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ABSTRACT. Relativistic quantum mechanics and the properties of Dirac
fermions can be generated in a particularly powerful way using two vector
spaces which are commutative to each other and which contain identical
information. The apparently broken symmetry between the two spaces ob-
served through the quadratic geometry of ordinary space becomes a perfect
and unbroken symmetry in the quartic geometry which defines the single
physical quantity through which the two spaces can be combined.

1. GEOMETRY AND PHYSICS

Can we construct physics entirely in terms of geometry? This is a highly
relevant question in view of the fact that our only way of apprehending Na-
ture is through 3-dimensional space. Nothing else is directly observable. The
attempt has been made many times - Cartesian philosophy, general relativity,
Kaluza-Klein theory, unified field theory, and string and membrane theories
are examples - but never with completely satisfactory results. Whatever num-
ber of dimensions we add to our space-time structure, and however we contort
it, we have to face the fact that the world we observe is 3-dimensional. Clearly
something else is there, but we do not observe it. Can we find a geometrical
way of constructing it, so that we create a larger geometry which still preserves
the 3-dimensional nature of observation?

I am actually going to propose that the world is not 3-dimensional, or con-
structed from space of any other dimensionality. In fact, it has no structure
whatsoever. It is a zero totality. To reconcile this with our view of a 3-
dimensional spatial world, we have to imagine a dual 3-dimensional space,
which in some subtle way cancels the effect of our observed space. Providing
our known 3-dimensional Euclidean space with its dual partner allows us to
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construct an algebraic geometry which has a remarkable parallels to the one
that seems to operate in the real world.

The only insight ever attained into the meaning of 3-dimensionality came
with the discovery of quaternions. Here it is associated with anticommutativ-
ity. The four quaternion units, ¢z, 7, k, 1, follow the well-known multiplication
rules:

(1) =4 =k’=ijk=—1
(2) 1y =—Ji=k
(3) Jk=—kj=1
(4) ki=—ik=3j.

If we make our units anticommutative but still associative, we are obliged to
fix them at 3.
We can of course complexify quaternions, to create a set of units, (i2), (ij),

(1k), i, which are the complexified versions of the quaternion ones. So (it) =
i, (i) =j, (ik) =k, (i1) = i The units follow the multiplication rules:

(5) P=j2=k=1
(6) ij=—ji=ik
(7) jk = —kk = i
(8) ki = —ik = ij.

The units, which are the complexified versions of the quaternion units,
have acquired a number of names. They are called multivariate vectors by
Hestenes, [3] as they have all the properties of ordinary vectors, except that
they also have a full (algebraic) product:

(9) ab=a-b+iaxb

from which all the rules concerning unit vector multiplication may be derived.
They are isomorphic to Pauli matrices. In more general terms, however, they
are the units of the Clifford (or geometrical) algebra of 3-dimensional space.
Of course, if we complexify the units of the multivariate or Clifford algebra,
we revert to quaternions, so i = ¢, ij = j, tk = k, etc. However, terms like i,
ij, ik are also recognisable as units of pseudovectors or axial vectors (e.g. area,
angular momentum) and 7 is recognisable as a unit pseudoscalar (e.g. volume).
All real vectors are of this type. There are no ‘ordinary’ vectors in nature.

2. A DUAL VECTOR SPACE

The units i, j, k define a complete Clifford algebra of 3D space:

i j k wvector

i 4 ik bivector pseudovector quaternion
1 trivector pseudoscalar

1 scalar
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where the pseudovectors give us areas and the pseudoscalars volumes.
Let us suppose we have another such algebra, isomorphic with the first:
I J K  wvector
I WJ K bivector pseudovector quaternion
7 trivector pseudoscalar
1 scalar

If we combine these two algebras commutatively in a tensor product, that
is, we take the algebraic product of the eight base units, 1, i, j, k, 7, I, J, K,
we obtain 64 terms, which are + and — versions of:

i j ki g k01
I J K a4 J K
il jI kI 4l I kI
iJ jJ kJ dJ ¢gJ ikJ
iK jK kK iK jK kK
This becomes a double vector algebra or a double Clifford algebra of 3D space.

