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Abstract. In this paper we identify some natural CR-foliations on the
tangent bundle of a Finsler space and next, some cohomological aspects of
these CR-foliations in relation with corresponding results for CR-submanifolds
of almost Kähler manifolds are studied.

1. Introduction and preliminaries

1.1. Introduction. The study of CR-submanifolds of Kähler manifolds was
initiated in [2] and [9]. Some aspects concerning to cohomology of CR-
submanifolds of Kähler manifolds was studied in [8]. In this direction the
cohomology of such submanifolds in a locally conformal Kähler manifolds was
studied in [10], [14] and in the case of locally product manifolds a similar study
is given in [19].

On the other hand in the paper [4] Bejancu and Farran have initiated a study
of interrelations between the geometry of foliations on the tangent manifold
of a Finsler manifold and the geometry of the Finsler manifold itself. The
main idea of their paper is to emphasize the importance of some foliations
which exist on the tangent bundle of a Finsler manifold (M,F ), in studying
the differential geometry of (M,F ) itself. Other generalizations are studied in
[18].

From the other point of view the study of lifted foliation to the tangent
bundle of a foliated manifold in relation with Lagrange or Finsler metrics was
initiated in [20]. In this direction, recently in [15] is given an identification of
Riemannian foliations on the tangent bundle which are compatible with SODE
structure and some geometric properties of such foliations are studied. Also,
in this direction, a cohomology of foliated Finsler manifolds is studied in [16]
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and some vertical tangential invariants for some foliated Lagrange spaces are
introduced in [12].

Taking into account that the tangent manifold of a Finsler space has a model
of an almost Kähler manifold (TM0, G, J), the aim of this paper is to identify
some natural CR-foliations on the tangent manifold TM0 and to study some
cohomological properties of these CR-foliations in relation with corresponding
results for CR-submanifolds of Kähler manifolds.

The paper is organized as follows: In the preliminary subsection we recall
some basic facts on Finsler manifolds and we present the almost Kähler model
of the tangent manifold TM0 of a Finsler space (M,F ). In the second section
we present the vertical Liouville distribution and we briefly recall some natural
foliations on the tangent manifold TM0. In the third section using the vertical
Liouville vector field and the natural almost complex structure on TM0 we give
an adapted basis in T (TM0) and we identify a CR-foliation on TM0 given
by the orthogonal complement in T (TM0) of the line distribution spanned
by the vertical Liouville vector field. In fact we have that the c–indicatrix
I(M,F )(c) of a Finsler space (M,F ) is a CR–submanifold of (TM0, G, J).
Then, by applying the general theory for cohomology of CR-submanifolds of
an (almost) Kähler manifold, [8], we obtain some cohomological properties of
the c–indicatrix I(M,F )(c). In the last section we consider the case when the
Finsler space (M,F ) is endowed with a regular foliation F which is compatible
with the Finsler structure in a certain sense. Then, we identify a canonical CR-
foliation on TM0 produced by the lifted foliation F∗ on the tangent manifold
TM0 of the foliation F on (M,F ) and we also present some cohomological
aspects of this CR–foliation.

1.2. Preliminaries. Let (M,F ) be a n–dimensional Finsler manifold with
(xi, yi), i = 1, . . . , n the local coordinates on TM (for necessary definitions see
for instance [1, 6, 17]).

The vertical bundle V (TM0) of TM0 = TM − {zero section} is the tan-
gent (structural) bundle to vertical foliation FV determined by the fibers of
π : TM → M and characterized by xk = const. on the leaves. Also, we locally

have V (TM0) = span
{

∂
∂yi

}
, i = 1, . . . , n.

A canonical transversal (also called horizontal) distribution to V (TM0) is
constructed by Bejancu and Farran in [5] pag. 225 or [4] as follows:

Let (gji(x, y))n×n be the inverse matrix of (gij(x, y))n×n, where

(1.1) gij(x, y) =
1

2

∂2F 2

∂yi∂yj
(x, y),

and F is the fundamental function of the Finsler space.
If consider the local functions

(1.2) Gi =
1

4
gik

(
∂2F 2

∂yk∂xh
yh − ∂F 2

∂xk

)
, Gj

i =
∂Gj

∂yi
,
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then, there exists on TM0 a n–distribution H(TM0) locally spanned by the
vector fields

(1.3)
δ

δxi
=

∂

∂xi
−Gj

i

∂

∂yj
, i = 1, . . . , n.

