be reversible if F (y) = F (−y), y ∈ V n. In this

paper, Minkowski norms are not assumed to be reversible.
By 1. and 2., one can show that F (y) > 0 for y 6= 0 and F (u+v) 6 F (u)+F (v).
A vector space V n with the Minkowski norm is called a Minkowski space.

Notice that reversible Minkowski spaces are finite-dimensional Banach spaces.
Let (V n, F ) be the Minkowski space. Then the set I = F−1(1) is called the

indicatrix in the Minkowski space. It is also called the unit sphere.
A set U ⊂ V n is said to be strongly convex if there exist a function F satisfying

2. such that ∂U = F−1(1). Remark that a strong convexity is equivalent to a
positivity of all normal curvatures of ∂U for any Euclidean metric on V n.

Let Mn be an n-dimensional connected C∞-manifold. Denote by TMn =
⊔

x∈Mn TxMn the tangent bundle of Mn, where TxMn is the tangent space at
x. A Finsler metric on Mn is a function F : TMn → [0,∞) with the following
properties:

(1) F is C∞ on TMn\{0};
(2) At each point x ∈ Mn, the restriction F |TxMn is a Minkowski norm on

TxMn.

The pair (Mn, F ) is called a Finsler manifold.
Let (Mn, F ) be a Finsler manifold. Let (xi, yi) be a standard local coordinate

system in TMn, i.e., yi are determined by y = yi ∂
∂xi |x. For a non-zero vector

y = yi ∂
∂xi , put gij(x, y) := 1

2 [F 2]yiyj(x, y). The induced inner product gy is
given by

gy(u, v) = gij(x, y)uivj ,

where u = ui ∂
∂xi |x, v = vi ∂

∂xi |x.

By the homogeneity of F , we have F (x, y) =
√

gy(y, y) =
√

gij(x, y)yiyj .
In the Riemannian case gij are functions of x ∈ Mn only, and in the Minkowski

case gij are functions of y ∈ TxMn = V n only.
The notions of length and area are also generalized to Finsler geometry.
Given a Finsler metric F on a manifold Mn.
Let {ei}

n
i=1 be an arbitrary basis for TxMn and {θi}n

i=1 the dual basis for
T ∗

xMn. The set

Bn
x =

{

(yi) ∈ R
n : F (x, yiei) < 1

}
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is an open strongly convex open subset in R
n, bounded by the indicatrix in

TxMn. Then define

dVF = σF (x)θ1 ∧ . . . ∧ θn,

where

σF (x) :=
VolE(Bn)

VolE(Bn
x )

.

Here VolE(A) denotes the Euclidean volume of A, and B
n is the standard unit

ball in R
n.

The volume form dVF determines a regular measure VolF =
∫

dVF and is
called the Busemann–Hausdorff volume form.

For any Riemannian metric gij(x)uivj the Busemann–Hausdorff volume form
is the standard Riemannian volume form

dVg =
√

det(gij)θ
1 ∧ . . . ∧ θn.

Let ϕ : Nn−1 → Mn be a hypersurface in (Mn, F ).
The Finsler metric F determines a local normal vector field as follows. A

vector nx is called the normal vector to Nn−1 at x ∈ Nn−1 if nx ∈ Tϕ(x)M
n

and gnx
(y, nx) = 0 for all y ∈ TxNn−1. Notice that in general non-symmetric

case the vector −nx is not a normal vector.
Define now an induced volume form on Nn−1. Let n be a unit normal vector

field along Nn−1. Let F = ϕ∗F be the induced Finsler metric on Nn−1 and dVF

be the Busemann–Hausdorff volume form of F . For x ∈ Nn−1 we define

ζ(x, nx) :=
VolE(Bn)

VolE(Bn
x )

VolE(Bn−1
x (nx))

VolE(Bn−1)
.