We can also take the algebraic product of the four quaternion units, 1, 2, j,
k, and the four vector units 4, i, j, k, to produce an exactly isomorphic vector
quaternion algebra, whose units are + and — versions of:

i j k i 4 ik il
i 3 ki g ik

it je ke iz g ke

i jg kg dj iy kj

ik jk kk ik ijk kk

Yet another isomorphic version of the same algebra appears when we take a
complexified algebraic product of two commutative sets of quaternion units ¢,
3, k, I, J, K. This complexified double quaternion algebra has units which
are + and — versions of:

7 J k 1 ] ik 11
I J K I iJ iK

i g1 kI ol I kI

iJ 3Jd kJ ad igd ikJ

1K jK kK K 3K kK

This dual vector space algebra is of immense physical significance, for it
is isomorphic to the gamma algebra of the Dirac equation, which defines the
relativistic quantum mechanics of the fermionic state. Though the gamma
algebra is usually based on 4 x 4 matrices, all such matrices can, in fact, be
derived from the products of two commuting sets of 2 x 2 Pauli matrices, say
01, 09, 03 and Yy, Yo, X3. This is identical to deriving them from the units
of two vector spaces: i, j, k and I, J, K. Relativistic quantum mechanics, it
seems, requires a dual vector space, in addition to the ‘doubling’ produced by
the complex nature of each vector space.

The units also form a group of order 64, with a minimum of 5 generators.
The 5 generators of the algebraic group can be matched to the 5 gamma
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* 1/1]J K
1 11 I1]J K
I I11[K|J
J JIK|[1]|1
K KiT]J]|1
TABLE 1

matrices in a number of ways. There are many ways of doing this but the
key sets of generators include all the individual units of the two 3-dimensional
quantities (vector / quaternion) or two ‘spaces’ and the overall structure of
these sets is always the same. Because 5 is not a truly symmetrical number in
nature, the symmetry of one of the two spaces is preserved (here, represented
by lower case characters), while that of the other (here, represented by upper
case characters) is broken:

Yo =ik; v =11 y=1) =1k =1

Yo =k; m=di; p=dj p=dk 5=J.

3. THE H4 ALGEBRA

The 64-part algebra has a subalgebra which is particularly significant for
physics, and this creates a symmetry between the two spaces which remains
unbroken. The algebra can be constructed using coupled quaternions, with
units 1, 21, 3J, kK, to produce a cyclic but commutative algebra with multi-
plication rules:

(10) il = jJ 5T = kKkK =1
(11) i3] = jJil = kK
(12) JIkK = kKjJ = il
(13) kKil = ilkK = jJ

Again, there are alternative ways of constructing the algebra, one of which
uses the negative values of the paired vector units 1, —il, —jJ, —kK. (1 is
equivalent here to —ii.) This time we have:

(14) (—iD)(—iD) = (=jJ)(=jJ) = (-kK)(-kK) =1
(15) (=iD)(=jJ) = (=§I)(—iI) = (-kK)
(16) (—3J)(—kK) = (=kK)(=jJ) = (-iI)
(17) (—=kK)(—iI) = (i) (-kK) = (-jJ)

Using the symbols I = ¢ = —il, J = 3J = —jJ, K = kK = —kK, 1, to
represent the units of the algebra, we can structure the relationships between
them in a group table 1. This can be seen as a representation of the Klein-4
group, the noncyclic group of order 4.
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4. NILPOTENT QUANTUM MECHANICS

The double vector algebra allows us to create relativistic quantum mechanics
in a particularly efficient and streamlined way [9, 11]. We can, for example,
begin with Einstein’s energy-momentum conservation equation (with ¢ = 1)

(18) E*—p*—m?>=0

and factorize directly using the algebra, using any of the three isomorphic rep-
resentations of the units. Here we will use the combination of four quaternion
units (1, %, 7, k) and four multivariate vector units (¢, i, j, k), noting the
similarity to Penrose’s twistors, with four real or norm 1 components and four
imaginary or norm —1 components [5, 6].

The eight base units (1, 2, 7, k, i, 1, j, k) have a similar structure. There is
a significant difference, however, in that the connection between the units of
space and time now comes from a quantum rather than a classically relativistic
structure. In effect, because of the mediating gamma matrices or algebraic
operators, which are different for the space and time components, the space-
time connection is now no longer purely 4-vector. Using the vector-quaternion
algebra, we now factorize (18) in the form

(19) (ikE + iip, + ijp, + ikp, + jm)(ik £+ dip, + ijp, + ikp, + jm) = 0
or
(20) (ikE 4 ip +3m)(itkE+ ip + jm) = 0.

