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GENERALIZED LAGRANGE -HAMILTON SPACES OF
ORDER £k

IRENA COMIC

ABSTRACT. In this paper the generalized Lagrange —Hamilton spaces are
introduced. The group of transformation is given, further some complicated
but useful relations concerning the partial derivatives of variables in new
and old coordinate systems are derived. The sprays and antisprays are also
studied.

INTRODUCTION

The (k + 1)n dimensional generalized Lagrange space is an Osc® M space
supplied with regular Lagrangian L(z?%,y'?,y??,...,y"), where yAe = jt—ix“,
A =1, k. They are studied in many papers and books as [2], [18], [19], [20], [16]
and others. The K-Hamilton space is (k + 1)n dimensional space, where some
point of this space has coordinates (z%,p1a,...,Pra), Where paqs(A = 1,k) are
independent covector fields. If kK = 1 we have Hamilton space. Such spaces are
studied in [1], [3-7], [10-12], [14], [15], [21-23], [25], [26] and many others. If
instead of covector fields p1, ..., pr we take independent vector fields y', ..., y"
we obtain K-Lagrange spaces.

The (k + 1)n dimensional Hamilton space of order k was introduced by

R. Miron in [17]. Some point u of this space has coordinates

(md, y1a7 ctt y(k_l)a7pka)7
where y4¢ = % i—i:ﬂ“, A =1,k —1and (pra) is a covector. The space is supplied
with regular Hamiltonian H (x,y", ..., y*!, pi) from which the metric tensor is

derived in the usual manner. The complex structures in the above spaces are
introduced in [24].
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The Hamilton spaces of higher order are introduced in [9]. A point u of this

(k + 1)n dimensional space has coordinates (%, pia,P2a,- - -, Pka), Where py is
A— -

a covector and pa, = CiltA—,llpla, A = 2,k. In the transformation group the

expressions (Z—i % appear, which are functions of y', 2, ..., y*, but they were

not written explicitly and were not treated as variables. Such spaces are studied
in [10, 13].

Here the (2k + 1) - n dimensional generalized Lagrange—Hamilton spaces
(GLH)(™*) are introduced, where some point v € (GLH)™*) has coordinates

(aja?ylaa .- 7yka7p1a7p2aa s 7pk(l)7

where y(Athe = C‘é—iyla, P(A+1)a = i—ipla, A =1,k —1. The group of trans-

formation is given, further some complicated but useful relations concerning the
partial derivatives of variables in new and old coordinate systems are derived.
The natural and special adapted bases of T(GLH)™*) and T*(GLH)("*) are es-
tablished. Using the matrix representation, the duality of bases in T" and T is
proved. The name ‘special adapted’ comes from the fact that the elements of
these bases are transforming as tensors and they have the property that the J
structure in the natural and special adapted bases has the same components.
By action of the J structure on the vector field dr and 1-form field ér the cor-
responding Liouville vector and 1-form fields are constructed.

The sprays and antisprays are also studied and interesting results are ob-
tained. Here the metric tensor does not appear. If the regular Lagrangian L
and Hamiltonian H is given the metric tensor can be derived by the usual man-
ner. From this the metric connection, the torsion and curvature tensors and the
structure equations can be obtained, which will be the subject of next papers.
The application of this theory is given in variation calculus in the papers which
will be appeared.

Special cases of (GLH)(”’“) are Lagrange spaces of order k, Osc® M spaces,
Finsler spaces, generalized Hamilton spaces and so on.

1. DEFINITIONS, GROUP OF COORDINATE TRANSFORMATION

Let us denote by (LH)(™) the 3n dimensional C°*° manifold in which some
point (y,p) has coordinates (z = y°*, y1% p1,), a = 1, n.

Some curve ¢ in (LH)™Y is given by c: ¢ € [a,b] — c(t) € (LH)(™) | where in
some local chart (U, ) a point (y,p) € ¢(t) has coordinates

(x(t) = y™*(8), 4" (1), Pra(1)).

If in some other chart (U’,¢’) the same point (y,p) has coordinates

’ ’ ’

(@ (1) = y° (), 5" (1), prar (1)),



GENERALIZED LAGRANGE-HAMILTON SPACES OF ORDER k 277

then the allowable transformations are given by
2 =2 (2%) & 2% = 2%(a¥), (2%(t) = 2%(x” (1)),
(1.1) ) ) ) a’ )
=By, B =9 = B0, = Bl
x
The first two equations in (1.1) give the coordinate transformation in the
Finsler space. Here, in (LH)(”l) the point of the space has three components:
() = (z%) - the point in the base manifold M, the contravariant vector field
(yM) = (y'*) and a covariant vector field (Pa1)) = (P1a)-
(y™)) can be interpreted as the velocity vector and (p(1)) as the generalized
momentum.
Let us denote by (LH)™*) the (2k 4 1)n dimensional C* manifold in which
a point (y,p) = (z = y©@,yM, 4@ . ,y(k),p(l),p(g), ..+, P(k)) has coordinates

(xa = yO(l’ ylaa 92a7 s aykaaplaap2a7 s apka)a a = 17_”

We can interpret the point in (LH)("™*) as a point (z) in the base manifold
together with a contravariant vector (y(!)), covariant vector (p1y) and their
derivatives up to order k.

Some curve ¢ € (LH)(™®) is given by

c:t € la,b] — c(t) € (LH)™,
A point (y,p) € c(t) has coordinates

(@ () = y°* (), ¥ (1), - . ., y"* (), P1a (1), - - -, Pra(t)),

where
Aa _ A, Oa _ A ﬁ
yA) = iy A=TE df =L
(12) B e
paa(t) — dl?ilpla(t)a a = 17 ka dfil - dro—1 .