Here Bn
x =

{

(yi) ∈ R
n : F (yiei) < 1

}

. To define Bn−1
x (nx) we take a basis

{ei}
n
i=1 for Tϕ(x)M

n such that e1 = nx and {ei}
n
i=2 is a basis for TxNn−1. Then

Bn−1
x (nx) =

{

(yj) ∈ R
n−1 : F (yjej) < 1

}

, where the index j passes from 2 to n.
Note that if F is Riemannian, then ζ ≡ 1.
Set

dAF := ζ(x, nx)dVF .

The form dAF is called the induced volume form of dVF with respect to n [19].
The sense of defining such volume form is given by the co-area formula [19].

We shall need the co-area formula in one simple case for metric balls:

Vol(B(r, p)) =

∫ r

0

Vol(S(t, p))dt.

Here Vol(S(t, p)) is the induced volume on S(t, p) [19].
Finally, we introduce some more functions which are called non-Riemannian

curvatures. These curvatures all vanish for Riemannian spaces. We shall need
only one of this curvatures, which is closely connected to the volume form.
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Let (Mn, F ) be a Finsler space. Consider the Busemann-Hausdorff volume
form dVF with the density σF . We define

τ(x, y) = ln

√

det(gij(x, y))

σF (x)
, y ∈ TxMn.

τ is called the distortion of (Mn, F ). The condition τ ≡ const implies F is a
Riemannian metric [19].

To measure the rate of changes of the distortion along geodesics, we define

S(x, y) =
d

dt
[τ(c(t), ċ(t))] |t=0, y ∈ TxMn

where c(t) is the geodesic with ċ(0) = y. S is called the S-curvature. It is also
called the mean covariation and mean tangent curvature. One can easily show
that S = 0 for any Riemannian metric.

A Finsler metric F is said to be of constant S-curvature δ if

S(x, y) = δF (x, y)

for all y ∈ TxMn\{0} and x ∈ Mn. The upper and lower bounds of S-curvature
are defined by the same way.

For a given vector y ∈ TxMn\{0} denote by Y its extension to a geodesic

field in a neighborhood of x. Let ∇ denote the Chern connection, ∇̃ denote the
Levi-Civita connection of the induced Riemannian metric g̃ = gY . For a vector
v ∈ TxMn define

Ty(v) = gy(∇vV, y) − g̃(∇̃vV, y)

where V is a vector field such that Vx = v.
The function Ty(v), y ∈ TxMn\{0} is called T-curvature.
T-curvature is said to be bounded above T > −δ if [19, p. 223]

Ty(u) > −δ

[

gy(u, u) − gy

(

u,
y

F (y)

)2
]

F (y)

The upper bound is defined at the same manner.
Notice that the T-curvature vanish for Berwald metrics; the converse is also

true [19, p. 155].

Theorem 3 ([6], A. A. Borisenko, E. A. Olin, 2007). Let (Mn+1, F ) be an

(n+1)-dimensional Finsler-Hadamard manifold that satisfies the following con-

ditions:

(1) Flag curvature satisfies the inequalities −k2
2 6 K 6 −k2

1, k1, k2 > 0,
(2) S-curvature satisfies the inequalities nδ1 6 S 6 nδ2 such that δi < ki.

Let Bn+1
r (p) be the metric ball of radius r in Mn+1 with the center at a point p ∈

Mn+1, Sn
r (p) = ∂Bn+1

r (p) be the metric sphere. Let Vol =
∫

dVF be the measure

of Busemann-Hausdorff, Area(Sn
r (p)) =

∫

dAF is the induced measure on Sn
r (p).
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Then there exist functions f(r) and F(r) such that f(r) → 1/(n(k2 − δ2)) and

F(r) → 1/(n(k1 − δ1)) as r goes to infinity and that

f(r) 6
Vol(Bn+1

r (p))

Area(Sn
r (p))

6 F(r).

Here

f(r) =
1

(1 − e−2k2r)n
×

×

(

1

n(k2 − δ2)
−

n

n(k2 − δ2) − 2k2
(e−2k2r − e−nr(k2−δ2))

)

F(r) =
1

n(k1 − δ1)
(1 − e−nr(k1−δ1)).