The local basis
{

δ
δxi ,

∂
∂yi

}
, i = 1, . . . , n is called adapted to vertical foliation

FV and we have the decomposition

(1.4) T (TM0) = H(TM0)⊕ V (TM0).

If we consider the dual adapted bases {dxi, δyi = dyi + Gi
jdx

j}, then the

Riemannian metric G on TM0 given by the Sasaki lift of the fundamental
metric tensor gij from (1.1) satisfies
(1.5)

G

(
δ

δxi
,

δ

δxj

)
= G

(
∂

∂yi
,
∂

∂yj

)
= gij , G

(
δ

δxi
,
∂

∂yj

)
= 0, i, j = 1, . . . , n.

We also notice that there is a natural almost complex structure on TM0 which
is compatible with G and locally given by

(1.6) J =
δ

δxi
⊗ δyi − ∂

∂yi
⊗ dxi , J

(
δ

δxi

)
= − ∂

∂yi
, J

(
∂

∂yi

)
=

δ

δxi
.

According to [6, 17] we have that (TM0, G, J) is an almost Kählerian man-
ifold with the almost Kähler form given by Ω(X,Y ) = G(JX, Y ), ∀X,Y ∈
X (TM0), and, locally expressed as

(1.7) Ω = gijδy
i ∧ dxj.

2. A vertical Liouville distribution on TM0

In this section, following [3, 4], we present the vertical Liouville distribution
on TM0 as the complementary orthogonal distribution in V (TM0) to the line
distribution spanned by the vertical Liouville vector field Γ = yi ∂

∂yi
, and we

also discuss about some natural foliations on TM0.
According to [5, 6, 17], from the homogeneity condition of the fundamental

function of the Finsler manifold (M,F ) we have

(2.1) F 2 = gijy
iyj,

∂F

∂yk
=

1

F
gkiy

i,
∂gij
∂yk

yi = 0, k = 1, . . . , n.

Hence it results

(2.2) G(Γ,Γ) = F 2.

By means of G and Γ, we define the vertical one form ζ by

(2.3) ζ(X) =
1

F
G(X,Γ) , ∀X ∈ Γ(V (TM0)).

Denote by {Γ} the line vector bundle over TM0 spanned by Γ and consider the
vertical Liouville distribution as the complementary orthogonal distribution VΓ
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to {Γ} in V (TM0) with respect to G. Hence, VΓ is defined by ζ, that is we
have

(2.4) Γ (VΓ) = {X ∈ Γ(V (TM0)) : ζ(X) = 0}.
Thus, any vertical vector field X = X i ∂

∂yi
can be expressed as follows:

(2.5) X = PX +
1

F
ζ(X)Γ,

where P is the projection morphism of V (TM0) on VΓ.
Then the local components of ζ and P with respect to the basis {δyi} and{
δyi ⊗ ∂

∂yj

}
, respectively, are given by

(2.6) ζi =
∂F

∂yi
, P j

i = δji −
1

F
ζiy

j,

where δij are the components of the Kronecker delta.

Remark 2.1. We notice that the projector P can be related in terms of the
angular metric tensor of the Finsler space (M,F ), which is defined by

(2.7) hij = gij − ζiζj.

More exactly, by (2.6) and (2.7) it is easy to see that P j
i = gjkhki.

Now, by (2.6) the rank of the projector P is n − 1 and taking into ac-
count that P j

i y
i = 0 it follows that VΓ is an (n − 1)–dimensional vertical

sub-distribution, orthogonal to Γ, locally spanned by the vertical vector fields{
∂
∂yi

}
, i = 1, . . . , n, where

(2.8)
∂

∂yi
=

∂

∂yi
− ζi

F
Γ = P j

i

∂

∂yj
.

Taking into account that Γ(F ) = F and ∂F
∂yi

= ζi (which easily follows from the

homogeneity of the Finsler structure F ), we obtain that an important property
of the vertical Liouville sub-distribution VΓ is the following:

For any Y ∈ Γ(VΓ) we have Y (F ) = 0.