The allowable coordinate transformations are given by
a2 =z (%) & 2 = aca(a:a,)
) _
W A — 0, ]{7,

/ ]. / 1 7 !
7 = () aiss e (1) B = dim e,

’ / / ! !
yla = By yte, B = 0pax® = 02" ,04q =

(1.3a)
! k-1 — a’ a k—1 — a’ a
o = () s (U e

k—1 ! — o la
+ (k B 1)33 y* = di N (Bg v,
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ozx®
Pra = Bapra Bo = Obaa” = 52

1
Paar = ( )(dlBa )P1a + (1) Bgp2a = di (Bgpia),

= By (1),

(1.3b)

k—1\, oy =1\, oo
pk:a’:( 0 )(d? 1Ba’)p1a+< 1 )(dwltC 2Ba/)p2a+"'
k—1
Bal a-
+ (k‘—l) a' Pk

Theorem 1.1. The transformations of type (1.3) on the common domain form
a group.

The proof is similar to those given in [8] and [9].

Definition 1.1. The generalized Lagrange—Hamilton space of order k,
(GLH)(™®) is a (LH)(™*) space, where the allowable coordinate trans-
formations are given by (1.3) and in which a differentiable Lagrangian
L(z,yM,y®, ... y®) and a differentiable Hamiltonian H(x,p1),p2)s - Pk))
are given.

From (1.3) it is not obvious that pae, a = 1,k are functions of y4¢, A =
0, — 1. This can be seen if we write:

BBY =0, By, O = 5o
d?BY = (0%a2a1 B )y 1 y'** + (84, BS )y*™, %wf:——gi—ﬂ
8y0a28y0‘11
(1.4) 4By = (03000, BS W' 42y + 3(02,0, B )y 47" + (90, B )y™™,
diBY = (0, agasas BE W' 0" 2y 5y ™ 4 6(05 00, B )y ™y 2y
+3(02,0, BE WP y**? + 4(02,4, B ' y**? + (0a, BY )y,

From (1.4) we can obtain another set of formulae if we make the changes
/ / / / / /
((I ,a7a17a2,a3,a4) - (CL,(Z 7a17a27a37a4)'
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From (1.3) and (1.4) it follows

00" = 0" ()
=yt > .
15) ka' _ yka’(yOa .’yka)j
Piar = a’( Oa,pm)
P2ar = pza( any 7p1a;p2a)
Pha’ =pkaf(y°“,y1“,---,y(k‘1) 7p1a;p2a7--~7pka)~

Theorem 1.2. The following relation is valid:

’ _ a’ A—l _ o
arny =@t my (171 a2

(1.6)
A-1 1pa’y, (A-1)b A— Aa’
+ (42 5) @m0 (47 @B = o

for A=1,k.
Proof. From the relations
(diBy) = (B2 )y = (a3 )y
di' By = di " (d;BY) = dit (0. 85 )y

and the Leibniz rule for differentiation the first part of (1.6) follows. As y% =
2 y'® ... y4® are independent variables, from the right hand side of (1.6) we

can take out d, and the comparison with the obtained equation with yAa/ from
(1.3) results in the second part of (1.6). O

Theorem 1.3. The partial derivatives of the variables, d{‘BC‘f/, di' BS, are con-
nected by the following formulae:

80ay0a/ = 61ay1a/ —_ = 8kayka/ - Bg/
Oay™® = Ooay™ =d*'BS  A=T,

A + B N
(A+B)a’ O(A—l)ay(A+B 1)a

o A+B B (1/_ A+B Ba
(1‘7) —( A )dt B; —( A )80ay

81ap1a/ — 82&]72@’ — .. 'akapka’ — Ba/’

a

0AaY

oa a+pf-1 “ a+p3-1 “
8 p(a+ﬁ)a/ == ( o )61 p(,@—l—l)a’ == ( )dtﬂBa/
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Proof. From (1.4) it is obvious that d*B* A = 0,k are functions only of
YO yte o yAe so df B¢, are functions only of yoal,ylal, e ,yAa’. From this
and the second part of (1.3) we can conclude that p,. are linear functions of
PlasP2as - - - » Paa & = 1, k. This fact results in the following equations:

la _ a
0 pla/ — Ba/,

1 1
alaPQa’ = <0> d%Bg’a 82ap2a/ = (1>Bgu
2 2 2
0 = (0) 80 0= ()i ¥ = (3) B

—1 -1
alapaa’ = <a 0 )d?_lBg/, (92apaa/ = (Oﬁ 1 )d?_QBg/, ceey

a—1
aaapaa’: (a—l) g’v"'-

The above equations are the last three equations from (1.7).

Using (1 2) and (1.5) we can write (1.3a) in the form
y (Oan ) _ Ba’ la dl 0a’
y (80ay )yla + (8 la) dl la’
y (a()ay ) (alay )y “ + (32(12/ ) 0 = dl 2a

(1.8) " = (B0ay* D)y + (Dray V)2 4+ (3(A_1>ay(A‘”“')yA“
= d.}y(A_l)a/, ey
yka' _ (80 y(k—l)a’)yla + (81ay(k—1)a’)y2a 4t (a(kil)ay(k—l)a')yka
dl (k— 1)
If we compare y*@, y2e' ...y ... y* from (1.3a) and (1.8) we get

la’ . 0a’ _ pa’
. 60ay = Ba

/ ’ 1 ’
e ) = () die
! ]_ !
alayla = (1) BZ Y

’ “1a’ A—l _ a’
yAa : 8O(Ly(A D :< 0 )df lBaa

/ A —
81ay(A_1)a = (

) dA2BY ...
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—1)a A-1 a’
8(A_1)ay(A Do = (A_1>Ba yeoe

ko Bpay T = (k 0 1) df~'BY,
’ k' - 1 ’

—1)a k—1 a’
0(k—1)ay(k Da = (k? N 1)Ba :

The above equations are the explicit form of the first three equations from
(1.7). O

From (1.5) it can be seen that it is reasonable to calculate d44paq for A—1 <
«. We have