As a consequence, for a family {Bn+1
r (p)}r>0 we have

1

n(k2 − δ2)
6 lim

r→∞
inf

Vol(Bn+1
r (p))

Area(Sn
r (p))

6 lim
r→∞

sup
Vol(Bn+1

r (p))

Area(Sn
r (p))

6
1

n(k1 − δ1)
.

If (Mn+1, F ) is a space of constant flag curvature K = −k2 and S-curvature

S = nδ, δ < k, we have

lim
r→∞

Vol(Bn+1
r (p))

Area(Sn
r (p))

=
1

n(k − δ)

For a Riemannian space S = 0 and Theorem 2 is a special case of Theorem 1.
Let (Mn+1, F ) be a Finsler manifold. Then the exponential speed of the

volume growth of a ball of radius t > 0 is called the volume growth entropy of
(Mn+1, F ). The explicit expression for the volume growth entropy is given by

lim
t→∞

ln(Vol(Bn+1
t (p))

t
.

In this section we estimate the volume growth entropy of a Finsler-Hadamard
manifold with the pinched flag curvature and the S-curvature.

Theorem ([6]). Let (Mn+1, F ) be an (n + 1)-dimensional Finsler-Hadamard

manifold that satisfies the following conditions:

(1) Flag curvature satisfies the inequalities −k2
2 6 K 6 −k2

1, k1, k2 > 0,
(2) S-curvature satisfies the inequalities nδ1 6 S 6 nδ2 such that δi < ki.

Then we have

n(k1 − δ1) 6 lim
t→∞

ln(Vol(Bn+1
t (p)))

t
6 n(k2 − δ2).
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If (Mn+1, F ) is a space of constant flag curvature K = −k2 and S-curvature

S = nδ, δ < k, we have

lim
t→∞

ln(Vol(Bn+1
t (p)))

t
= n(k − δ).

Let M be a complete Finsler manifold. Then

(1) A set A is said to be convex, if each shortest path with endpoints in A
is entirely contained in A.

(2) A set A is said to be locally convex, if each point P ∈ A has a neighbor-
hood UP in M such that the set A ∩ UP is convex.

Hadamard proved the following theorem.

Theorem ([20]). Let ϕ be an immersion of compact n-dimensional oriented

manifold M in Euclidean space En+1, n > 2 with everywhere positive Gaussian

curvature. Then ϕ(M) is a convex hypersurface.

Chern and Lashof generalized this theorem.

Theorem ([20]). Let ϕ be an immersion of compact n-dimensional oriented

manifold M in Euclidean space En+1, n > 2. Then the following two assertions

are equivalent.

(1) The degree of the spherical mapping equals ±1 and the Gaussian curva-

ture does not change its sign;

(2) ϕ(M) is a convex hypersurface.

A topological immersion f : Nn → Mn+1 of a manifold Nn into a Riemannian
manifold Mn+1 is called locally convex at a point x ∈ Nn if x has a neighborhood
U such that f(U) is a part of the boundary of a convex set in Mn+1.

Heijenoort proved the following theorem.

Theorem ([21]). Let f : Nn → En+1, n > 2 be a topological immersion of

a connected manifold Nn. If f is locally convex at all points and has at least

one point of local strict support and Nn is complete in the metric induced by

this immersion, then f is an embedding and f(Nn) is the boundary of a convex

body.

S. Alexander [1] (see also A. A. Borisenko [3]) generalized Hadamard’s theo-
rem for compact immersions when an ambient space is a complete simply con-
nected manifold of non-positive curvature (Hadamard manifold).