The object (ikE +ip+jm) is a nilpotent, a square root of 0. It can be used
to produce a powerful form of relativistic quantum mechanics. If we apply a
canonical quantization procedure to the first such expression in equation (20),
to replace the terms F and p by the operators £ — i0/0t, p — —iV (using
units where & = 1), and assume that the operators act on the phase factor for
a free fermion, e~ “#P1) we immediately obtain the nilpotent Dirac equation
for a free fermion:

(21) (qtk% T iiV +jm> (+ikE £ ip + jm)e FPr) — @
As Hestenes has shown [3], spin is automatically included when we take p or
V as a multivariate vector through the extra x term in the full product. This
means that we can interchange p with o.p and V with ¢.V in equations such
as (20) and (21).

The nilpotent formalism is also derivable from the conventional Dirac equa-
tion by pre-multiplication by ~;, and conversion of the gamma matrices to
algebraic operators. All conventional results are accessible to both representa-
tions, but the nilpotent formalism uncovers additional details which tend to lie
hidden in the matrix representation. As usual, The nature of the four simul-
taneous solutions required for the wavefunction (2 for fermion / antifermion x
2 for spin up / spin down) is immediately apparent. In the new formalism, we
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replace the 4 x 4 matrix differential operator and column vector wavefunction
with a row vector operator and a column vector wavefunction, each of which
may be represented in abbreviated form by (£ikE + ¢p + jm). With choice
of sign convention, the four solutions now become:

(ikE+ ip + jm) fermion spin up

(ikE — ip + jm) fermion spin down

(—ikE+ip+jm)  antifermion spin down

(—ikE—1ip +jm)  antifermion spin up

The meaning of the four terms is now apparent, as conventional theory

assigns negative energy states and negative time derivatives to antifermions,
while conservation of charge in pair production and annihilation means that
fermions and antifermions must have opposite charges. The first term in the
column may represent the observed particle state, while the others become the
accompanying vacuum states, or states into which the observed particle could
transform by respective P, T and C' transformations:

P t(ikE+ip+jim)i = (ikE—1ip+jm)
T k(kE+ip+jmk = (—ikE+ip+3jm)
C —jlkE+ip+j3m)j = (—ikE—ip+jm)

We can, in principle, define time-reversal and parity transformation as equiv-
alent to reversals in the signs of the time and space derivatives in the Dirac
operator. In the field-free case this immediately translates to the signs of the
F and p terms in the amplitude, and, in the nilpotent formalism, as previously
stated, we can replace p with o.p, so producing a reversal in the direction
of spin at the same time as a reversal in the direction of momentum. In
conventional theory, a simultaneous time reversal and parity transformation
is described as a charge conjugation, and this is shown here by the reversal
of the energy and spin states. The transformation of fermion to antifermion
with opposite spin simultaneously preserves charge and angular momentum
conservation in pair production and annihilation. The transformations occur
simultaneously in such contexts, as space, time and charge have the same fun-
damental status, and we can show, by successive applications of the respective
transformations, that PT = C, TC' = P, and CP = T.

PT  i(—ikE+ip+jm)t = (—ikE—ip+jm)
¢ k(—ikE—ip+jimk = (ikE—ip+jm)
CP  —jlikE—ip+jm)j = (—ikE+ip+jm)

If we replace the observed fermion state spin up by any of the others using
any of the transformations P, T or C we will simultaneously apply the same
transformation to all the others. Since specifying the first term necessarily
specifies all the others, it is often convenient to write the 4-component wave-
function as a single term and assume the sign changes follow automatically. In
the nilpotent formalism, the signs of £ and p are responsive to the quaternion
operators with which they are associated, and simultaneous left- and right-
multiplication by the appropriate quaternion unit produces the corresponding
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physical transformation. The physical process is completely described by the
mathematical operation.

To demonstrate the relation between three additional states on the fermion,
the P, T, C transformations, and vacuum we can take (£ikE 4+ ip + jm) and
post-multiply it by the idempotent k(+ikE + i¢p + jm) any number of times.
Since the only effect of this operation is to introduce a scalar multiple, which
can be normalized away, then the idempotent k(+ikE + ip + jm) is clearly
acting as a vacuum operator.

(22) (LikE+ip+jim)k(tikE+ip+jjm)k(LikEL+ip+3jm) ...
— (tikE+ip + jm)

The same occurs with ¢(+ikE + ip + jm) and j(L£ikE £ ip + jm), the extra
vector terms in the first case being absorbed into the scalar multiple and
disappearing with alternate multiplications. In effect, k(+ikE + ip + jm),
i(+ikE £ ip + jm) and j(£ikE £ ip + jm) can be regarded as vacuum
operators, and k, ¢ and 7, or, equivalently, K, T and J, as coefficients of a
‘vacuum space’.