Theorem 2.1 ([3, 4]). The vertical Liouville distribution VΓ is integrable and
hence it defines a foliation on TM0 denoted by FVΓ

.

Remark 2.2. The Theorem 2.1 can be also obtained using an argument similar

to [7]. More exactly, if ∂
∂yi

, ∂
∂yi

∈ Γ(VΓ) ⊂ Γ(V (TM0)), then

(2.9)

[
∂

∂yi
,
∂

∂yj

]
= Ak

ij

∂

∂yk
+BijΓ,

for some locally defined functions Ak
ij and Bij, since V (TM0) = VΓ ⊕ {Γ} is

integrable. Now, if we apply the vector fields in both sides of formula (2.9)

to the Finsler function F and using the fact that Γ(F ) = F and ∂F
∂yi

= 0, we
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obtain BijF = 0. This implies that Bij = 0, and then the formula (2.9) says
that the vertical Liouville distribution VΓ is integrable.

By direct caculations, we obtain the following relations for the Lie brakets
of vertical vector fields adapted to the decomposition V (TM0) = VΓ ⊕ {Γ},

(2.10)

[
∂

∂yi
,
∂

∂yj

]
=

1

F

(
ζi

∂

∂yj
− ζj

∂

∂yi

)
,

[
∂

∂yi
,Γ

]
=

∂

∂yi
,

for all i, j = 1, . . . , n, and the first relation of (2.10) says also that VΓ is
integrable.

Let us consider now the following complementary orthogonal distribution to
{Γ} in T (TM0):

(2.11) {Γ}⊥ = {X ∈ Γ(T (TM0)) : G(X,Γ) = 0}.

According to [4], the distribution {Γ}⊥ is integrable and we also have the
decomposition

(2.12) {Γ}⊥ = H(TM0)⊕ VΓ.

Proposition 2.1 ([4]). i) The foliation F{Γ}⊥ determined by the distribu-

tion {Γ}⊥ is just the foliation determined by the level hypersurfaces of the
fundamental function F of the Finsler manifold, denoted by FF and called
the fundamental foliation on (TM0, G).

ii) For every fixed point x0 ∈ M , the leaves of the vertical Liouville foliation
FVΓ

determined by the distribution VΓ on Tx0M are just the c–indicatrices
of (M,F ):

(2.13) Ix0(M,F )(c) = {y ∈ Tx0M : F (x0, y) = c}.

iii) The foliation FVΓ
is a subfoliation of the vertical foliation FV .

3. A fundamental CR–foliation on (TM0, G, J) and the
cohomology of the c–indicatrix bundle

In this section, using the vertical Liouville vector field Γ and the natural
almost complex structure J on TM0, we give an adapted basis in T (TM0).
Next we prove that the c–indicatrix bundle I(M,F )(c) of (M,F ) is a CR–
submanifold of the almost Kählerian manifold (TM0, G, J) and we study some
cohomological properties of I(M,F )(c) in relation with classical cohomology
of CR–submanifolds, [8].

For the natural almost complex structure J on T (TM0), we consider now

the new local vector field frame in T (TM0) as
{

δ
δxi , ξ,

∂
∂yi

,Γ
}
, where

(3.1) ξ = J (Γ) = yi
δ

δxi
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and

(3.2)
δ

δxi
= J

(
∂

∂yi

)
=

δ

δxi
− ζi

F
ξ = P j

i

δ

δxj
.

As in the previous section it follows that Hξ := span
{

δ
δx1 , . . . ,

δ
δxn

}
is an

(n−1)–dimensional horizontal sub-distribution, orthogonal to {ξ} in H(TM0),
where {ξ} is the line distribution spanned by the horizontal Liouville vector
field ξ.