Theorem ([1], [3]). Let f : Nn → Mn+1, n > 2 be an immersion of compact

connected manifold Nn in a complete simply connected Riemannian manifold

Mn+1 of non-positive sectional curvature. If the immersion f is locally convex,

then f is an embedding, f(Nn) is the boundary of a convex set in Mn+1, and

f(Nn) is homeomorphic to the sphere S
n.
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The goal of this paper is to generalize this theorem to an immersion of com-
pact manifold into a complete simply connected Finsler manifold of non-positive
curvature (Finsler–Hadamard manifold).

Theorem 4 ([8], A. A. Borisenko, E. A. Olin, 2008). Let f : Nn → Mn+1,

n > 2 be an immersion of a compact connected manifold Nn in a complete sim-

ply connected Finsler manifold Mn+1. Let Nn and Mn+1 satisfy the following

conditions:

(1) The flag curvature K 6 −k2, k > 0;
(2) The T-curvature |T| 6 δ, where 0 6 δ < k;

(3) All the normal curvatures of Nn

kn > 2δ.

Then f is an embedding, f(Nn) is the boundary of a convex set in Mn+1 which

is homeomorphic to the ball, and f(Nn) is homeomorphic to the sphere S
n.

We also show that the theorem of S. Alexander holds for Berwald spaces
without any additional restrictions.

Note, that if all the flag curvatures vanish (the case when k = 0) then T = 0
and we obtain the generalization of Hadamard’s theorem to Minkowski spaces.

3. Asymptotic Properties of Hilbert geometry

Consider a bounded open convex domain U ⊂ R
n+1 whose boundary is a C3

hypersurface with positive normal curvatures in R
n equipped with a Euclidean

norm ‖ · ‖.
For given two distinct points p and q in U , let p1 and q1 be the corresponding

intersection point of the half line p + R−(q − p) and p + R+(q − p) with ∂U .
Then consider the following distance function

dU (p, q) =
1

2
ln

‖q − q1‖

‖q − p1‖
×

‖p − p1‖

‖p − q1‖

dU (p, p) = 0

The obtained metric space (U, dU ) is called Hilbert geometry and is a complete
noncompact geodesic metric space with the R

n-topology and in which the affine
open segments joining two points are geodesics [11].

The distance function is associated in a natural way with the Finsler metric
FU on U . For a point p ∈ U and a tangent vector v ∈ TpU = R

n

FU (p, v) =
1

2
‖v‖

(

1

‖p − p−‖
+

1

‖p − p+‖

)

where p− and p+ is the intersection point of the half-lines p + R−v and p + R+v
with ∂U .

Then dU (p, q) = inf
∫

I
FU (c(t), ċ(t))dt when c(t) ranges over all smooth curves

joining p to q.
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In is known (see for example [19]) that Hilbert metrics are the metrics of
constant flag curvature −1.

When U = Bn
r then we obtain the Klein model of the n-dimensional Lobachevsky

space H
n and the Finsler metric has the explicit expression

FBn
r
(p, v) =

√

‖v‖2

r − ‖p‖2
+

< v, p >2

(r2 − ‖p‖2)2

It is proved in [11] that the balls of arbitrary radii are convex sets in Hilbert
geometry.

The asymptotic properties of Hilbert geometry have been obtained lately. All
this properties mean that Hilbert geometry is “almost” Riemannian at infinity.
It is proved in [14] that Hilbert metric “tends” to Riemannian metric as follows.

Theorem ([14]). Let C ∈ R
n be a bounded open convex domain whose boundary

∂C is a hypersurface of class C3 that is strictly convex. For any p ∈ C let δ(p) > 0

be the Euclidean distance from p to ∂C. Then there exists a family (~lp)p∈C of

linear transformations in R
n such that

lim
δ(p)→0

FC(p, v)

‖~lp(v)‖
= 1

uniformly in v ∈ R
n\{0}

This means that the unit sphere in the tangent space of given Hilbert met-
ric tends to ellipsoid in continuous topology as the tangent point goes to the
absolute.