Theorem 1.4. The following relation is valid:

a+0—1
(1.9) Oaaloctpyer = ( 51 )80‘””““

Proof. From (1.5) we have p1o,/ = p1as(y°%, p14) and
P20 = diPrar = (QoaP1a )y + (0'P1ar)P2a = Qo0 (P1ary™®) + B D2a,

1 1
P3a’ = d%an’ = 80(1 |:<1>p2a’y1a + (0>p1a’y2a:|
1 1
—+ (0) d%BgIPQa + (1) Bg’p3a7

P2 = P2ar (Y, 4", P1as P2a) We get
P3ar = (Boap2a)y"* + (O1ap2ar)y** + (9" P2ar P20 + (0% P2as )P0

and from

The comparison of the two expressions for p3,s gives

1
y2a : 81ap2a/ = (0) 8Oap1a; P2a - 8 P2a’ = ( )d B .

Further we have

2 2
Paar = d;P2ar = Doa [<2>p3afy1“ + (1)p2a Yo+ ( )pla y ] +
2 . 2 2
<0> (d?Ba)pQ(l + (1) p3a (2> /p4av

Paa’ = dtlp?)a’ = (aOap?)a’)yla + (alapi%a’)y + <82ap3a’>y3
(alap3a’)p2a + (82ap3a’)p3a + (83ap3a’)p4a~
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The comparison of two above equations gives:

2 2
y2a : alap?)a’ = (1) 8Oap2a’ yga : 82ap3a’ = (0) 80ap1a’
la 2 2 pa 2a 2 1 pa ./
p2 0 p3ar = 0 di By P3a : O7'p3ar = 1 d; By a,

2
Pag - 83ap3a' == (2> 3/-

In the similar way comparing the relations

Paa’ = 8Oad?_2(pla’y1a) + d?_Q(Bg’pza)’
Paar = diPia—1ya Gy oy D pra, P2as s Dla1)a)

we obtain (1.9). O

2. THE NATURAL AND SPECIAL ADAPTED BASES IN T(GLH)(™*) anD
T*(GLH)("k)
The natural basis, Bry of T(GLH)(™*) as usual consists of partial derivatives
of variables, i.e. BLg = {904,014, - - -, Oka, 0*%, 0%, ..., 0%},

0 0 0 — vw O
aw gy M gy AT T gy

(2.1) Boq = a a=1Fk

Theorem 2.1. The elements of Bru are transforming in the following way:
s = (90ay** )00’ + (00ay™™ )O1ar + -+ + (D0ay*™ ) Db
+ (Boap1a )™ + (Boap2a’)0?* + - -+ + (Boapra’ O™,
Do = (010" )01 + (O1ay™* )Daar + -+ + (109" ) Ohar
(2.2a) + (81ap20 )0 + (D1ap3a ) + - -+ + (Draprar O™,
020 = (920" )02ar + (02ay®* )Osar + -+ + (D20 ) O
+ (D2ap3a)0° 4 -+ + (Daapra)O™ ..
Oha = (Okat™™ ) Ohar
' = (0'p14)0" 4 (0"paar )0 + - + (0" prar ) O
0% = (0%p2ar )0 + (0%p30 )0 + -+ + (0% prar ) O™,
93a — (83ap3a,)63a/ NI (33apka/)6ka/, o
Ok = (0% ppqr)OF.

The proof follows from (1.5).
Let us introduce the notations

(2.3) [04ay]1 k41 = [00aO1a - - - Okal,  [0%Pl1x = [0M0** ... 0%

(2.2b)



GENERALIZED LAGRANGE-HAMILTON SPACES OF ORDER k 283

_8an0a/ 0 0 . 0 A
80ay1(1/ 81ay1a/ O 0
(24) [Ag/]k+1,k+1 — | D0aY?" 01ay*" D20y®® --- 0

_8anka/ alayka/ 82ayka/ o akayka/ _

aOapla’ 0 0 . 0 0
aOaan’ 31ap2a/ 0 R 0 0
(25) [Baa/]k7k+1 = 8Oap3a’ 8]_ap3a/ 82ap3a/ . 0 0

| 0aPka’ O1aPka’ 2aPka’ **+ O(k—1)aPka’ O |

[0] = [Ofk+1,%

P 0 -0
. 31“2?2,1' aQap2a, . 0
(26) [Ca/]k,k - .

alapka’ aQ(ka:a’ Tt akapka’

Using the above notations (2.2) can be written in the form:
A0

(2.7) [04ay0*“Pl1.2k11 = [0ryd® pli.2k41 [Baa, ce,

]2k+1,2k+1

Using (1.7) and (1.9) the elements of matrices [A%], [Baa], [C%] can be
written in the form

[ (Q)BY 0 0 0 -+ 0 ]
(o)t By (1) B 0 0 0
I | QB QdiBy (B0 0
T e QB (Y G)diBy (B 0
(o) B (3)di By (5)dy By (k) B
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[Baa’]k,k+1 =

[ Joapiar 0 0 0--- 0 07
8Oap2a’ ((1)) 80ap1a’ 0 0 0 0
(29) = aOap?)a’ (?)8Oap2a’ (3) aOozpla’ 0 0 0
_aOapka’ (’]z:;)aoap(k—l)a’ (Z:é)a()ap(k—Q)a’ T (kal)aOapla’ 0_
- (Q)BY 0 0 e 00 ]
(diBi  ()B 0 0
(2.10) [ = | @diBy  (D)diBg (5) B 0
(o) By (B () By () By

The natural basis of T*(GLH)™*) is

BEH = {dy0a7 dylaa ey dyka7 dplcn dp2a7 s Jdpka}-

Theorem 2.2. The elements of Bjy are transforming in the following way:

(2.11)

dpkza’ = (80apka’)dy0a + (81apka’)dy1a +--+ (a(k—l)apka’)dy(k_l)a+
(0 prar)dpra + - + (0% prar ) dpra-
Let us introduce the notations

dyOa dp1a

dyla dp2a
(2.12) [dy Je11 = | o dpalia = |

dyka dpka
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Using notations (2.8), (2.9) and (2.10) we can write (2.11) in the form

dy’ A4 dy®
(2.13) {dy ] — [Ba C“] [dy }
Pa’ | o541 1 aa’ Car L opyq opy1 L%Pa

Theorem 2.3. If the bases BEH and Bru are dual to each other, then the bases
Bf/H and B}y are also dual to each other.