Since the vertical Liouville vector field Γ is orthogonal to the level hypersur-

faces of the fundamental function F , the vector fields
{

δ
δxi , ξ,

∂
∂yi

}
are tangent

to these hypersurfaces in TM0, so they generate the distribution {Γ}⊥. The

vertical indicatrix (Liouville) distribution VΓ is locally generated by
{

∂
∂yi

}
, and

the vertical foliation has the structural bundle locally generated by
{

∂
∂yi

,Γ
}
,

i = 1, . . . , n. Also, we have the decomposition

(3.3) {Γ}⊥ = {ξ} ⊕Hξ ⊕ VΓ.

For any c > 0, let us consider now the c–indicatrix bundle over M , given
by I(M,F )(c) =

⋃
x∈M Ix(M,F )(c) and we briefly recall the CR–submanifold

notion.
According to [2, 5], if (Ñ , g̃, J̃) is an (almost) Kähler manifold, where g̃ is the

Riemannian metric and J̃ is the (almost) complex structure on Ñ , then N is a

CR–submanifold of Ñ ifN admits two complementary orthogonal distributions
D and D⊥ such that

i) D is J̃-invariant, i.e., J̃(D) ⊂ D;

ii) D⊥ is J̃-anti-invariant, i.e., J̃
(
D⊥) ⊂ (TN)⊥.

D is called maximal complex (holomorphic) distribution of N and D⊥ is called
totally real distribution of N .

We have

Proposition 3.1. Let i : I(M,F )(c) ↪→ TM0 be the immersion of I(M,F )(c)
in TM0. Then I(M,F )(c) is a CR–submanifold of TM0 with holomorphic
distribution given by D = Hξ ⊕ VΓ and the totally real distribution given by
D⊥ = {ξ}.

Proof. We have that {Γ}⊥ = {ξ}⊕Hξ⊕VΓ is the tangent bundle of I(M,F )(c).
Taking into account the behaviour of the almost complex structure J of
(TM0, G) we have

J (Hξ ⊕ VΓ) = VΓ ⊕Hξ , J ({ξ}) = {Γ} =
(
{Γ}⊥

)⊥
which end’s the proof. �
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We recall that a r–dimensional distribution D on a Riemannian manifold
(M, g) is minimal if the mean-curvature vector field H on D vanishes identi-
cally, where

H =
1

r

r∑
i=1

(∇Xi
Xi)

⊥,

where ∇ is the Levi-Civita connection on (M, g), {X1, . . . , Xr} is an orthonor-
mal frame ofD, and (∇XY )⊥ denotes the component of∇XY in the orthogonal
complementary distribution D⊥ of D in TM .

It is well known, see [9, 8], that the totally real distribution of a CR-
submanifold of an (almost) Kähler manifold is integrable and its maximal
complex (holomorphic) distribution is minimal. Then we obviously have that
the line distribution {ξ} is integrable, and the distribution Hξ⊕VΓ is minimal.

Let ωi be the dual 1–forms of the vertical vector fields ∂
∂yi

and θi be the

dual 1–forms of the horizontal vector fields δ
δxi , that is ωi

(
∂

∂yj

)
= δij and

θi
(

δ
δxj

)
= δij, respectively. It is easy to see that we have the following relations:

(3.4) δyj = P j
i ω

i and dxj = P j
i θ

i.

As we already noticed the vertical vector fields
{

∂
∂yi

}
, i = 1, . . . , n

are linear dependent and we consider the linear independent system{
∂

∂y1
, . . . , ∂

∂yi−1 ,
∂

∂yi+1 , . . . ,
∂

∂yn

}
that generates VΓ. Consequently, by means

of J , we get the linear independent system of horizontal vector fields{
δ

δx1 , . . . ,
δ

δxi−1 ,
δ

δxi+1 , . . . ,
δ

δxn

}
that generates Hξ.

Then, the general theory for cohomology of CR–submanifolds of an (almost)
Kähler manifolds, [8], leads to

Theorem 3.1. The differential form

ν = ω1 ∧ . . . ∧ ω̂i ∧ . . . ∧ ωn ∧ θ1 ∧ . . . ∧ θ̂i ∧ . . . ∧ θn

is closed and it defines a cohomology class

(3.5) [ν] ∈ H2n−2 (I(M,F )(c)) .

Definition 3.1. The cohomology class [ν] is called the canonical class of the
c-indicatrix bundle I(M,F )(c) of a Finsler space (M,F ).

