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Abstract. The purpose of this paper is to study the properties of some
special vector fields on generalized quasi-Einstein manifolds. We determine
the conditions for a generalized quasi-Einstein manifold admitting special
vector fields when the Ricci tensor of the manifold satisfies some conditions.

1. Introduction

A non-flat n-dimensional Riemannian manifold (M, g) (n > 2) is said to be
an Einstein manifold if the condition

(1.1) S =
r

n
g

holds onM , where S and r denote the Ricci tensor and the scalar curvature of
(M, g), respectively. Einstein manifolds play an important role in Riemannian
geometry, as well as in general relativity. For this reason, these manifolds have
been studied by many authors.

A non-flat n-dimensional Riemannian manifold (M, g) (n > 2) is called a
quasi-Einstein manifold if its type (0, 2) Ricci tensor S is not identically zero
and satisfies the condition

(1.2) S = ag + bφ⊗ φ

where a and b are non-zero real numbers and φ is a nowhere vanishing 1-form
on M , mentioned as the associated 1-form. The unit vector field U , metrically
equivalent to φ, i.e., specified by

(1.3) g(X,U) = φ(X)

for all X ∈ χ(M), is called the generator of the manifold. This manifold is
denoted by (QE)n.
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Quasi-Einstein manifolds were examined by R. Deszcz et al. in [8]. We
note that this term is used also in a different sense, see [2]. The notion was
generalized by M. C. Chaki and R. K. Maity [5], replacing the real numbers
a, b by non-constant real-valued functions on M and taking U as a unit vec-
tor field. Further generalizations are also known: generalized quasi-Einstein
manifolds [3, 6], super quasi-Einstein manifolds [4], mixed generalized quasi-
Einstein manifolds [1], pseudo generalized quasi-Einstein manifolds [12], and
many others.

Following De and Ghosh [6], by a generalized quasi-Einstein manifold we
mean a non-flat n-dimensional Riemannian manifold (M, g) (n > 2), whose
type (0, 2) Ricci tensor S is of the form

(1.4) S = ag + bφ⊗ φ+ cψ ⊗ ψ,

where a, b, c ∈ C∞(M) the associated scalars with nowhere vanishing b and
c; φ and ψ are nowhere zero 1-forms on M such that the unit vector fields U
and V metrically equivalent to φ and ψ, respectively, are orthogonal, i.e., we
have

(1.5) g(U, V ) = 0, g(U,U) = g(V, V ) = 1.

These vector fields are called the generators of the manifold. Using the sharp
operator ], we can write U = φ], V = ψ]. Such a manifold will be denoted by
G(QE)n. If c = 0, then this manifold reduces to a quasi-Einstein manifold.
Examples of generalized quasi-Einstein manifolds can be found in [7, 11].

2. Special Vector Fields On Generalized Quasi-Einstein
Manifolds

In this section, we examine special vector fields on G(QE)n satisfying some
conditions upon the Ricci tensor. Throughout in the following, ∇ is the Levi-
Civita connection of (M, g).

Let (Ei)
n
i=1 be an orthonormal frame field on M . Then from (1.4) and (1.5)

we obtain

(2.1) r =
n∑

i=1

S(Ei, Ei) = na+ b+ c.

Similarly,

(2.2) S(U,U) = a+ b,

(2.3) S(V, V ) = a+ c.

Definition 2.1 ([13]). A vector field ξ in a Riemannian manifold M is called
torse-forming if it satisfies the condition

(2.4) ∇Xξ = ρX + λ(X)ξ,

where X ∈ χ(M), λ is a 1-form and ρ is a smooth function on M .
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In the local transcription, this reads

(2.5) ∇iξ
h = ρ δhi + ξhλi

where ξh and λi are the components of ξ and λ, and δhi is the Kronecker symbol.

A torse-forming vector field ξ is called recurrent if ρ = 0, and hence

(2.6) ∇Xξ = λ(X)ξ

for all X ∈ χ(M).
If the 1-form λ in (2.4) is exact, we speak of a concircular vector field ; if

λ = 0, then ξ is called a special concircular vector field. In the latter case,
(2.4) reduces to

(2.7) ∇Xξ = ρX, X ∈ χ(M).