The most important consequence of adopting the nilpotent form of quan-
tum mechanics, however, is that it produces an extra constraint which carries
a wealth of new information about quantum systems, while reducing the in-
formation input required to a minimum. For example, an operator of the form
(ikE + ip + jm) will automatically generate the phase term on which it oper-
ates to produce a nilpotent amplitude of the form (ik E+ip+jm), or one that
squares to zero. This completely eliminates the need for an equation. Only the
operator is required. Also, though equation (21) is specified for a free fermion,
the fermion need not be free. The method is equally valid when we incorporate
field terms or covariant derivatives into the operator, for example, when we
make the replacements £ — i0/0t+ ep+ ..., and p - —iV+eA + .... The
operator here still retains the overall form (ikE+tp+jm), but the phase term
is now no longer be e~ “#~PT) hut whatever is needed to create an amplitude
of the general form (ik E+ip—+jm), which squares to zero, and the eigenvalues
F and p in the amplitude will be more complicated expressions resulting from
the presence of the field terms.

In principle, space and time are completely variable as long as we preserve
the conservation principles which define a system. The phase factor determines
the extent to which this happens. In the case of a completely free fermion,
there is no restriction on spatial position over any time period, and this is
reflected in the phase factor e “#"P¥) hecause there is no restraining conser-
vation principle, linking the fermion to any other particle or field. As soon as
the fermion interacts with another system, however, say another fermion, con-
servation principles will be invoked (leading to terms added to the space and
time differentials) and this will be reflected in a more complicated phase factor,
with a more restricted range of spatial variation. The restrictions will increase
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as more fermions are brought within range of the originally free fermion, and so
the range of variation in the phase factor will decrease even further. The clas-
sical limit will be reached when it shows virtually no variation with space over
time. The nilpotent formalism makes the transition from quantum to classical
conditions simply a consequence of the number of conservation principles that
have to be applied.

Many new results also emerge from the nilpotent formalism. Particularly
important are the structures of the three different boson-type states, consid-
ered as combinations of an original fermion state with any of the P, T or C
transformed ones, the result being a scalar wavefunction.

(+ikE + ip + jm)(FikE + ip +jm)  spin 1 boson

(£ikE £ ip + gm)(FikE F ip +j3m)  spin 0 boson

(+ikE + ip + jm)(L£ikE Fip+jm)  fermion-fermion combination
Significantly, a spin 1 boson can be massless, but a non-vanishing spin 0 boson
must have a mass, as the massless (£ikE £ ip)(FkE F ¢p) would immedi-
ately become zero. So, massless Goldstone bosons must become massive Higgs
bosons in the Higgs mechanism.

In principle, the nilpotent formalism defines the relativistic quantum me-
chanics for a fermion in any state, subject to any number of interactions, sim-
ply by creating an operator of the form (+ik E+ip+7m), which then uniquely
determines the phase factor which will make the amplitude nilpotent.

(23) operator acting on phase factor? = amplitude® = 0.

This can be accomplished without defining any equation at all.

5. THE FERMION AS SINGULARITY

But where does this formalism come from? Space is a nonconserved quan-
tity, with no fixed elements, units or components, and so cannot define on its
own a point. Two ‘spaces’ are the minimum needed to define a particle sin-
gularity. The nonconserved nature of space and its exactly opposite nature to
the conserved nature of mass and charge have been discussed at length by the
author in previous work [9]. There are many manifestations, including gauge
invariance, translation and rotation symmetry, aspects of Noether’s theorem,
and the need to use differential forms in physical equations. Nonconservation
is taken to be the fundamental property, from which these various manifesta-
tions appear according to context. While mathematicians may discuss points
in ordinary 3-D space, physically they have no meaning, as space is a non-
conserved quantity whose units have no definable identity because they have
translation and rotation symmetry. In effect, we cannot identify anything in a
single space, but identification becomes possible if we have two spaces.

We can here apply a reverse argument from topology. The creation of a
particle singularity using its ‘intersection with a dual space can be seen as the
creation of a multiply-connected space from a simply-connected space through
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the insertion of a topological singularity. For fermions, we can describe one
of these as real space and the other as the ‘vacuum space’ which we have
previously defined. This space is closely connected with charge and the weak,
strong and electric interactions, as well as T, P and C transformations. In
this sense, we can say that the fermion always exists in the two spaces from
which it is constructed, real space and vacuum space, and the non-classical
zitterbewegung motion, which Schrodinger found in the solution to the free-
particle Dirac equation, represents the switching between these spaces which
makes it possible to define the fermion as creating a point singularity through
the intersection of two spaces.