Remark 3.1. The form ν which defines the canonical class can be expressed in
the form

ν =
(−1)n−1

(n− 1)!
(i∗Ω)n−1 ,

where Ω is the fundamental form given in (1.7).

Since I(M,F )(c) is compact when M is compact, according to [8] we have
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Corollary 3.1. If the cohomology groups H2k(I(M,F )(c)) = 0 for some k < n
then either holomorphic distribution Hξ⊕VΓ is not integrable or its totally real
distribution {ξ} is not minimal.

We notice that the Poincaré-Cartan 2–form associated to a Finsler function
has rank 2n−2 and it play an important role in projective metrizability problem
in Finsler geometry, see [7, 11]. In the end of this section, as in the case of
Cartan manifolds [13], we prove that the differential form ν that represents
the canonical class of the c–indicatrix bundle I(M,F )(c) of a Finsler space
(M,F ) can be related in terms of the Poincaré-Cartan 2–form associated to
the Finsler function F which is defined as follows:

Using the Frölicher-Nijenhuis formalism, for the tangent structure J on
TM0 locally given by J = ∂

∂yi
⊗ dxi we consider the differential dJ = iJ ◦ d−

d◦iJ , where J is considered as a vector valued 1–differential form. Then, using
the horizontal projector h = δ

δxj ⊗dxj and the vertical projector v = ∂
∂yj

⊗ δyj,

by direct calculus we obtain

dJF = iJ dF = iJ (dhF + dvF ) = iJ ζ = ζidx
i,

where we have used dhF = 0 and dvF = ζ. Now, taking into account that
hij = F ∂2F

∂yi∂yj
and using again dhF = 0, we obtain the following Poincaré-

Cartan 2–form associated to the Finsler function F

(3.6) ddJF =
1

F
hijδy

j ∧ dxi.

Using the relations (3.4) and the fact that hijP
j
l = hil, we have the following

expression of the Poincaré-Cartan 2–form

(3.7) ddJF =
1

F
hlkω

l ∧ θk.

Finally, taking the n− 1 power of the above 2–form, we get

(3.8) ν = α(ddJF )n−1,

where

α =
(−1)

(n−1)(n−2)
2 F n−1

(n− 1)! det H̃
.

and H̃ = (hkl), l, k ∈ {1, . . . , i− 1, i+ 1, . . . , n}.

Remark 3.2. Let us consider a conformal change of the Finsler structure F

given by F̃ = eσ(x)F , where σ ∈ C∞(M). Taking into account that dJ F̃ =

eσdJF we obtain ddJ F̃ = eσ(ddJF + dσ ∧ dJF ) which leads to

(3.9) ν̃ = ν + (n− 1)α(ddJF )n−2 ∧ dσ ∧ dJF.

The relation (3.9) says that if σ = const., that is F̃ and F are homothetic,
then ν̃ = ν.
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4. CR–foliations on the tangent manifold of a foliated Finsler
space

In this section we consider the case when the Finsler space (M,F ) is en-
dowed with a regular foliation F which will be compatible with the Finsler
structure F in a certain sense. Then, as in the previous section, we iden-
tify and we study from topological point of view a canonical CR-foliation on
(TM0, G, J) produced by the lifted foliation F∗ on the tangent manifold TM0

of the foliation F on (M,F ).

4.1. Foliated Finsler spaces. Let us consider (M,F ) a Finsler space en-
dowed with a m-codimensional foliation F . It follows that there is a partition
of M into (n −m)–dimensional submanifolds, called leaves. In the following,
the indices take the values u, v, . . . = m + 1, . . . , n and a, b, . . . = 1, . . . ,m.
There is an atlas on M adapted to this foliation with local adapted charts
(U, (xa, xu)) such that the leaves are locally defined by xa = const., for all
a = 1, . . . ,m.

The local coordinates on the tangent manifold TM0 are (xa, xu, ya, yu). Gen-

erally, for two local charts (U, (xi)) and (Ũ , (x̃j)), whose domains overlap, on

TM0, in U ∩ Ũ we have

(4.1) ỹj =
∂x̃j

∂xi
yi.