A vector field ξ on M is a special concircular vector field if, and only if,

∇ξ[ = ρg (ρ ∈ C∞(M)),(2.7*)

where ξ[ is the 1-form metrically equivalent to ξ. Indeed, since ∇ is the Levi-
Civita connection, for any X, Y ∈ χ(M) we have

∇ξ[(X, Y ) = (∇Xξ
[)(Y ) = Xξ[(Y )− ξ[(∇XY )

= Xg(ξ, Y )− g(ξ,∇XY ) = g(∇Xξ, Y ),

so the conditions (2.7) and (2.7*) are equivalent.

Definition 2.2. A symmetric tensor field T of type (0, 2) on a Riemannian
manifold (M, g) is said to be a Codazzi tensor if it satisfies the condition

(2.8) (∇XT )(Y, Z) = (∇Y T )(X,Z); X,Y, Z ∈ χ(M).

Definition 2.3. The Ricci tensor S is called cyclic parallel if it satisfies the
condition

(2.9) (∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) = 0,

for any vector fields X, Y, Z on M .

Definition 2.4 ([10]). A ϕ(Ric)-vector field is a vector field ϕ on a Riemannian
manifold (M, g), satisfying the condition

(2.10) ∇ϕ = µRic

where µ is a constant and Ric is the type (1, 1) Ricci tensor.
When (M, g) is an Einstein space, the vector field ϕ is concircular. If µ 6= 0,

then we call that the vector field ϕ is proper ϕ(Ric)-vector field. Moreover,
when µ = 0, the vector field ϕ is covariantly constant.

Einstein spaces are characterized by the proportionally of the Ricci tensor
S to the metric tensor, so in these spaces the special concircular vector fields
can also be defined by ∇ξ = %Ric. This suggests a general investigation of
vector fields satisfying the latter relation and the conditions for their existence
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in general (i.e. non-Einstein) Riemannian spaces, with the specialization % =
µ = const. ϕ(Ric)-vector fields are closely related to Ricci flows, introduced
by Hamilton [9].

Now, we can state the following theorems and corollaries.

Theorem 2.1. In a G(QE)n manifold, both of the generators cannot be torse-
forming vector fields.

Proof. Suppose that the generators U and V of a G(QE)n manifold corre-
sponding to the 1-forms φ and ψ, respectively, are torse-forming vector fields.
In this case, using conditions g(U,U) = 1, g(V, V ) = 1 and (2.4), we obtain

(2.11) (∇Xφ)(Y ) = ρ(g(X, Y )− φ(X)φ(Y )),

(2.12) (∇Xψ)(Y ) = σ(g(X, Y )− ψ(X)ψ(Y )),

where ρ and σ are scalar functions.
Taking the covariant derivative of the equality g(U, V ) = 0, using (2.11) and

(2.12) we get

g(∇XU, V ) + g(U,∇XV ) = ρψ(X) + σφ(X) = 0.(2.13)

Putting X = U and X = V in (2.13) and using (1.5), it follows that ρ and
σ must be zero, which contradicts to the fact that they are non-zero functions.
This concludes the proof. �
Theorem 2.2. Let the Ricci tensor of a G(QE)n be a Codazzi tensor, and
suppose that one of the generator vector fields φ], ψ] is torse-forming, and the
other is not. Then we have

ρ =
1

b
akφ

k or ρ =
1

c
akψ

k,

where ak := ∂ka (summation convention in force).

Proof. In local coordinates, we have from (2.8)

(2.14) ∇kSij = ∇jSik.

Taking the covariant derivative of (1.4), we get

(2.15) ∇kSij = akgij + bkφiφj + b(∇kφi)φj + b(∇kφj)φi + ckψiψj

+ c(∇kψi)ψj + c(∇kψj)ψi

where a, b, c are the associated scalars of the manifold; ak = ∂ka, bk = ∂kb and
ck = ∂kc.

If U = φ] is torse-forming and V = ψ] is not, then using (1.5) and (2.4) we
obtain

(2.16) ∇kφi = ρ(gik − φiφk)

where ρ is a scalar function.
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Using (2.15) and (2.16), we obtain

(2.17) ∇kSij = akgij + bkφiφj + ckψiψj + bρφi(gjk − φjφk)

+ bρφj(gik − φiφk) + c(∇kψi)ψj + c(∇kψj)ψi.