B. Colbois and P. Verovic proved in [14] that the balls in an (n+1)-dimensional
Hilbert geometry have the same volume growth entropy as those in H

n+1, namely
n. We obtain the analogous result for the spheres in Hilbert geometry. At
theorem 5 we used the Busemann–Hausdorff volume form of sphere Sn

t .

Theorem 5 ([7], A. A. Borisenko, E.A. Olin, 2008). Consider an (n + 1)-
dimensional Hilbert geometry associated with a bounded open convex domain

U ⊂ R
n+1 whose boundary is a C3 hypersurface with positive normal curvatures.

Then we have

lim
t→∞

ln(Vol(Sn
t ))

t
= n

Theorem 6 ([7], A. A. Borisenko, E.A. Olin, 2008). Consider an (n + 1)-
dimensional Hilbert geometry associated with a bounded open convex domain

U ∈ R
n+1 whose boundary is a C3 hypersurface with positive normal curvatures.

Fix a point o ∈ U , we will consider this point as the origin and the center of all

the considered balls. Denote by ω(u) : S
n → R+ the radial function for ∂U , i.e.

the mapping ω(u)u, u ∈ S
n is a parametrization of ∂U , and by ι : R

n+1 → S
n

the mapping such that ι(p) =
up

||up||
, where up is the radius-vector of a point p,

dp is Euclidean volume form of boundary ∂U .
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Denote by K and k the maximum and minimum normal curvature of ∂U ,

c = maxu∈Sn
ω(u)

ω(−u) , ω0 = minu∈Sn ω(u), ω1 = maxu∈Sn ω(u). Then we have

lim
ρ→∞

sup
Vol(Bn+1

ρ )

Vol(Sn
ρ )

6
1

n
c

n
2

(

K

k

)
n
2 1

(kω0)
n
2
+1

∫

Sn ω(u)
n
2 du

∫

∂U
ω(ι(p))−

n
2 dp

lim
ρ→∞

inf
Vol(Bn+1

ρ )

Vol(Sn
ρ )

>
1

n

1

c
n
2

(

k

K

)
n
2

(kω0)
n
2

∫

Sn ω(u)
n
2 du

∫

∂U
ω(ι(p))−

n
2 dp

or, more simple expression

lim
ρ→∞

sup
Vol(Bn+1

ρ )

Vol(Sn
ρ )

6
1

n

(

K

k

)
n
2

(

ω1

ω0

)n+1
(ω1

k

)
n
2 1

kω1

VolE(Sn)

VolE(∂U)

lim
ρ→∞

inf
Vol(Bn+1

ρ )

Vol(Sn
ρ )

>
1

n

(

k

K

)
n
2

(

ω0

ω1

)
n
2

ωn
0 (kω0)

n
2

VolE(Sn)

VolE(∂U)

If U is a symmetric domain with respect to o then we have

lim
ρ→∞

sup
Vol(Bn+1

ρ )

Vol(Sn
ρ )

6
1

n

(

K

k

)
n
2 ωn

1

(kω0)
n
2
+1

VolE(Sn)

VolE(∂U)

lim
ρ→∞

inf
Vol(Bn+1

ρ )

Vol(Sn
ρ )

>
1

n

(

k

K

)
n
2

(kω0)
n
2 ωn

0

VolE(Sn)

VolE(∂U)
.

For Lobachevsky space these limits are equal 1
n

and we obtain exact formula.
Notice that in this theorem the ratio of the volume of the ball to the internal

volume of the sphere is considered, unlike theorem, where the induced volume
is used.

It should be noticed here that if we calculate the Hausdorff measure for the
submanifold in a Finsler manifold with the symmetric metric then we will obtain
the internal volume on submanifold in the metric induced from the ambient
space.