The creation of a singularity using these two spaces determines that they
are precisely dual and that each contains the same information as the other,
though in a different form as regards observation. But as observers within the
system, we are forced to ‘privilege’ one space over the other, to maintain the
symmetry of one while losing that of the other. It is similar to the way in
which our most primitive form of numbering, binary arithmetic, ‘privileges’ 1
over —1, making them dual in summing to 0, but appearing very different in
the way they are perceived from within a system defined by unit 1.

An asymmetry or chirality appears in the fermionic structure because it
results from an asymmetric combination of the space of observation with an
unobserved dual vacuum space. Perfect symmetry would have been preserved
if we had used 6 generators (i, j, k, I, J, K), but this is not the minimum.
The minimum number of generators of the combined 64-part algebra is 5, a
number intrinsically suggesting asymmetry, and this, as we have seen, requires
the symmetry of one space to be broken while the other is preserved:

K i dj dk Al
enerqgy momentum mass
time space proper time

In the nilpotent theory, proper time is on the same side of the equation as time,
and is distinguished from time by having a different signature. Numerically,
of course, it is equal to the time in the frame of a moving object, but the use
of a double space structure requires it to have a distinct physical origin in the
mass, rather than the time term.

The space, in this formulation, with the unbroken symmetry (represented
by lower case characters) is real space, the space of observation. The space
with the broken symmetry (represented by upper case characters) is ‘vacuum
space’, and it seems to be the space which combines all the unobservable
quantities (specifically, time, mass, charge). The zeroing produced by the
nilpotent condition ensures, as we can show, that the information in the two
spaces represented by the respective units i, j, k and I, J, K is identical. It
also defines, in principle, the meaning of a point in either of the two spaces as
the norm 0 crossover between them.
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Pauli exclusion, a fundamentally nonlocal phenomenon, is an immediate
and unavoidable consequence of the fact that, in nilpotent quantum mechan-
ics, the total structure of the universe is exactly zero. That is, for any con-
ceptual aspect, there is a dual property, which in some sense negates it. A
fermion with a wavefunction of the form ¢ = (1kE + ip + jm) created from
absolutely nothing requires the simultaneous existence of a dual ‘vacuum’ term,
Yy = —(ikE + ip + jm), which is its precise negation in both superposition
and combination:

(24) Vi + 1, = (ikE+ip+3m) — (ikE+ip+jm) =0

(25) Yip, = —(tkE+ip+jm)(ikE+ip+jm) =0

In this representation, Pauli exclusion ensures that no two fermions share the
same vacuum.

Pauli exclusion is an obvious consequence of nilpotency. But, conventionally,
we derive it from the fact that fermion wavefunctions are antisymmetric, so
that:

(26) (@/Jl% - ¢2¢1) = _(1921/11 - ¢1¢2>

In nilpotent terms, we write (11199 — 191)1) as

(27) (LikEy £ ipy + jmy)(Lik By £ ipg + jmg) = 4p1p2 — 4P2P1
= 8ip1 X p2 = —8ip2 X p1

This result is clearly antisymmetric, but it also has a quite astonishing con-
sequence, for it requires any nilpotent wavefunction to have a p vector, in
real space, the one defined by the axes i, j, k, at a different orientation to any
other. The wavefunctions of all nilpotent fermions then instantaneously cor-
relate because the planes of their p vector directions must all intersect. A line
can be defined as perpendicular to an indefinitely extended plane, and planes
at any non-zero angle to each other will always intersect. So, if lines are not
parallel, the planes to which they are perpendicular will not be parallel, and
the condition for fermions defining a unique instantaneous direction of spin
can be redefined as being equivalent to the planes perpendicular to their spin
directions necessarily intersecting. This is the only source of the entire phys-
ical information relating to the fermion, for, at the same time, the nilpotent
condition requires the £, p and m combinations to be unique, and we can
visualize this as constituting a unique direction in vacuum space along a set
of axes defined by k, 2, 3 or K, I, J, with coordinates defined by the values of
1E, p and m.