From (2.14) and (2.17), we get

(2.18) akgij − ajgik + bkφiφj − bjφiφk + ckψiψj − cjψiψk + bρ(gikφj − gijφk)

+ c(ψj∇kψi + ψi∇kψj − ψk∇jψi − ψi∇jψk) = 0.

Multiplying (2.18) by gij, and the last equation by φk, and using (1.5), we
find

(2.19)
(
(n− 1)ak + ck

)
φk + [(1− n)b+ c]ρ = 0

where k = 1, 2, . . . , n.
Moreover, multiplying (2.18) by gij, and the last equation by ψk, and using

(1.5), we get

(2.20)
(
(n− 1)ak + bk

)
ψk − c∇kψ

k = 0.

On the other hand, multiplying (2.18) by φiφj and using (1.5), we obtain

ak + bk − (ajφ
j + bjφ

j)φk = 0,(2.21)

where j = 1, 2, . . . , n. If we multiply (2.21) by ψk, we get

(ak + bk)ψ
k = 0.(2.22)

Similarly, multiplying (2.18) by ψiψj and using (1.5), we get

ak + ck − bρφk − cψj∇jψk − (aj + cj)ψ
jψk = 0.(2.23)

Multiplying (2.23) by φk and taking into account (1.5), we have

(ak + ck)φ
k − (b− c)ρ = 0.(2.24)

Combining (2.19) and (2.24), we get

(2.25) ρ =
1

b
akφ

k.

The other case (V = ψ] is torse-forming, U = φ] is not) is completely
analogous. �

Corollary 2.1. Let the Ricci tensor of G(QE)n be a Codazzi tensor. If one
of the generators of a G(QE)n is a torse-forming vector field and the other is
not, then the associated scalar a cannot be constant.

Proof. From (2.25), the proof is immediate. �
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Theorem 2.3. Let the Ricci tensor of G(QE)n be a Codazzi tensor. Suppose
that one of the generator vector fields φ] and ψ] is torse-forming, and the
second is not. Then φ] (or ψ]) is divergence-free if, and only if, φ] (or ψ]) is
orthogonal to grad(a) and grad(c) (or grad(a) and grad(b)), where a, b and c
are the associated scalars.

Proof. Suppose that φ] is torse-forming and ψ] is not. Using local coordinates,
from (2.20) and (2.22) we obtain

(2.26) ∇kψ
k =

1

c
(n− 2)akψ

k.

If ψ] is divergence-free, then from (2.26) and (2.22) we get, akψ
k=0 and

bkψ
k=0. Thus ψ] is orthogonal to grad(a) and grad(b). The converse is also

true. The other case can be treated in the same way. �
Theorem 2.4. Let the Ricci tensor of G(QE)n be cyclic parallel. If one the
generator vector fields φ] and ψ] is torse-forming and the other is not, then

(2.27) ρ =
1

2b
bkφ

k or ρ =
1

2c
ckψ

k,

where b and c are the associated scalars of the manifold; bk := ∂kb, ck := ∂kc.

Proof. Our result is formulated in terms of local coordinates, so our next cal-
culations are also local. Permuting cyclically the indices in (2.17), adding the
three equalities obtained, and using (2.9) we find

(2.28) akgij + aigjk + ajgik + bkφiφj + biφjφk + bjφiφk

+ ckψiψj + ciψjψk + cjψiψk + 2bρ(φigjk + φjgik + φkgij)

− 6bρφiφjφk + c(ψj∇kψi + ψi∇kψj + ψk∇iψj + ψj∇iψk

+ ψi∇jψk + ψk∇jψi) = 0.

Multiplying (2.28) by gij and using (1.5), we obtain

(2.29) (n+ 2)ak + bk + 2biφ
iφk + ck + 2ciψ

iψk

+ 2(n− 1)bρφk + 2c(∇iψ
i)ψk + 2cψi∇iψk = 0.

From this, multiplying (2.29) by φk and ψk, respectively, and using (1.5),
we get

(2.30) [(n+ 2)ak + 3bk + ck]φ
k + [2(n− 1)b− 2c]ρ = 0,

(2.31) [(n+ 2)ak + bk + 3ck]ψ
k + 2c∇iψ

i = 0.