Proof. Under duality of two bases we understand as usual the following relations

(dy®,0pp) = 6p0%  (dpaa,dP) = 655°
(dy™*,0P%) =0 (dpaa,Ops) =0

or

a

d
(2.14) {dz ] [0py0°p] = Ioki1 2541

a

We want to prove that if (2.14) is valid, then the same relation is valid if a
is everywhere substituted by a/, i.e., that (2.14) is coordinate invariant. If we
introduce the notation

AY 0
T=| "
[Bm, Céﬂ} |

then (2.7) and (2.13) can be written in the form

(2.15) [3by8bp] = [8b/y0b/p]T
dy” | . [dy® dy*] o1 [dy®
o )] ]

The substitution of (2.15) and (2.16) into (2.14) results in

dyal
dpa’

T—l |:dya’
dpa’

From (2.2) and (2.11) it is obvious that under coordinate transformation (1.3)
the elements of natural bases By and Bf j; are not transforming as tensors. Now
we shall construct a new so-called special adapted bases By and By, whose

elements transform as tensors and in which the J structure (which will be defined
later) has the same components as in the natural bases.

} [0y yd® pIT =T = { } [Byyd¥ p] = TIT ' =1. O

Definition 2.1. The special adapted basis Bry of T(GLH)(”k)

(2.17) Bru = {604,614, - - -, Oka, 0%, 0%, ..., 6%}
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is defined by

(2.18a) - G)Nmﬂbaz — G) Noa2pd? — (k I 1) Noa(k—1)p0
02q = (Z) O2q — (3) N3bos, - <l;> NE2 o,
- (3 Noq1p0”" — (k ; 1) Noa(k—2)p9"",
Oka = (:) Oka
ot = (8) o' — ((1)) Ny o — (5) Ny ot — - — (S) Ngg o™
(2.18b) &% = G)a?a - G) N3 — ... — (k . 1) NG, 0™

Let us introduce the notations

[040a(W)]1.6+1 = [00ad1a - - Oka), A=0,k

(0% (p)]1 .k = [6196%7 ... 6%, a =1,k
[ ()9 0 -~ 0 0
~(Nee (e - 00

[N(ib]k—l-l,k—i—l =

(2.19a) ' B
(NG = () NG () NG 8t
[ — (o) Noate 0 0 0
— (o) Noaze —(}) Noats 0 0

[NOaﬁb] k,k+1 —
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[ (8)5,‘; 0 0 0
—-@)Ng (1) 0 0
(2.19b) N9, = [~©NGE  —()NE og -0

k Oa k-1 Oa k—2 Oa k—1\ sa
__(O)Nkb _( 1 )N(kfl)b _( 2 )N(ka)b T (k:—l)éb_
Using the above notations (2.18) can be written in the matrix form as follows:

(2.20) (640 (1)0%(D)]1 2821 = [0B5(1)0°°(P)]1 2611 - Nokt1.2641,
where

NBb 0
(2.21) N = [Noo Tkw1, k41 [Olks1,k

[Noagblk k1 [NGi .k

The first request to the adapted basis Bry is that their elements transform
as tensors, i.e.,

(2.22) Saar = B%6aq A=0k,  6°° =B¥5* a=1,F

Theorem 2.4. The elements of the special adapted basis Bru are transforming
as tensor if and only if the following relations are valid:

INEY ki1 k1 = [AY NEP B i1 i
(2.23) [Noa gk et1 = [(Bow Ngw + Cor Noag) Be ke, k1
(N9 ] = [CL NGBS T,k

Proof. If we denote by [B%]k+1,k+1 the diagonal matrix, whose elements are all
equal to zero except the diagonal elements, which are equal to B, similar for
[BY )1k, then using (2.3)-(2.7), further (2.19)-(2.21) we can write (2.22) in the
form

’

640 (9)5°% ()] 12ks1 = [6.40(4)6° (9] 12041 {[33’]“17“1 [O]k,ﬂvk]

Olkk+1 [Bg lk.k
(2.24) = [085(¥)0°° (p)]1.25+1 Nok+1.2k+1 - Bok+1.2k+1
(9 (1B Ay 0
~ 0 " )] |

On the other side from (2.20) we get

} “ Nogt1,2k+1 - Bogy1,26+1-
2k41,2k+1

225)  Baw)i ()] = o (0)0™ ()] - | Yo Jerriss Dlesia
' ¢ [Noa v ekt (NG lkk |
The comparison of (2.23) and (2.24) gives

[Noo? Tesrer [0l
[Noago kb1 [Ngi k.
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S
I

[[AY k1 k1 [O]k+1,k:| , |:[N(€1b]k+1,k—|—l [0]k+1,k]
| Bov kgt [Colew] | [Noagsliirt Ngoy s

[AZ,N(’%’? + 0]kt 1,641 [0]k+1,5 + [0]k+1,k] B
|[Bo NE + C Noagvl ki1 Ok, + C,?,NB?]k,k

[AglNészg/]k+1,k+1 [0]k+1,k/
[(Bowr Ng» 4 C Noags) Bk k1 [C NBgBe Ik

From the above it follows (2.23).