4. Curvature of the curves in Minkowski geometry

In Finsler space it is possible to define covariant derivative [19, p. 88] For
geodesic line γ(s) of Finsler space Mn+1

∇γ̇ γ̇ = 0,

where s is length parameter on the curve in Finsler space. We define the curva-
ture of the curve L in Mn+1 as

(4.1) k = ‖∇ẊẊ‖

where X = X(s) — parametrization of the curve, ‖·‖ is a Finsler norm of vector.
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For Finsler space and Minkowski space there are another definitions of cur-
vature [15], [10], [12], [16], [17]. Finsler definition of the curvature of the curves
[15] coincides with the of Cartan definition [12].

1

ρ2
= k2 = gij

(

x,
dX

ds

)

d2xi

ds2

d2xj

ds2
[17]

Rund definition of the curvature [16]

1

r2
= k2 = gij

(

x,
d2X

ds2

)

d2xi

ds2

d2xj

ds2
[17]

coincides with the definition of the curvature at this article.
Busemann definition of the curvature of the curves in Minkowski space [10]

is different from these definitions.
For Minkowski plane different definition had been used in [13].
Let in Minkowski space Mn+1 we take auxiliary Euclidean metric and some

rectangular Cartesian coordinates y1, . . . , yn+1, X = X(s) is the smooth parametriza-
tion of the curve s is Minkowski length of the curve. At this case the formulae
(4.1) rewrite in the following way:

(4.2) kM =

∥

∥

∥

∥

d2X

ds2

∥

∥

∥

∥

where ‖ · ‖ is Minkowski norm. A Minkowski norm on Mn+1 is nonnegative
function on a linear space F : V → [0,∞) which has the following properties

1) F is C∞ on Mn+1

2) F (λy) = λF (y), for all λ > 0 and y ∈ Mn+1

3) For any Mn+1
∣

∣

0
, the symmetric bilinear form gy on Mn+1

gij = 1
2

∂2F 2

∂yi∂yj aiaj is positive definite.

Indicatrix (unit sphere) of Minkowski space is called compact convex hyper-
surface F0 = {y1, . . . , yn+1, F (y1, . . . , yn+1) = 1}. The ball of the radius R is
the set of points such that F (y1, . . . , yn) ≤ R. Assume that normal curvatures
of the indicatrix F0 in Euclidean space En+1 satisfies inequality:

0 < k1 ≤ k ≤ k2

Let τ(s) be a Minkowski unit tangent vector to the curve L in Mn+1. The
τ = τ(s) is the curve I ⊂ F0. It is called tangent indicatrix.

If s̄ is the Minkowski length of the tangent indicatrix then kM = ds̄
ds

; and total
curvature of the curve L then

wM =

∫

L

kMds

is equal the length of the tangent indicatrix.
For Minkowski plane it is possible to define another curvature. Let n be

normal to the plane curve L. The unit normal n is a radius-vector of indicatrix
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F0 at the point with tangent vector τ(s). We take indicatrix of unit normals to
an arc of the curve L, s̄ is the length on indicatrix F0. And define

kn = lim
∆s→0

∆s̄

∆s

and

(4.3) kn =
kL

kF0

,

where kL, kF0
is Euclidean curvatures of the curves L, F0 at the points where

tangent vectors are parallel. At Minkowski plane this curvature doesn’t coincide
with the curvature which was defined by formula (4.2). These two curvatures
coincide only in Euclidean plane. The curvature (4.3) was used in [13].

First question is how connect the Minkowski curvature kM of the curve L,
which we define by formula (4.2), and curvature ke of the curve L, as the curve
in Euclidean space. It is true inequalities

(4.4) ker

(

k1

k2

)

≤ kM ≤ ker

(

k2

k1

)2

,

where r = 1

F( dX
dσ )

, σ is Euclidean length parameter of the curve L.

For Euclidean space it known Fenchel theorem: the total curvature of closed
curve in Euclidean space En+1 satisfies the inequality:

(4.5)

∫

kedσ ≥ 2π

For Euclidean space it true Fary-Milnor theorem: If the total curvature of closed
curve in Euclidean space En+1

(4.6)

∫

kedσ < 4π

then the curve is unknotted. The analog of the these theorems is true for
Minkowski space.