On the other hand, multiplying (2.28) by φiφj, it follows that

(2.32) ak + bk + 2(ai + bi)φ
iφk = 0.

Moreover, multiplying (2.32) by φk and ψk, respectively, and using (1.5), we
get

(2.33) (ak + bk)φ
k = 0,
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(2.34) (ak + bk)ψ
k = 0.

Similarly, if we multiply (2.28) by ψiψj, we get

ak + ck + 2(ai + ci)ψ
iψk + 2bρφk + 2cψi∇iψk = 0.(2.35)

Again, multiplying (2.35) by φk and ψk, respectively, and using (1.5), we
find

(2.36) (ak + ck)φ
k + 2(b− c)ρ = 0,

(2.37) (ak + ck)ψ
k = 0.

Thus, using (2.30), (2.33) and (2.36), it follows that

ρ =
1

2b
bkφ

k,

as was to be shown. The other case is completely analogous. �

Corollary 2.2. If one of the generator vector fields of G(QE)n is a torse-
forming vector field and the Ricci tensor of G(QE)n is cyclic parallel tensor,
then the associated scalars a, b and c cannot be constant at the same time.

Proof. If we suppose that one of the associated scalars is constant, then from
(2.27), (2.33), (2.34) and (2.37) we see that ρ must be zero, which contradicts
our assumption. �

Theorem 2.5. Let the Ricci tensor of G(QE)n be cyclic parallel. If the gener-
ator vector field φ] is torse-forming while ψ] is not, then ψ] is divergence-free,
and vice versa.

Proof. Using (2.9) and the second Bianchi identity, we find that the scalar
curvature is constant. Then, taking the covariant derivative of (2.1), using
(2.31) and (2.37) yield the desired relation ∇iψ

i = 0. �

Next, we assume that the vector fields generated by the 1-forms φ and ψ are
φ(Ric) and ψ(Ric) vector fields, respectively. Then we can state the following
theorem.

Theorem 2.6. If the generator φ] (or ψ]) of G(QE)n is φ(Ric) (or ψ(Ric))
vector field, then this vector field must be covariantly constant.

Proof. For a G(QE)n, relation (2.15) is valid. If φ] is φ(Ric) vector field, then
we have

(2.38) ∇jφi = µSij,

where µ is a constant.
Multiplying (2.38) by φi and using (1.4) and (1.5) we obtain

µSijφ
i = µ(a+ b)φj = 0.(2.39)
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Suppose that µ is a non-zero constant. In this case, from (2.39), we find

a = −b.(2.40)

From (1.4) and (2.40), it is found that

(2.41) Sij = a(gij − φiφj) + cψiψj.

Otherwise taking the covariant derivative of the expression Sijφ
i and using

(2.38) and (2.39), we obtain

(2.42) (∇kSij)φ
i + µSijS

i
k = 0

where Si
k = gimSmk.

Multiplying (2.42) by gjk, we get

(2.43) (∇kS
k
i )φ

i + µSijS
ij = 0.

It was shown, [10], that Riemannian spaces with a φ(Ric) vector field of
constant length have constant scalar curvature. Since the generator φ] is a
unit vector field and it is also a φ(Ric) vector field, the scalar curvature of
the manifold is constant. In this case, using the contracted second Bianchi
identity and considering that the scalar curvature of the manifold is constant,
it is obtained that

(2.44) ∇kS
k
i =

1

2
∇ir = 0.

By the aid of (2.43) and (2.44) and supposing that µ is a non-zero constant,
we find

(2.45) SijS
ij = 0.

Using (1.5) and (2.41) in (2.45), it follows that

(2.46) (n− 1)a2 + 2ac+ c2 = 0,

and so,

(2.47) (n− 2)a2 + (a+ c)2 = 0.

From (2.47), it is seen that a and a + c must be zero, that is, a = c = 0.
But, in this case, from (2.41) we get that the Ricci tensor vanishes which is
a contradiction to the hypothesis. Thus, the constant µ must be zero which
means that the vector field φ] is covariantly constant. The other case (assuming
that ψ] is ψ(Ric) vector field) is completely analogous. �
Corollary 2.3. In a G(QE)n manifold, the generators cannot be proper φ(Ric)
and ψ(Ric) vector fields.

Proof. From the Theorem 2.6., the proof is immediate. �
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