Definition 2.2. The special adapted basis Bjy; of T*(GLH)™*) is

(2.26) Biyg = {6y0a, 5y1“, e 5yk“, OD1a,0P2ay - - -, OPka }
where

6y0a — dyOa — dz®
la 1 la 1 la j,,0b
oyt = dy™® + Moy dy
1 0
2 2 2
2) dy** + ( 1) Mggdy'® + < 0) Mgdy®, ...

k k
e (5 )t (0) oty

0 0
O0P1a = ( )MOalbdyOb + <0> dp1a,

(2.27a)

0
(1 0b 1 1b 1 1b 1
0p2a = 0 Moa2pdy™ + ) Moq1pdy™" + 0 Mg dp1p + 1 dp2a,
(2.27D)
k—1 k—1 _
OPka = Moarpdy®™ + -+ + Mog1pdyF=1°
0 k—1
k—1 (k—1)b k—1
M d e dDkq -
+( 0 ) 0a Py + -+ e 1) %Pk
We introduce the notations:
5yle dp1a
5y1a 6p2a
(2.28a) By Yo =| " |, [paalka = | .
5y’m 6pka
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[ (0)9% 0 00-- 0 ]
(0)Mgg ()05 00 0
(2.28b) (MG ka1 pr1 = 0 0
() Mg By by " (D).
" (5) Mobia 0 0 0]
(5) Moaze () Moa1s 0 e 0

(2.28¢)  [MoaBblkk+1 =

("0 Moars (*7") Moag—1ys -+ (3~1) Moa1s 0,

(8)52 0 0-- 0
(2 28d) [Mﬁb] ((1)) M&GI? (1)62 ... 0
' Oa lk,k —
A (M (e

Using the notations (2.28) we can write (2.27) in the form
Aa a MAa 0 Bb
(229) |:6y :| — M |:dy :| — |:[ 0b ]k‘f‘l’k"‘l [ ]k[;‘glak:| |:dy :| .
OPaa dpq [MoaBb)k,k+1 Moy i,k ] | dPgo

The first request to By is that their elements are transforming as tensors,
ie.,

(2.30) sy2% = BY 5y, 6paq = B%0paa, A =0k, a =1,k

Theorem 2.5. The elements of the special adapted basis By are transforming
as tensors (i.e., (2.30) are satisfied) if and only if the following relations are
satisfied:

(M) = [BL) Mg AL ]
(2.31) [Moaps) = [BE [ Mow s |[AY ] + (B |[M{ ) [ By

(M) = [BYTIMITICh].

Proof. (2.30) can be written in the matrix form as follows:

(2.32) mel] - {[Bgl]kJrl,knLl 0 } [@A“} B M. [dy“} |
Paa’ 2k+1,1 0 [B& kx| | 0Paa dpq
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where (2.29) was used. On the other side using (2.29) and (2.16) we have
[ we ]
The comparison of (2.30) and (2.33) gives
(2.34) M'T = B'M = BM'T = M,
where B is (B’)~L.
The explicit form of the above equation is

[[M&‘,“]kﬂ,kﬂ [O]k—f—l,k] _ [[Bff/]kﬂ,kﬂ [O]k,—i-l,k} "
[Moagslinrr [Mog ik 0 (B Jk.k

‘[[Agl]k:—i-l,kntl 0 }
[Boo k1 [CE ) kk

(B MG Tt ki Okt | |:[Agl]k—|—1,k+1 [O]k+1,k:|
[BY Moo Bv )k, k+1 [BE Mé’f/]k,k [Boo ko1 [Colik

[BZL/M&?/AZ/]HLQH [0l k+1,
[BY Moo gy A2 + B2 Moﬁ:/ By ]k k41 [BE M(if’/ Colkk

(M N1 1 [0]k+1,k
(Moo B |k ke+1 [M(’?fl]k,k

From the above equation it follows (2.31). O

The other request to Bfy; and Brg is to be inverse to each other.
The following theorem gives answer on this condition.

Theorem 2.6. The necessary and sufficient condition that the special adapted
basis Bfy be dual to Byu, when the natural basis Bry is dual to Bry is

(2.35) MN =1.

5yAa dyb
=M
|:5p04a:| |:dpb ’

[04a(y)5*(p)] = [086(y)0""(p)] - N,

Proof. From

it follows
5 Aa wa
{5/ ] [04a(¥)0" (p)]1,2k+1 = L2k41,2k+15
Paa 2k+1,1
d b
M {dzy?b} [086()0”" (P)IN = M - Ik 112541, N = MN.

From the above it follows (2.35) O
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3. THE J STRUCTURE IN (GLH)™*)

Definition 3.1. The k-tangent structure J is a F linear mapping (F denotes
the modul of C* functions on (GLH)("*))
J: T(GLH)™® — 7(GLH)"»
defined by
JOoa = 014, JO1a = 2024, - - ., JO(i—1)a = kOka, JOka = 0,
31) Jo' =07, Jo* =20%,... Jo D = (k —1)9", Jok* = 0.

From Definition 3.1 it follows

Theorem 3.1. The structure J defined by (5.1) in the natural basis BLu and

By can be expressed in the matriz form as follows:

3.2 J = aam)a @ o |2
32) ~ oIl |
where
J1 0
3.3 J] =
(3.3 =10
0 0 --- 071 0 0 --- 07
1680 -+ 0 1650 - 0
(34) Ji= |0 207+ 0 Jy— |0 205 0
[0 0 kO], [0 0 ---(k—l)éfbo_k,k

From (3.4) it follows
(3.5) JE=0, JFl=0

and from (3.3) and (3.5) it follows J* = 0.
The explicit form of (3.2) is

J = O1a @ dy°® + 2050 @ dy'® + - - + ke @ dylF— D

(3.6) 9 3 k
+ 07 @ dp1a +20°" @ dpaq ++ -+ (K —1)0™ @ dp(r—1)a-

Proof. From the duality of By and BﬁH it follows:
JBop = (O1a © dy", op) = Oradyy = O
JOu, = <282a X dyla, 8lb> = 282a(5g = 2821), ...
Jalb — <82a ® dpla,81b> — 821163 — 82b, O
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Theorem 3.2. If the structure J defined by (3.1), or equivalently by (3.2)-(3.4)
is expressed in the special adapted bases By and By then it is determined by
the same matriz J as (3.3), (3.4), or