Now, the above relations give the following changing coordinates rules on TM0:

x̃b = x̃b(xa) , x̃v = x̃v(xa, xu),

ỹb =
∂x̃b

∂xa
ya , ỹv =

∂x̃v

∂xa
ya +

∂x̃v

∂xu
yu.

According to [20], [15] the foliation F on M determine a 2m-codimensional
foliation F∗ on TM0, called the natural lift of F to TM0, whose leaves are
locally defined by xa = const. and ya = const.

Taking into account decomposition (1.4), the local base
{

δ
δxa ,

δ
δxu ,

∂
∂ya

, ∂
∂yu

}
adapted to vertical foliation satisfies the following relations in U ∩ Ũ :

δ

δx̃b
=

∂xa

∂x̃b

δ

δxa
+

∂xu

∂x̃b

δ

δxu
,

δ

δx̃v
=

∂xu

∂x̃v

δ

δxu
,

∂

∂ỹb
=

∂xa

∂x̃b

∂

∂ya
+

∂xu

∂x̃b

∂

∂yu
,

∂

∂ỹv
=

∂xu

∂x̃v

∂

∂yu
.

Returning now to the foliation F∗, the tangent bundle TF∗ to leaves, the

structural bundle of this foliation, is locally spanned by
{

δ
δxu ,

∂
∂yu

}
and it is a

subbundle of T (TM0).

Definition 4.1 ([16]). We say that the foliation F on M is compatible with
the Finsler structure F on M if, in every local chart around a point (x, y) ∈
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TM0, the matrix (guv)(n−m)×(n−m) is nondegenerate and the functions Ga are
satisfying the relation

(4.2) Ga
u =

∂Ga

∂yu
= 0, ∀ a = 1, . . . ,m, u = m+ 1, . . . , n.

Proposition 4.1 ([16]). If the foliation F on M is compatible with the Finsler
structure F on M , then the vector fields on TM0 locally given by

(4.3) ξa =
δ

δxa
− tua

δ

δxu
, ζa =

∂

∂ya
− tua

∂

∂yu
,

are orthogonal to
{

δ
δxu

}
,
{

∂
∂yu

}
, with respect to Sasaki-Finsler metric G from

(1.5), where {tua} are solutions of the system gav − tuaguv = 0.

As a consequence of the above proposition, for every vector field X ∈
X (TM0) we have the following decomposition:

X = X i δ

δxi
+ Y i ∂

∂yi

= Xa δ

δxa
+Xu δ

δxu
+ Y a ∂

∂ya
+ Y u ∂

∂yu

= Xaξa + (Xu +Xatua)
δ

δxu
+ Y aζa + (Y u + Y atua)

∂

∂yu
.

The basis

(4.4)

{
ξa,

δ

δxu
, ζa,

∂

∂yu

}
is adapted to foliation F∗ and to vertical foliation FV , too.

The relation (4.2) guarantees that the tangent bundle of the lifted foliation
F∗ admits the decomposition:

(4.5) TF∗ = HF∗ ⊕ V F∗,

where HF∗ = span
{

δ
δxu = ∂

∂xu −Gv
u

∂
∂yv

}
and V F∗ = span

{
∂

∂yu

}
, see [20],

[15].
Also, if we consider T⊥F∗ the orthogonal complement of TF∗ in T (TM0)

with respect to metric G from (1.5), then by Proposition 4.1 we have the
orthogonal decomposition

(4.6) T⊥F∗ = H⊥F∗ ⊕ V ⊥F∗,

where H⊥F∗ = span {ξa} and V ⊥F∗ = span {ζa}. Finally, we obtain the
following orthogonal decomposition:

(4.7) T (TM0) = H⊥F∗ ⊕ V ⊥F∗ ⊕HF∗ ⊕ V F∗.
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4.2. A canonical CR–foliation on (TM0, G, J,F∗). Let us suppose that
the Finsler space (M,F ) is endowed with a foliation F compatible with the
Finsler structure F . Then, we have

Proposition 4.2. The distribution D = V ⊥F∗ ⊕ HF∗ ⊕ V F∗ on TM0 is
integrable and its foliation FD is a CR–foliation on (TM0, G, J).