Fermion singularity, in this context, can only ever result from spatial duality.
The duality has to be made manifest, and specifically in a chiral manner,
because the combination of the two spaces produces a chiral result. We see
the duality in the characteristic spin which shows fermion ‘rotation’ negotiating
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2 spaces through the zitterbewegung motion and the chirality in the positive
nonzero rest mass which results from this. We can assume that this chirality
is the same as that produced by the chirality of vacuum space in the Higgs
mechanism, as that process is known to generate the mass which is manifested
through zitterbewegung. Berry phase in any of its manifestations (Aharonov-
Bohm effect, Jahn-Teller effect, quantum Hall effect, Cooper pairing, etc.) [1]
can then be seen as a consequence, or even an expression, of the singularity
of the fermion state, leading to a topology with an extra twist, equivalent to
spin. The pole in the fermion propagator occurs at the precise ‘boundary’
between the two spaces, respectively characterised by positive and negative
energies, (+ F) and vacuum space (- E), or forward and reverse times, (+
t) and (- t), the very combination which makes the singularity possible. The
combination of two spaces becomes the same thing as the actual creation of
point charges, the charges, in their extended form as sources of all gauge
interactions [9], being a manifestation of the ‘directions’ of the vacuum space.
Ultimately, through zitterbewegung and the Higgs mechanism, point charges
are also the only source of invariant (‘rest’) mass, and, in the combined spaces,
of relativistic quantization.

6. THE NILPOTENT CONDITION

So, what is the origin of this other space? Clifford algebra, significantly,
has 3 subalgebras, which we can describe as scalar, complex and quater-
nion, or scalar, trivector and bivector. Each of these is an algebra in its
own right, and it is difficult to see why only the full Clifford algebra should
have a physical meaning. In fact, previous work suggests that all of the
subalgebras have physical meanings on the same level as Clifford algebra,
and that they represent the respective physical concepts of mass, time and
charge. [9, 7] That is, besides the vector algebra of space, we have three in-
dependent algebras which have a physical representation on the same level as
space. If we combine these the three physical concepts as representing every-
thing that is excluded from space as represented by I, J, K, then the total
structure is equivalent to a single vector space represented by these units, but
without anything which directly corresponds to them:

charge ¢ 37 k bivector pseudovector quaternion
time ¢ trivector pseudoscalar
mass 1 scalar

Of course, when we refer here to ‘charge’, we mean the quantity that is the
source of the electric, strong and weak gauge fields before the symmetry-
breaking which will result from the ‘compactification’ of the units into the
minimum number of group generators, a kind of ‘grand unified” value.

The space represented by %, 7, k or I, J, K is then never observed directly,
because it is a mathematical composite, not a physical quantity. In addition to
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its effect in generating the new combined quantized quantities of energy, mo-
mentum and rest mass, we can also see that the symmetry breaking between
the units of the ‘vacuum’ space can be seen as generating the symmetry break-
ing that is observed in the units of weak, strong and electric charge, which are
respectively associated with pseudoscalar, vector and scalar quantities, and
the SU(2), SU(3) and U(1) group symmetries which are ultimately derived
from them (although the individual charges do not correspond directly with
the energy, momentum and mass terms): [9]

ik 1i 2 1k 17

K i oI dk Al

energy momentum mass

weak charge  strong charge electric charge
SU(2) SU(3) U(1)

We can even see how the Clifford algebra extends to 10 dimensions of the kind
required by string theory (5 for energy, momentum and mass and 5 for charge),
with 6 fixed or compactified (that is, all except energy and momentum) [9].

7. THE PHYSICAL SIGNIFICANCE OF THE H4 ALGEBRA

Besides the algebraic properties defined by their units, which may be de-
scribed as real (norm 1) / imaginary (norm 1), and commutative (1D) / an-
ticommutative (3D), the conserved and nonconserved natures of charge and
space are related to the way they are combined in the 5 group generators cre-
ating the norm 0 overall structure, while the corresponding natures of mass
and time are related to the fact that quantities with their algebraic character-
istics are needed to complete the quaternion and vector properties of charge
and space [9, 7].

Work done over the last decade suggests that we should we take mass, time,
charge and space as successive descriptions of the universe generated by a
‘universal rewrite system’, with their four commutative algebras existing as
a simultaneous description. [9, 12, 2] The first two of these are scalar and
complex, so the description reduces to a combination of scalar, complex and
quaternion acting as though it were a vector space, together with another
vector space. The combination, which we have called ‘vacuum space’, remains
unobservable because it is not physical. However, the breaking of the symmetry
of this ‘space’ which occurs when we create the 5 generators of the algebra
becomes the ultimate source of the breaking of symmetry between the physical
interactions.