5.7) J = a0 )] © [

The explicit form of (3.7) is
J =010 ® 0y° + 2020 ® 5y + -+ + kb @ SyFTD7
+ 6% ® 0p1a + 20° @ Opaa + -+ + (k — 1)6" @ pgr_1)a-

6be
dpgb ] '

(3.8)

from which follows
J50a = 510,’ J(Sla = 252(17 ) Jé(kfl)a = k(skaa J(Ska = 07

3.9
B9 ypa_ 0%, J8% =26%, .. JoUY = (k — 1)s™, J5* = 0.

Proof. We shall prove only some of the above equations, the others can be proved
using the same method and the mathematical induction. From (2.18) and (3.1)
we get

0 1 k—1 k—1)b
JT80q = (0)81“ — (O)Ngj;aaga e ( . >N(§a Oy
0 k—2
- (O) Noa1p0?" — -+ — ( 0 >N0a(k:—1)b(k —1)0" =614
1 2 E—1 _
Jb1 = (1) 200, — ( 1) NE305 — oo — < | )Ng’; D ke
1 2 k—2
- (1) Noa120% — (1) Noazp39'® — -+ — ( 1 )NOa(k2)b(k —1)o*
= 2694, ...
J6ra =0
a 0 a 1 a k-1 a a
Jote = (0)02 - (O)Ngb 2030 — ... — ( 0 )N(Ok_l)b(k — 1) = 42
1 2 k—2
J§%" = (1) 20 — (1> NJE30* — ... — ( . >N8f_2)b(k —1)9% =25, ...
J&ke = 0.

Theorem 3.3. For the k-tangent structure J determined by (3.6) we have
dy® T =0,dy""J = dy®, dy*J =2dy", ... dy"*J = kdy*~ D
dp1yJ = 0, dpayJ = dp1p, dpsyJ = 2dpay, - . -, dpryJ = (k — 1)dp(p—1)p-

The proof follows from (3.6) and the duality of Bry and Bjy.

(3.10)
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Theorem 3.4. For the k-tangent structure J determined by (3.8) we have
oyT = 0,6y"T = 5y, 6y°0 T = 26y, ..., 5y T = k6FTIY,
dp1vJ = 0,0papJ = 6p1p, 6p3p = 2pap, ..., 0pre = (K — 1)6p(i—1)p-

Proof. The proof follows from (3.8) and the duality of Bfy and Brg. It can be
proved directly using (3.10), (2.27) and the duality of Bf; and Bry. We have
for instance

5y J = dy™J =0
1
5y1aJ — <1)dy0a — 5y0a

Vi =2

3
2) Mgg2dy'® + (1) Mgdy®® = 36>, ...,

2 2 2
Moa2pdy®® + <2) Moa1p2dy™® + (1> Mgldpyy + <2> 2dpop = 26p2q

3 3
Moazpdy® + <2) Moazp - 2dy** + (3) Moy - 3dy*® +

(2
(5
(o)
6p2ad = (1) Moarsdy™®J + G) dp2qJ = G) Moa1pdy® + G) dp1a = 0p1a
(1
(1
(1)

3 3
Mgbdpyy + <2> Mp? - 2dpay + (3> - 3dpay, = 36p3a, - - - -
O

Definition 3.2. The k-tangent structure J = J7 is the adjoint map of the
k-tangent structure J and it is a F linear mapping

J : T*(GLH)™®) — T*(GLH)"™.
The following relations are valid:
Jdy™ =0, Jdy'* = dy°*, Jdy** = 2dy'*, ..., Jdy** = kdy'* 1

(3.11) . i g
Jdpia = 0, Jdp2q = dp1a, Jdpse = 2dpaq, . . ., Jdpre = (K — 1)dp—1)a-

Theorem 3.5. The k-tangent structure J in the natural bases Bry and BEH
can be expressed in the matriz form as follows:

(3.12) J = [dy*dpaa][J] ® [2’35(%)] ,
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where

(3.13) [J] = [‘71 jg] :

0

0

(3.14a) Jy=|00 035 0
; 5

0

d k41,641

(3.14b) Jp,= (0 0 0 30 0

: (k—1)o¢
00 0 0 0

Ak

or in the explicit form

(3.15) J = dy’* @ 014 + 2dy*® @ Boq + - + kdy* e @ 9y
' + dpra ® 0% + 2dpag @ 0% + -+ + (k — 1)dp(_1)q @ O,

Proof. From the duality of Bry and Bjy and (3.15) it follows (3.11). From

(3.14) it follows J,* = 0, J5=! = 0 and from (3.13) we have J* = 0, which gives

the name of the k-tangent structure. O

Theorem 3.6. For the k-tangent structure J determined by (3.11) we have:
aOa,j = 81(17 alaj = 282@7 ceey a(k—l)aj = kakav 8kaj =0,

3.16 - - - _

(3.16) oteg =09%, 920 J=29%,. ..  9%k"VeJ= (k—-1)9%, o*J=0.