Theorem 7 ([9], A. A. Borisenko, K. Tenenblat, 2009). The total curvatures of

the closed curve in Minkowski and Euclidean spaces satisfy the inequalities

(

k1

k2

)
∫

kedσ ≤

∫

kMds ≤

(

k2

k1

)2 ∫

kedσ

For the closed convex curve in Minkowski plane

ωM =

∫

kMds = SM (F0),

where SM (F0) is Minkowski length of the F0. It is known that 6 ≤ SM (F0) ≤ 8
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With the curvature F0 k2 ≥ k ≥ k1 > 0 the length of the indicatrix F0

satisfies the inequalities:

2π

(

k1

k2

)

≤ SM (F0) ≤ 2π

(

k2

k1

)2

Theorem 8 ([9], A. A. Borisenko, K. Tenenblat, 2009). If the total curvature

of the closed curve in Minkowski space satisfies the inequality:

ωM =

∫

kMds < 4π

(

k1

k2

)

then the curve is unknotted.

From
(

k1

k2

)

ωe =

(

k1

k2

)
∫

kedσ ≤ ωM =

∫

kMds ≤

(

k2

k1

)2 ∫

kedσ =

(

k2

k1

)2

ωe

we have ωe < 4π and apply Fary–Milnor theorem.
The length of closed curve in Euclidean space which belongs to the ball of

radius R satisfies the following inequality: σ(L) ≤ Rωe

Theorem 9 ([9], A. A. Borisenko, K. Tenenblat, 2009). If the closed curve L in

Minkowski space lies in ball of radius R then the Minkowski length of the curve

L satisfies the inequality

(4.7) SM (L) ≤

(

k2

k1

)4

RωM (L)

Let M3 be a Minkowski space with the symmetric Minkowski norm F (y1, y2, y3).
The equation of indicatrix F0 is F (y) = 1; In Minkowski space we take auxiliary
Euclidean metric and some rectangular Cartesian coordinates (x1, x2, x3). The
normal curvatures of the indicatrix as surface in Euclidean space E3 satisfies the
inequality:

0 < k1 ≤ k ≤ k2

Let F be a surface in Minkowski space M3 and simultaneously a surface
in Euclidean space E3. In explicit form x3 = f(x1, x2) is the equation of the
surface. The question is how connected the normal curvatures ke, kM of the
surface F as surfaces in Euclidean and Minkowski spaces.

The normal curvature of the surface in Finsler space it is possible define in
the following way [19]: Let P be a point on the submanifold F in Finsler space,
y ∈ TpF be an unit tangent vector to F , c = c(s) be a unique geodesic in F such
that the tangent vector ċ(0) = y. The vector of normal curvature is called the
vector

A(y) = −∇ċċ(0),
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where

∇ċċ(0) =

{

d2ci

ds2
(0) + 2Gi(y)

}

∂

∂xi

∣

∣

∣

∣

p

,

(xi) is a local coordinate in Finsler ambient space. And the absolute value of
normal curvature

kM (y) = ‖∇ċċ(0)‖

The normal curvature in the direction y with respect the unit Minkowski
normal n is equal

kn(y) = gij(n)ni d
2xj

ds2

It is true the inequalities

ke(y)r

(

k1

k2

)

≤ kM (y) ≤ ke(y)r

(

k2

k1

)

√

√

√

√

√

√

√

2

(

1 +
(

k2

k1

)2
)

(

1 + k1

k2

)2
(4.8)

If ke(y) > 0 then

(4.9) ke(y)r

(

k1

k2

)

≤ kn(y) ≤ ke(y)r

(

k2

k1

)2

The sign of Euclidean normal curvature coincides with the sign of Minkowski
normal curvature with respect the unit Minkowski normal.
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