In fact, this, along with previous work [9, 7, 8, 4], suggests that the funda-
mental parameters mass, time, charge and space have a fundamental relation-
ship (before combination) which can be identified as a Klein-4 symmetry:
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mass  real (norm +1) commutative conserved
time  imaginary (norm -1) commutative nonconserved
charge imaginary (norm -1) anticommutative (3D) conserved
space real (norm +1) anticommutative (3D) nonconserved

This symmetry, as we have seen, is the same as that of the H4 double
algebra in which the two spaces have equal status, and we can equally arrange
the parameters mass (M), time (T), charge (C) and space (S) in equivalent
tables reflecting this algebra, for example:

* M|T|C|S
M M|T|C|S
T T M| S|C
C C|S|M|T
S S| T|C|M

The table indicates that we can generate rules by which the properties of
one element can be transformed into those of another. So, if we take time *
charge as generating space, we can represent the three properties of time by,
say, -a, b and -¢, and those of charge by -a, -b and ¢, then if we apply rules
suchas a*a=-a*-a=aand a*-a=-a* a=- a, and similarly for b and
¢, we find that the properties of space will be a, -b and -c¢. This assumes that
mass is the group identity element, and has properties, a, b and ¢, but, in fact,
any other element could take this role.

Similar considerations could be applied to identity and the 7, P and C
transformations, as these are related to the respective properties of mass, time,
charge and space. Their fundamental algebraic units, which are respectively
scalar, pseudoscalar, quaternion and vector, also have a Klein-4 symmetry
when expressed as the Clifford algebra equivalents scalar, trivector, bivector
and vector (where the last two are taken over a resultant dimension). The
quaternion properties of charge, which may be the least familiar aspect of this
structure, have been discussed extensively in previous work. [9] Essentially,
they come from the fact that charge squared has the opposite norm to mass
squared, suggesting that one quantity may be real while the other is imag-
inary. Mass, however, cannot be an imaginary quantity as it only has one
sign, and, unlike charge, it can be accessed directly, through inertia, as well
as in squared form, through gravitation. In addition, charge comes in three
orthogonal varieties, suggestive of a quaternion structure if it is also imaginary.

8. DEFINING A DUAL SPACE SPINOR

Though the double quadratic nature of the parameters is manifested in these
structures, we can, in fact, also relate this characteristic, as manifested in the
spin property of point particles, to a quartic geometry which preserves the
exact equivalence of the two spaces. One way of generating the four solutions
for the wavefunction, say 1, required by the Dirac equation is to multiply it
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by a 4-spinor, a summation of 4 terms which adds to 1. The four terms in the
wavefunction then become 1) successively multiplied by each of the 4 terms in
the spinor, with individual terms in the spinor used as projection operators to
project out individual states: fermion / antifermion and spin up / down. In
the nilpotent formalism, spinors are not directly necessary because the terms
are already projected, but the formalism can be set up in such a way that
spinors can be used. The way which seems to be most convenient is to use
both pre- and post-multiplication of 1, as with the C, P, T operators.

A 4-spinor requires a set of primitive idempotents which add up to 1, and
are orthogonal, with products between them being 0. In nilpotent quantum
mechanics, we can define such idempotents in terms of the H4 algebra, con-
structed from the dual vector spaces:

(1-iI-jJ—kK) /4
(1—-iI+jJ+kK) /4
(1+iI—jJ+kK) /4
(14iI+jJ—kK)/4
Here, we see immediately that the 4 terms add up to 1, and that they are
orthogonal as well as idempotent.
We can generate the same terms using coupled quaternions rather than
vectors:
(143l +3J+1I)/4
(144l —3J —4I)/4
(1—sI+jJ—4I)/4
(1—el—3J+4I)/4

Though the ‘spaces’ in these structures are completely dual, since the corre-
sponding units from the two spaces are always paired, the system is neverthe-
less unavoidably chiral, as the signs cannot be completely reversed. We can
only reverse any two of them. For example:

(1HI—jI+KK) /4
(1+iI+jI—KkK) /4
(1-il-jJ—KkK) /4
(1—i1-+jI+kK) /4

The full ‘spinor’ form of the nilpotent wavefunction can be recovered by pre-
and post-multiplying a ‘pre-spinor’ form of the nilpotent either by the original
set of double vector spinors, or the set with signs reversed. A typical result
would be:

1 0 0 0 kE+ip+jim\ (1 0 0 0
28) 0—ikk 0 0 kE+ip+jim | | 0ikk 0 0
0 0 —di 0 kE+ip+jim |0 0 i 0
00 0 —ij) \ikE+ip+jim) \0 0 0 —ijj

= ((tkE+ip+jm) (ikE—ip+jm) (—tkE+ip+jm) (—ikE—ip+jm)).