Proof. The proof follows from (3.15) and the duality of BLy and B . O

Theorem 3.7. For the k-tangent structure J the following relations are valid:
Joy% =0, Joy'e =6y’ ..., JoyF = koyF—De,

Jopia =0, JOp2a = pras---, JOPka = (k — 1)0p(—1)a-

Proof. We have
_ 5yAa j5yAa _ dbe
J = | - JM ,
|:5po¢a :| |:J5po¢a dpﬁb

(3.17)

where

) ] L
0 Jo| | Moapy MP? JoMoapy JoME? |
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SO AN T SR
2 My 200)May 2(3)05 - O
[le(I)?Ja] = : )
RS Moaws k(") Mg ™" k(1)
i 0 0 0
G (8 0 0]
2(0)Moazo — 2(3) Moazo 2(5)05 -+ 0
[JoMoaps) = : : ;
(k= 1)(*5") Moagk—1)0 (k= 1) (32108
L 0 0 0 0 1
()M, ()35 0 - 0]
2 228 o
[ 12 Mgy) = ; :
(k= 1)(*5") Mg (k= 1) (:21)0
L 0 0 0 0 i
If we calculate
Bb
s
dpgp
and compare the obtained relations with (2.27) we obtain (3.17). O

In the similar way it can be proved:

Theorem 3.8. For the k-tangent structure J determined by (3.11) the following
relations are valid:

80aT = 61a,01a] = 2024, - -, 8(k—1)ad = kOkar Ohad = 0

3.18 _ _ _ _
(3.18) §lag =g% 620 =25%, ... 6V ] = (k — 1)§%, 68T = 0.
4. THE LIOUVILLE VECTOR AND 1-FORM FIELD
If
M(yoaa ylaa s 7yka7p1a7p2a7 o 7pka)
and

M/(yOa + dyOa, yla + dylaa o 7yka + dykaapla + dp1a7p2a + dp2a: -+ s Pka + dpka)
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are two points in (GLH)™*), then the vector M M’ expressed in the natural basis
T(GLH)(™) has the form

MM’ =dr = dy** 8o, + dy* 010 + - - + dy"* O
(4.1) + dp1a0'® + dpaad** + - + dppa 0

~ ™ dpea) | 220

Theorem 4.1. The vector dr is coordinate invariant.
Proof. Using (2.20), (2.29) and (2.35) we have
6yAa _ dyAa Aa _ Aa T
L&)aa} =M [dpaa = [0y 0paa) = [dy”*dpaa] M
aa oa 6 a (9 a
5000] = Da,0%IN = | ] = 7| 02

so we have

(12) [0y 0poca] {gﬁggﬂ = [dy**dpaa] M - NT {ggg]

- [dyAadpaa] [g’:g] =dr,

because MTNT = (NM)T = (MN)T = IT = I (T-transposed).
The comparison of (4.1) and (4.2) results

dr = dy®* 8o + dy'“O1a + -+ + dy" Oka
+ dp1,0'" 4 dp2a0°® + - - - + dppa 0™
= 0y"00q + 6y 10 + -+ + 6y Spq
+ 5p1a6"" + 62002t + -+ + Opad™e.

(4.3)

Let us consider

dpaa

the transpose of dr, as a ”one-form field” on T*(GLH)("*). Using (4.2) and (4.3)
or can be written in the form:

o1 = 00ady® + O1ady™® + - -+ + Opady™
+ 0"dp1a + 0*dpaa + -+ + 0" dpra
= 60a0y"" + 6120y + - -+ + Spa6y™
+6'*6p1a + 6% 0p2a + -+ + 6 Oppa.

(4.4) 51 — drT — [Oaa(y)0° (1) {dy’q“} ,

(4.5)
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In the first part of (4.5) dr is expressed in B*(GLH)™*)  the natural basis
of T*(GLH)(™*) in the second part 7 is presented in B*(GLH)(™¥), the special
adapted basis of T*(GLH)™*) . The components of dr are not functions, but
differential operators, but they are transforming in the same way as components
of covector, so the name ”one-form field”.

Remark 4.1. From (4.3) and (4.5) it is obvious that dr and ér have the same
components in natural and special adapted bases. The same property have the
structures J and J. This fact allows us that the action of J on ér and J on dr
can be written by the equations of the same from in both coordinate system.

In (GLH)(™® it is difficult to construct vector fields and 1-form fields, but
using dr, or, the structure J and J it can be construct one family of Liouville
vector and 1-form fields.

Definition 4.1. The Liouville vector fields I'g,I'1, s, ..., T} are defined by

(4.6) _

The above definition is in papers [18, 19, 20, 16, 21, 23] theorem, but it seems
to be the most natural definition.
From (4.6) it follows

JTo=ToJ =0, JOy=T1J = kT, JTs=Tad = (k- 1),

(4.7) _ T ST
o JTh = Tend = 2Tk o, JOp =T%J =Th_1.

Theorem 4.2. The Liouville vector fields T'o,T'1,..., T from (GLH)(”’“) ex-
pressed in the special adapted basis B of T(GLH)(”’“) have the form

(4.8a)

1 0

k—1 k—2
( ) >5p2a5ka+< 0 )5p1a5<k—1>a,...

+

- k k—1 k—2

Iy = ( >5y2a5ka + ( )5y1a5(k1)a + ( >5y0a5(k2)a
+
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The proof follows from (4.6).

Theorem 4.3. The Liowville vector fields To,T'1,..., Ty in (GLH)("®) in the
natural basis B of T(GLH)"™) have the form obtained from (4.7) if

6yAa7 dPaasdaa, 6,

are substituted by dy®, dpaa, Oaa, 0“® respectively for every A =0,k, a = 1, k.

Proof. The proof follows from Remark 4.1. The first equations obtained in such
way have the form

Iy= (’g) dy® 0 = dt Kg)ylaa,m] = Tpdt
_ k k—1 k—1
I = (1)dylaaka + ( 0 )dyoaﬁ(km + ( 0 )dpla(?’“

k k—1 k—1 _
=dt [(1>y2a8ka + ( 0 )ylaa(k—l)a + ( 0 )pzaaka} =Tidt,....