Proof. IfX, Y ∈ Γ (HF∗ ⊕ V F∗) then we have [X, Y ] ∈ Γ (HF∗ ⊕ V F∗), since
TF∗ = HF∗ ⊕ V F∗ is integrable. Also, by direct calculus we have[

ζa,
δ

δxu

]
=

(
δtva
δxu

− ζaG
v
u

)
∂

∂yv
∈ Γ(D),[

ζa,
∂

∂yu

]
=

∂tva
∂yu

∂

∂yv
∈ Γ(D),

[ζa, ζb] = (ζbt
v
a − ζat

v
b)

∂

∂yv
∈ Γ(D)

which say that D is integrable.
Now, taking into account the behaviour of the almost complex structure J

on δ
δxu and ∂

∂yu
, respectively we easily deduce that

(4.8) J (TF∗) = J (HF∗ ⊕ V F∗) = V F∗ ⊕HF∗ = TF∗.

Also by (4.3) we have J(ζa) = ξa which say that

(4.9) J
(
V ⊥F∗) = H⊥F∗ = D⊥.

Thus, the relations (4.8) and (4.9) say that the foliation FD given by the
integrable distribution D is a CR–foliation on the almost Kähler manifold
(TM0, G, J) with the maximal complex (holomorphic) subbundle given by
TF∗ and the totally real subbundle given by V ⊥F∗. �
Definition 4.2. The foliation FD given by the distribution D = V ⊥F∗ ⊕
HF∗⊕V F∗ on (TM0, G, J) is called the canonical CR-foliation on the tangent
manifold of a Finsler space (M,F ) endowed with a compatible foliation F .

Similarly to the previous section, we have

Proposition 4.3. The distribution V ⊥F∗ is integrable.

Proposition 4.4. The distribution TF∗ is minimal.

Consequently, we have

(4.10) ζbt
v
a − ζat

v
b = 0.

Definition 4.3. The foliation given by the integrable distribution V ⊥F∗ is
called the canonical subfoliation of the canonical CR-foliation FD on the tan-
gent manifold of a Finsler space (M,F ) endowed with a compatible foliation
F . We denote this foliation by V⊥F∗.
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Let us consider now {dxa, θu, δya, ηu} the cobasis dual to basis (4.4), where

θu = dxu + tuadx
a , ηu = δyu + tuaδy

a.

Theorem 4.1. The differential form

µ = θm+1 ∧ . . . ∧ θn ∧ ηm+1 ∧ . . . ∧ ηn

is closed and it defines a basic cohomology class (with respect to the foliation
V⊥F∗)

(4.11) c
(
V⊥F∗) := [µ] ∈ H2n−2m

b

(
V⊥F∗) ,

where H•
b (F) denotes the basic cohomology of a foliation F .

Definition 4.4. The cohomology class c
(
V⊥F∗) is called the canonical class

of the subfoliation V⊥F∗.

Remark 4.1. The form µ which defines the canonical class c
(
V⊥F∗) can be

expressed in the form

(4.12) µ =
(−1)n−m

(n−m)!
(Ω|D)n−m

where Ω is the fundamental form given in (1.7).

Remark 4.2. The form µ can be considered as a closed leafwise (foliated) form
with respect to the foliation FD, and so

c(V⊥F∗) = c(FD) ∈ H2n−2m(FD).

Since the maximal complex subbundle TF∗ is integrable, then according to
[8] we obtain

Proposition 4.5. If the distribution V ⊥F∗ is minimal then the canonical class
c
(
V⊥F∗) is nontrivial in H2n−2m (FD) and

(4.13) H2k(FD) 6= 0, ∀ k = 1, . . . , n−m.

Corollary 4.1. If the foliated cohomology spaces H2k (FD) = 0 for some k ≤
n−m then V ⊥F∗ is not minimal.

Theorem 4.2. Let V⊥F∗ be the canonical subfoliation of the CR-foliation FD
on the almost Kähler manifold (TM0, G, J). Then the Godbillon-Vey class
GV

(
V⊥F∗) vanishes.

Proof. Since every almost Kähler manifold is in particular an almost locally
conformal Kähler manifold with vanishing Lee form, the result follows by [10],
[14]. �
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