DUAL SPACES, PARTICLE SINGULARITIES 135

Here, the chirality is assigned to the mass term. The different signatures in the
left- and right-multipliers indicate a rotation through the spin cycle. If the left-
and right-multipliers are the same, there is no rotation. The process is similar
to that which produced the P, T and C'transformations in section 4. Although
in that case, the left- and right-multipliers were identical to within a + or - sign,
if they had been different, the process would have produced the idempotent
vacuum operators discussed in the same section. As previously stated, the
terms are already projected in the nilpotent formalism, and this procedure is
an alternative method of generation, rather than the defining mechanism. It is
clearly a mathematically successful method of generation, but the full details
of its particular physical significance are yet to be established.

The spinor structures we have generated have the exact form of the compo-
nents of the two forms of the Berwald-Moor metric, a structure in a quartic
space:

(29) t—z—y—2)t—xz+y+2)t+r—y+2)(t+z+y—=2)

(30) t+z+y+2)t+r—y—2)t—ax+y—2)t—x—y+2)

The quartic Berwald-Moor metric can be seen as an expression of the funda-
mentally rotationally quartic nature of the underlying algebra. Multiplication
of the units of the algebra produces rotations in the spaces and generates iden-
tity after a complete cycle. Multiplication of the spin metric, producing a zero
product, shows that it describes a singularity. The perfect duality between the
two component spaces manifested in the spinor structure (which ultimately
conveys all the information in a fermionic system) means that, in principle,
we could restructure physical equations to locate the singularity in real space,
rather than spinor (or vacuum) space.

The generation of a quartic space from two quadratic ones is related to the
fact that the spinor structure ultimately comes from 4 x 4 matrices which
are themselves products of two sets of 2 x 2 matrices, each of which are
isomorphic to the units of the usual quadratic vector spaces. In the case of
the primitive idempotent spinors, multiplying the 4 components in any order
will always produce a zero product, in effect defining a singularity in ‘spinor
space’. This singularity is identifiable as the one produced by applying the
nilpotent condition, which, as we have seen, distorts the vacuum (or spinor)
space.

The significance of the H4 algebra and the Klein-4 group can be seen from
their many manifestations at a fundamental level in physics. Another one may
be seen in their general relevance to the creation of an information structure
in any self-organizing system, of which the fermion is a classic example. [4]
Many people have been interested in creating a picture of the physical world
in terms of cellular automata. Here, we imagine a 3-dimensional grid of cells in
space, or space-time, or phase space, which are either occupied or unoccupied,
by fermions or antifermions, real or virtual, with the state of occupation being
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determined according to a number of fixed rules, which, in this case, would
be determined by those for fermionic interactions. In a quantum mechanical
world, however, composed of point-like particles, a cell size in ordinary space
would have to be reduced to infinitesimal size, and there would be an infinite
number of possible cells in any given space. The key fact here is that long-lived
correlation in cellular automata can only be accomplished through the Klein-4
group, exactly as we have accomplished using the spin property of fermions.

9. CONCLUSION

While many people have thought that a redefinition of space might lead to a
description of physics in terms of a single concept, a system constructed from
dual vector spaces, each of which is commutative to the other, can be used im-
mediately to construct relativistic quantum mechanics and a description of the
fermion state with the required properties. Examination of the structure re-
veals that the two spaces contain identical information. The apparently broken
symmetry between the two spaces observed through the quadratic geometry
of ordinary space becomes a perfect and unbroken symmetry in the quartic
geometry which defines the single physical quantity through which the two
spaces can be combined. The symmetry appears broken to the observer using
the quadratic geometry of ordinary space because the underlying group struc-
ture requires 5 generators, which automatically leads to a broken symmetry.
However, the spin structure that connects the two spaces can be described by
a quartic geometry which manifests a perfect and unbroken symmetry between
the two component spaces. The Klein-4 group appears to be the symmetry
which is most significant at the fundamental level, and its equivalent signif-
icance in the theory of cellular automata hints at another way in which the
overall structure could be made manifest.
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