In such a way using the relations dy?® = y(ATDedt, dp,, = Plat1)adt, A =
0,k —1,a =1,k — 1, we obtain easily the following relations:

Cy=Tdt, A=0,Fk,

where I, - are the Liouville vector fields given in the form which is wellknown
([9, 13, 10, 18, 19, 20, 16, 21, 23]). d
The difference arises from the fact, that here the notation y4¢ = d;g’:a is

A_ Oa
used instead of usual yAa = % ddtyA .
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Definition 4.2. The Liouville 1-form fields I'g,I'1, ', ..., 'y are defined by

Fk:(57” JFA:FAJ:(k‘—(A—l))FA_l, A:L—k

(4.9)
JTg =T =0.

From (4.9) it follows

JTo=ToJ =0, JTy=T1J=kTy,...,

4.1
(4.10) Jlpo1 =Tk =22, JI'py =T =1%_1.

Theorem 4.4. The Liouville 1-form fields To,T1,Ta, ..., Ty from (GLH)(")
expressed in the special adapted basis B* of T(GLH)("k) have the form:

(4.11)
k
F0 - (O) 5ka6y0a7
k k—1 k—1
1—‘1 = (1)5ka6y1a + < 0 )6(k—1)a5y0a + < 0 >5ka5plaa

k-1 k—2
Skaldy>® + ( 1 )5(k1)a5yla + < 0 )5(k2)a5y0a

k—1 k—2
+ < 1 )5ka6p2a + ( 0 )5(k_1)a5p1a7 )
_I_

k k—1
)5ka5y(k1)a + (k . 2) 5(k—1)a5(k72)a + -

2 1
5(15 la 5a6 Oa
(1> 2a90Y —I—(O) 1a0Y

k—1\ . k—2\ o 11 1 o,
<k B 2)5k OP(k—1)a + (k 3 3> 8 D% p(_zya + - + (0) 526p1a;

k—1\ 4, k—2\ (ho1a 0\ 14
+ (k_ 1)5k OPka + (k_z)é““ Depe—rya + - + (0)51 Pia-

Theorem 4.5. The Liouville 1-form fields To,T1,..., T in (GLH)"™®) in the
natural basis B* of T*(GLH)™®) have the form obtained from (4.18) if daa,
89 Sy, Spaa are substituted by Oaq, 0%, dy?®, dpaa respectively for every
A=0,k, a=1,k.

The proof follows from Remark 4.1.
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5. THE SPRAYS AND ANTISPRAYS IN (GLH)™*)

The tangent vector to the curve

(5.1) c(t) = (" (), 4" (1), - y" (1), 1a(t), P2a (D). - - Pa())
is the vector dr given by (4.3) and the tangent ‘1-form’ of the curve c(t) is dr
defined by (4.5).

Definition 5.1. A k-spray on (GLH)(™*) is a vector field S € T(GLH)™*) with
the property

(5.2) SJ=JS=Ty_1,
where (see 4.8)
Tio1 = 0y 014 + 20y %00 + - - - + Koy D5, +
0p1a02® + -+ + (k — 1)6p(r—1)ad™™.
Theorem 5.1. The vector field S given by
(5.3) S =Tk + ady®® e + B0p1a6~®

(v, B real numbers) is a k-spray on (GLH)(™*),

Proof.
JS = JT) + o J6y"*)oka + B(J0p1a)0** = JT) = Th_y
SJ =TpJ 4+ ady®(Okad) + B6p1a(6¥*J) = TpJ = Tx_1.
[l
From the above it follows that S given by (5.3) satisfy (5.2), i.e., it is a k-spray.

Theorem 5.2. The vector field S is a tangent vector to the curve c(t) given by
(5.1) if in (5.3) a =0, B =0, i.e.
S =T} = dr.
The vector field S in the natural basis B has the form
S = dy* 0y + - - - + dy* O + dp1,0M + - - + dppO*°.
If we take
dyFe = —kGRa(y0a yla, L y(=Daygy
dpra = —kHya (y°% v,y D% pia L pra)dt,

where the functions G** and Hj, have the same transformation laws as dy*®
and dpy, respectively, then the integral curve of S is the solution of SODE

dyka
(5.4) dt
+ kaa(yoa, .. 7y(k_1)“,p1a, e yPka) =0

+ kaa(y0a7 yla, o 7y(k—l)a) -0
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with corresponding initial conditions.

Theorem 5.3. The vector fields S,To,T1,...,T and the structure J are con-
nected by

JS=S8J=T)_1, J2S=S8J*=21T}_o,...
JES = SJF = KTy, J*18 = SJ" ! =0,
Definition 5.2. A k-antispray field on (GHL)("™*) is a 1-form field S €
T*(GLH)™*) with the property
(5.5) SJ=JS =T,
where
Tt = 61a6y°" + 20240" + -+ + (k = 1)6(j—1)a0 " 2* + kdjady 1
+6%2p1g + -+ (k= 2)6FVp a0 + (k= 1)556p(r_1)a.

Theorem 5.4. The I-form field S given by
(5.6) S =T + arady’® + 5654 6p1,
is a k-antispray on (GLH)("),
Proof. We have

JS = JTy + a(J0ka)0y " + B(T6*)6p1a = JTk = T
SJ =TxJ + adra(60aJ) + B6*(6p1a]) = Td = Th_1.

From the above it follows that S given by (5.6) satisfy (5.5), i.e., it is k-
antispray on (GLH)(™), O

Theorem 5.5. The k-antispray field S on (GLH)("®) is parallel to the tangent
1-form of the curve c(t) denoted by or if in (5.6) we take o = 0, f = 0, i.e.
S =T.

Proof. From the last equation of (4.10) and (4.5) it follows I'y, = dr. O

Theorem 5.6. The k-antispray S, the Liouville 1-form fields T'g,T'1,..., 'y and
the structure J are connected by

SJ=JS =T)_1 SJi = J'S =ill)_i,...
SJ2=J28 =2_o  SJk=JkS = kIT,,
SJ3 = J3S = 3IT}_s,... STFHL = JE+1g = 0.
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